fitswcs.c 57.3 KB
Newer Older
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1
/*
2
*				fitswcs.c
Emmanuel Bertin's avatar
Emmanuel Bertin committed
3
*
4
* Manage World Coordinate System data.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
5
*
6
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emmanuel Bertin's avatar
Emmanuel Bertin committed
7
*
8
*	This file part of:	AstrOmatic software
Emmanuel Bertin's avatar
Emmanuel Bertin committed
9
*
10
*	Copyright:		(C) 1993-2012 Emmanuel Bertin -- IAP/CNRS/UPMC
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*
*	License:		GNU General Public License
*
*	AstrOmatic software is free software: you can redistribute it and/or
*	modify it under the terms of the GNU General Public License as
*	published by the Free Software Foundation, either version 3 of the
*	License, or (at your option) any later version.
*	AstrOmatic software is distributed in the hope that it will be useful,
*	but WITHOUT ANY WARRANTY; without even the implied warranty of
*	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*	GNU General Public License for more details.
*	You should have received a copy of the GNU General Public License
*	along with AstrOmatic software.
*	If not, see <http://www.gnu.org/licenses/>.
*
26
*	Last modified:		12/04/2012
27
28
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
Emmanuel Bertin's avatar
Emmanuel Bertin committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

#ifdef HAVE_CONFIG_H
#include	"config.h"
#endif

#ifdef HAVE_MATHIMF_H
#include <mathimf.h>
#else
#include <math.h>
#endif
#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>

#include	"fits/fitscat_defs.h"
#include	"fits/fitscat.h"
#include	"fitswcs.h"
#include	"wcscelsys.h"
#include	"wcs/wcs.h"
#include	"wcs/lin.h"
#include	"wcs/tnx.h"
#include	"wcs/poly.h"

/******* copy_wcs ************************************************************
PROTO	wcsstruct *copy_wcs(wcsstruct *wcsin)
PURPOSE	Copy a WCS (World Coordinate System) structure.
INPUT	WCS structure to be copied.
OUTPUT	pointer to a copy of the input structure.
NOTES	Actually, only FITS parameters are copied. Lower-level structures
	such as those created by the WCS or TNX libraries are generated.
AUTHOR	E. Bertin (IAP)
VERSION	31/08/2002
 ***/
wcsstruct	*copy_wcs(wcsstruct *wcsin)

  {
   wcsstruct	*wcs;

/* Copy the basic stuff */
  QMEMCPY(wcsin, wcs, wcsstruct, 1);
/* The PROJP WCS parameters */
  QMEMCPY(wcsin->projp, wcs->projp, double, wcs->naxis*100);

/* Set other structure pointers to NULL (they'll have to be reallocated) */
  wcs->wcsprm = NULL;
  wcs->lin = NULL;
  wcs->cel = NULL;
  wcs->prj = NULL;
  wcs->tnx_lngcor = copy_tnxaxis(wcsin->tnx_lngcor);
  wcs->tnx_latcor = copy_tnxaxis(wcsin->tnx_latcor);
  wcs->inv_x = wcs->inv_y = NULL;

  QCALLOC(wcs->wcsprm, struct wcsprm, 1);
/* Test if the WCS is recognized and a celestial pair is found */
  wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm);

/* Initialize other WCS structures */
  init_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);
/* Find the range of coordinates */
  range_wcs(wcs);  

  return wcs;
  }


/******* create_wcs ***********************************************************
PROTO	wcsstruct *create_wcs(char **ctype, double *crval, double *crpix,
			double *cdelt, int *naxisn, int naxis)
PURPOSE	Generate a simple WCS (World Coordinate System) structure.
INPUT	Pointer to an array of char strings with WCS projection on each axis,
	pointer to an array of center coordinates (double),
	pointer to an array of device coordinates (double),
	pointer to an array of pixel scales (double),
	pointer to an array of image dimensions (int),
	number of dimensions.
OUTPUT	pointer to a WCS structure.
NOTES	If a pointer is set to null, the corresponding variables are set to
	default values.
AUTHOR	E. Bertin (IAP)
VERSION	09/08/2006
 ***/
wcsstruct	*create_wcs(char **ctype, double *crval, double *crpix,
			double *cdelt, int *naxisn, int naxis)

