dispatcher.py 15.8 KB
Newer Older
BO ZHANG's avatar
BO ZHANG committed
1
import numpy as np
BO ZHANG's avatar
BO ZHANG committed
2
3
import joblib
from astropy import table
BO ZHANG's avatar
BO ZHANG committed
4
from csst_dfs_client import plan, level0, level1
BO ZHANG's avatar
BO ZHANG committed
5
6
from tqdm import trange

BO ZHANG's avatar
BO ZHANG committed
7
8
from .._csst import csst

BO ZHANG's avatar
BO ZHANG committed
9
10
11
# from csst_dag._csst import csst


BO ZHANG's avatar
BO ZHANG committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# THESE ARE GENERAL PARAMETERS!
PLAN_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "proposal_id": None,
}

LEVEL0_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
}

LEVEL1_PARAMS = {
    "dataset": None,
    "instrument": None,
    "obs_type": None,
    "obs_group": None,
    "obs_id": None,
    "detector": None,
    "prc_status": -1024,
    "data_model": None,
    "batch_id": "default_batch",
}

PROC_PARAMS = {
    "priority": 1,
    "batch_id": "default_batch",
    "pmapname": "pmapname",
    "final_prc_status": -2,
    "demo": False,
BO ZHANG's avatar
BO ZHANG committed
50
    # should be capable to extend
BO ZHANG's avatar
BO ZHANG committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
}


def override_common_keys(d1: dict, d2: dict) -> dict:
    """
    Construct a new dictionary by updating the values of basis_keys that exists in the first dictionary
    with the values of the second dictionary.

    Parameters
    ----------
    d1 : dict
        The first dictionary.
    d2 : dict
        The second dictionary.

    Returns
    -------
    dict:
        The updated dictionary.
    """
    return {k: d2[k] if k in d2.keys() else d1[k] for k in d1.keys()}


BO ZHANG's avatar
BO ZHANG committed
74
75
76
def extract_basis_table(dlist: list[dict], basis_keys: tuple) -> table.Table:
    """Extract basis key-value pairs from a list of dictionaries."""
    return table.Table([{k: d.get(k) for k in basis_keys} for d in dlist])
BO ZHANG's avatar
BO ZHANG committed
77
78


BO ZHANG's avatar
BO ZHANG committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def split_data_basis(data_basis: table.Table, n_split: int = 1) -> list[table.Table]:
    """Split data basis into n_split parts."""
    assert (
        np.unique(data_basis["dataset"]).size == 1
    ), "Only one dataset is allowed for splitting."
    # sort
    data_basis.sort(keys=["dataset", "obs_id"])
    # get unique obsid
    u_obsid, i_obsid, c_obsid = np.unique(
        data_basis["obs_id"].data, return_index=True, return_counts=True
    )
    # set chunk size
    chunk_size = int(np.fix(len(u_obsid) / n_split))
    # initialize chunks
    chunks = []
    for i_split in range(n_split):
        if i_split < n_split - 1:
            chunks.append(
                data_basis[
                    i_obsid[i_split * chunk_size] : i_obsid[(i_split + 1) * chunk_size]
                ]
            )
        else:
            chunks.append(data_basis[i_obsid[i_split * chunk_size] :])
    # np.unique(table.vstack(chunks)["_id"])
    # np.unique(table.vstack(chunks)["obs_id"])
    return chunks


# plan basis keys
PLAN_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "n_frame",
    "_id",
)

# data basis keys
DATA_BASIS_KEYS = (
    "dataset",
    "instrument",
    "obs_type",
    "obs_group",
    "obs_id",
    "detector",
    "file_name",
    "_id",
)
BO ZHANG's avatar
BO ZHANG committed
130
131
132
133
134
135
136
137


class Dispatcher:
    """
    A class to dispatch tasks based on the observation type.
    """