  {
   wcsstruct	*wcs;
   int		l;

  QCALLOC(wcs, wcsstruct, 1);
  wcs->naxis = naxis;
  QCALLOC(wcs->projp, double, naxis*100);
  wcs->nprojp = 0;

  wcs->longpole = wcs->latpole = 999.0;
  for (l=0; l<naxis; l++)
    {
    wcs->naxisn[l] = naxisn? naxisn[l] : 360.0;
/*-- The default WCS projection system is an all-sky Aitoff projection */
    if (ctype)
      strncpy(wcs->ctype[l], ctype[l], 8);
    else if (l==0)
      strncpy(wcs->ctype[l], "RA---AIT", 8);
    else if (l==1)
      strncpy(wcs->ctype[l], "DEC--AIT", 8);
    wcs->crval[l] = crval? crval[l]: 0.0;
    wcs->crpix[l] = crpix? crpix[l]: 0.0;
    wcs->cdelt[l] = 1.0;
    wcs->cd[l*(naxis+1)] = cdelt? cdelt[l] : 1.0;
    }

  wcs->epoch = wcs->equinox = 2000.0;
  QCALLOC(wcs->wcsprm, struct wcsprm, 1);

/* Test if the WCS is recognized and a celestial pair is found */
  wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm);

/* Initialize other WCS structures */
  init_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);
/* Find the range of coordinates */
  range_wcs(wcs);  

  return wcs;
  }


/******* init_wcs ************************************************************
PROTO	void init_wcs(wcsstruct *wcs)
PURPOSE	Initialize astrometry and WCS (World Coordinate System) structures.
INPUT	WCS structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	17/05/2007
 ***/
void	init_wcs(wcsstruct *wcs)

  {
   int		l,n,lng,lat,naxis;

  naxis = wcs->naxis;
  if (wcs->lin)
    {
    free(wcs->lin->cdelt);
    free(wcs->lin->crpix);
    free(wcs->lin->pc);
    free(wcs->lin->piximg);
    free(wcs->lin->imgpix);
    free(wcs->lin);
    }
  QCALLOC(wcs->lin, struct linprm, 1);
  QCALLOC(wcs->lin->cdelt, double, naxis);
  QCALLOC(wcs->lin->crpix, double, naxis);
  QCALLOC(wcs->lin->pc, double, naxis*naxis);


  if (wcs->cel)
    free(wcs->cel);
  QCALLOC(wcs->cel, struct celprm, 1);

  if (wcs->prj)
    free(wcs->prj);
  QCALLOC(wcs->prj, struct prjprm, 1);

  if (wcs->inv_x)
    {
    poly_end(wcs->inv_x);
    wcs->inv_x = NULL;
    }
  if (wcs->inv_y)
    {
    poly_end(wcs->inv_y);
    wcs->inv_y = NULL;
    }

/* Set WCS flags to 0: structures will be reinitialized by the WCS library */
  wcs->lin->flag = wcs->cel->flag = wcs->prj->flag = 0;
  wcs->lin->naxis = naxis;

/* wcsprm structure */
  lng = wcs->lng = wcs->wcsprm->lng;
  lat = wcs->lat = wcs->wcsprm->lat;

/* linprm structure */
  for (l=0; l<naxis; l++)
    {
    wcs->lin->crpix[l] = wcs->crpix[l];
    wcs->lin->cdelt[l] = 1.0;
    }

  for (l=0; l<naxis*naxis; l++)
    wcs->lin->pc[l] = wcs->cd[l];

/* celprm structure */
  if (lng>=0)
    {
    wcs->cel->ref[0] = wcs->crval[lng];
    wcs->cel->ref[1] = wcs->crval[lat];
    }
  else
    {
    wcs->cel->ref[0] = wcs->crval[0];
    wcs->cel->ref[1] = wcs->crval[1];
    }
  wcs->cel->ref[2] = wcs->longpole;
  wcs->cel->ref[3] = wcs->latpole;