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def find_plan_basis(**kwargs) -> table.Table:
        """
        Find plan records.
        """
        # query
        qr = plan.find(**override_common_keys(PLAN_PARAMS, kwargs))
        assert qr.success, qr
        # plan basis / obsid basis
        for _ in qr.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
        plan_basis = extract_basis_table(
            qr.data,
            PLAN_BASIS_KEYS,
BO ZHANG's avatar
BO ZHANG committed
153
        )
BO ZHANG's avatar
BO ZHANG committed
154
        return plan_basis
BO ZHANG's avatar
BO ZHANG committed
155
156

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
157
158
159
160
161
162
163
164
165
166
167
168
169
    def find_level0_basis(**kwargs) -> table.Table:
        """
        Find level0 records.
        """
        # query
        qr = level0.find(**override_common_keys(LEVEL0_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
170

BO ZHANG's avatar
BO ZHANG committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    @staticmethod
    def find_level1_basis(**kwargs) -> table.Table:
        """
        Find level1 records.
        """
        # query
        qr = level1.find(**override_common_keys(LEVEL1_PARAMS, kwargs))
        assert qr.success, qr
        # data basis
        data_basis = extract_basis_table(
            qr.data,
            DATA_BASIS_KEYS,
        )
        return data_basis
BO ZHANG's avatar
BO ZHANG committed
185

BO ZHANG's avatar
BO ZHANG committed
186
187
188
189
190
191
192
    @staticmethod
    def dispatch_file(
        plan_basis: table.Table,
        data_basis: table.Table,
    ) -> list[dict]:
        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
BO ZHANG's avatar
BO ZHANG committed
193

BO ZHANG's avatar
BO ZHANG committed
194
195
        # initialize task list
        task_list = []
BO ZHANG's avatar
BO ZHANG committed
196

BO ZHANG's avatar
BO ZHANG committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        # loop over plan
        for i_data_basis in trange(
            len(data_basis),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_basis = 1
            this_data_basis = data_basis[i_data_basis : i_data_basis + 1]
            this_relevant_plan = table.join(
                u_obsid,
                plan_basis,
                keys=["dataset", "obs_id"],
                join_type="inner",
            )
            # append this task
            task_list.append(
                dict(
                    task=this_data_basis,
                    success=True,
                    relevant_plan=this_relevant_plan,
                    relevant_data=data_basis[i_data_basis : i_data_basis + 1],
                )
            )
BO ZHANG's avatar
BO ZHANG committed
220

BO ZHANG's avatar
BO ZHANG committed
221
        return task_list
BO ZHANG's avatar
BO ZHANG committed
222

BO ZHANG's avatar
BO ZHANG committed
223
224
225
226
227
228
229
    @staticmethod
    def dispatch_detector(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:
        """
BO ZHANG's avatar
BO ZHANG committed
230

BO ZHANG's avatar
BO ZHANG committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        Parameters
        ----------
        plan_basis
        data_basis
        n_jobs

        Returns
        -------

        """
        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_detector)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type="left",
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_detector = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
260
261
262
263
264
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
265
266
                "detector",
            ]
BO ZHANG's avatar
BO ZHANG committed
267
        )
BO ZHANG's avatar
BO ZHANG committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

        # initialize task list
        task_list = []

        # loop over plan
        for i_data_detector in trange(
            len(u_data_detector),
            unit="task",
            dynamic_ncols=True,
        ):
            # i_data_detector = 1
            this_task = dict(u_data_detector[i_data_detector])
            this_data_detector = u_data_detector[i_data_detector : i_data_detector + 1]

            # join data and plan
            this_data_detector_files = table.join(
                this_data_detector,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                    "detector",
                ],
                join_type="inner",
            )
            this_data_detector_plan = table.join(
                this_data_detector,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="left",
            )

            # whether detector effective
            this_detector = this_data_detector["detector"][0]
            this_instrument = this_data_detector["instrument"][0]
            this_detector_effective = (
                this_detector in csst[this_instrument].effective_detector_names
            )
            n_files_expected = this_data_detector_plan["n_frame"][0]
            n_files_found = len(this_data_detector_files)
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=(
                        len(this_data_detector_plan) == 1
                        and len(this_data_detector_files) == 1
                        and this_detector_effective
                        and n_files_found == n_files_expected
                    ),
                    relevant_plan=this_data_detector_plan,
                    relevant_data=this_data_detector_files,
                )
            )
        return task_list

    @staticmethod
    def dispatch_obsid(
        plan_basis: table.Table,
        data_basis: table.Table,
        n_jobs: int = 1,
    ) -> list[dict]:

        if n_jobs != 1:
            task_list = joblib.Parallel(n_jobs=n_jobs)(
                joblib.delayed(Dispatcher.dispatch_obsid)(plan_basis, _)
                for _ in split_data_basis(data_basis, n_split=n_jobs)
            )
            return sum(task_list, [])

        # unique obsid
        u_obsid = table.unique(data_basis["dataset", "obs_id"])
        relevant_plan = table.join(
            u_obsid,
            plan_basis,
            keys=["dataset", "obs_id"],
            join_type="left",
        )
        print(f"{len(relevant_plan)} relevant plan records")

        u_data_obsid = table.unique(
            data_basis[
BO ZHANG's avatar
BO ZHANG committed
359
360
361
362
363
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
                "obs_id",
BO ZHANG's avatar
BO ZHANG committed
364
            ]
BO ZHANG's avatar
BO ZHANG committed
365
366
        )

BO ZHANG's avatar
BO ZHANG committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        # initialize task list
        task_list = []

        # loop over plan
        for i_data_obsid in trange(
            len(u_data_obsid),
            unit="task",
            dynamic_ncols=True,
        ):
            i_data_obsid = 2
            this_task = dict(u_data_obsid[i_data_obsid])
            this_data_obsid = u_data_obsid[i_data_obsid : i_data_obsid + 1]

            # join data and plan
            this_data_obsid_files = table.join(
                this_data_obsid,
                data_basis,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="inner",
            )
            this_data_obsid_plan = table.join(
                this_data_obsid,
                relevant_plan,
                keys=[
                    "dataset",
                    "instrument",
                    "obs_type",
                    "obs_group",
                    "obs_id",
                ],
                join_type="left",
            )

            # whether effective detectors all there
            this_instrument = this_data_obsid["instrument"][0]
            this_success = set(csst[this_instrument].effective_detector_names).issubset(
                set(this_data_obsid_files["detector"])
            )

            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_data_obsid_plan,
                    relevant_data=this_data_obsid_files,
                )
            )

        return task_list
BO ZHANG's avatar
BO ZHANG committed
423

BO ZHANG's avatar
BO ZHANG committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    @staticmethod
    def dispatch_obsgroup(
        plan_basis: table.Table,
        data_basis: table.Table,
        # n_jobs: int = 1,
    ) -> list[dict]:

        # unique obsgroup basis
        obsgroup_basis = table.unique(
            plan_basis[
                "dataset",
                "instrument",
                "obs_type",
                "obs_group",
            ]
        )
BO ZHANG's avatar
BO ZHANG committed
440

BO ZHANG's avatar
BO ZHANG committed
441
        # initialize task list
BO ZHANG's avatar
BO ZHANG committed
442
443
        task_list = []

BO ZHANG's avatar
BO ZHANG committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        # loop over obsgroup
        for i_obsgroup in trange(
            len(obsgroup_basis),
            unit="task",
            dynamic_ncols=True,
        ):

            # i_obsgroup = 1
            this_task = dict(obsgroup_basis[i_obsgroup])
            this_success = True

            this_obsgroup_obsid = table.join(
                obsgroup_basis[i_obsgroup : i_obsgroup + 1],  # this obsgroup
                plan_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group"],
                join_type="left",
            )
            this_obsgroup_file = table.join(
                this_obsgroup_obsid,
                data_basis,
                keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                join_type="inner",
                table_names=["plan", "data"],
            )

            # loop over obsid
            for i_obsid in range(len(this_obsgroup_obsid)):
                # i_obsid = 1
                # print(i_obsid)
                instrument = this_obsgroup_obsid[i_obsid]["instrument"]
                n_frame = this_obsgroup_obsid[i_obsid]["n_frame"]
                effective_detector_names = csst[instrument].effective_detector_names

                this_obsgroup_obsid_file = table.join(
                    this_obsgroup_obsid[i_obsid : i_obsid + 1],  # this obsid
                    data_basis,
                    keys=["dataset", "instrument", "obs_type", "obs_group", "obs_id"],
                    join_type="inner",
                    table_names=["plan", "data"],
BO ZHANG's avatar
BO ZHANG committed
483
                )
BO ZHANG's avatar
BO ZHANG committed
484
485
486
487
488
489
490
491

                if instrument == "HSTDM":  # 我也不知道太赫兹要怎么玩
                    # this_success &= (
                    #     len(this_obsgroup_obsid_file) == n_frame
                    #     or len(this_obsgroup_obsid_file) == n_frame * 2
                    # )
                    # or simply
                    this_success &= len(this_obsgroup_obsid_file) % n_frame == 0
BO ZHANG's avatar
BO ZHANG committed
492
                else:
BO ZHANG's avatar
BO ZHANG committed
493
494
495
496
497
498
499
                    # n_detector == n_file
                    # this_success &= len(this_obsgroup_obsid_file) == len(
                    #     effective_detector_names
                    # )
                    # or more strictly, each detector matches
                    this_success &= set(this_obsgroup_obsid_file["detector"]) == set(
                        effective_detector_names
BO ZHANG's avatar
BO ZHANG committed
500
501
                    )

BO ZHANG's avatar
BO ZHANG committed
502
503
504
505
506
507
508
509
510
511
            # append this task
            task_list.append(
                dict(
                    task=this_task,
                    success=this_success,
                    relevant_plan=this_obsgroup_obsid,
                    relevant_data=this_obsgroup_file,
                )
            )
        return task_list
BO ZHANG's avatar
BO ZHANG committed
512
513

    @staticmethod
BO ZHANG's avatar
BO ZHANG committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    def load_test_data() -> tuple:
        import joblib

        plan_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.plan.dump")
        data_recs = joblib.load("dagtest/csst-msc-c9-25sqdeg-v3.level0.dump")
        print(f"{len(plan_recs.data)} plan records")
        print(f"{len(data_recs.data)} data records")
        for _ in plan_recs.data:
            _["n_frame"] = (
                _["params"]["n_epec_frame"] if _["instrument"] == "HSTDM" else 1
            )
        plan_basis = extract_basis_table(
            plan_recs.data,
            PLAN_BASIS_KEYS,
        )
        data_basis = extract_basis_table(
            data_recs.data,
            DATA_BASIS_KEYS,
        )
        return plan_basis, data_basis


# # 1221 plan recs, 36630 data recs
# plan_basis, data_basis = Dispatcher.load_test_data()
#
# # 430 task/s
# task_list_via_file = Dispatcher.dispatch_file(plan_basis, data_basis)
#
# # 13 task/s @n_jobs=1, 100*10 task/s @n_jobs=10 (max)
# task_list_via_detector = Dispatcher.dispatch_detector(plan_basis, data_basis, n_jobs=10)
#
# # 16 task/s @n_jobs=1, 130*10 tasks/s @n_jobs=10 (max) 🔼
# task_list_via_obsid = Dispatcher.dispatch_obsid(plan_basis, data_basis, n_jobs=10)
#
# # 13s/task
# task_list_via_obsgroup = Dispatcher.dispatch_obsgroup(plan_basis, data_basis)
# print(
#     sum(_["success"] for _ in task_list_via_obsgroup),
#     "/",
#     len(task_list_via_obsgroup),
# )