/* prjprm structure */
  wcs->prj->r0 = wcs->r0;
  wcs->prj->tnx_lngcor = wcs->tnx_lngcor;
  wcs->prj->tnx_latcor = wcs->tnx_latcor;
  if (lng>=0)
    {
    n = 0;
    for (l=100; l--;)
      {
      wcs->prj->p[l] = wcs->projp[l+lat*100];	/* lat comes first for ... */
      wcs->prj->p[l+100] = wcs->projp[l+lng*100];/* ... compatibility reasons */
      if (!n && (wcs->prj->p[l] || wcs->prj->p[l+100]))
        n = l+1;
      }
    wcs->nprojp = n;
    }

/* Check-out chirality */
  wcs->chirality = wcs_chirality(wcs);

/* Initialize Equatorial <=> Celestial coordinate system transforms */
  init_wcscelsys(wcs);

  return;
  }


/******* init_wcscelsys *******************************************************
PROTO	void init_wcscelsys(wcsstruct *wcs)
PURPOSE	Initialize Equatorial <=> Celestial coordinate system transforms.
INPUT	WCS structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	18/07/2006
 ***/
void	init_wcscelsys(wcsstruct *wcs)

  {
  double	*mat,
		a0,d0,ap,dp,ap2,y;
  int		s,lng,lat;

  lng = wcs->wcsprm->lng;
  lat = wcs->wcsprm->lat;
/* Is it a celestial system? If not, exit! */
  if (lng==lat)
    {
    wcs->celsysconvflag = 0;
    return;
    }
/* Find the celestial system */
  for (s=0; *celsysname[s][0] && strncmp(wcs->ctype[lng], celsysname[s][0], 4);
	s++);
/* Is it a known, non-equatorial system? If not, exit! */
  if (!s || !*celsysname[s][0])
    {
    wcs->celsysconvflag = 0;
    return;
    }
  wcs->celsys = (celsysenum)s;
/* Some shortcuts */
  a0 = celsysorig[s][0]*DEG;
  d0 = celsysorig[s][1]*DEG;
  ap = celsyspole[s][0]*DEG;
  dp = celsyspole[s][1]*DEG;
/* First compute in the output referential the longitude of the south pole */
  y = sin(ap - a0);
/*
  x = cos(d0)*(cos(d0)*sin(dp)*cos(ap-a0)-sin(d0)*cos(dp));
  ap2 = atan2(y,x);
*/
  ap2 = asin(cos(d0)*y) ;
/* Equatorial <=> Celestial System transformation parameters */
  mat = wcs->celsysmat;
  mat[0] = ap;
  mat[1] = ap2;
  mat[2] = cos(dp);
  mat[3] = sin(dp);

  wcs->celsysconvflag = 1;
  return;
  }


/******* read_wcs *************************************************************
PROTO	wcsstruct *read_wcs(tabstruct *tab)
PURPOSE	Read WCS (World Coordinate System) info in the FITS header.
INPUT	tab structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
331
VERSION	30/07/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
 ***/
wcsstruct	*read_wcs(tabstruct *tab)

  {
#define	FITSREADF(buf, k, val, def) \
		{if (fitsread(buf,k, &val, H_FLOAT,T_DOUBLE) != RETURN_OK) \
		   val = def; \
		}

#define	FITSREADI(buf, k, val, def) \
		{if (fitsread(buf,k, &val, H_INT,T_LONG) != RETURN_OK) \
		   val = def; \
		}

#define	FITSREADS(buf, k, str, def) \
		{if (fitsread(buf,k,str, H_STRING,T_STRING) != RETURN_OK) \
		   strcpy(str, (def)); \
		}
   char		str[MAXCHARS];
   char		wstr1[TNX_MAXCHARS], wstr2[TNX_MAXCHARS];

   wcsstruct	*wcs;
   double	drota;
   int		j, l, naxis;
   char		name[16],
		*buf, *filename, *ptr;

  buf = tab->headbuf;
  filename = (tab->cat? tab->cat->filename : strcpy(name, "internal header"));

  FITSREADS(buf, "OBJECT  ", str, "Unnamed");

  QCALLOC(wcs, wcsstruct, 1);
  if (tab->naxis > NAXIS)
    {
    warning("Maximum number of dimensions supported by this version of the ",
	"software exceeded\n");
    tab->naxis = 2;
    }

  wcs->naxis = naxis = tab->naxis;
  QCALLOC(wcs->projp, double, naxis*100);

  for (l=0; l<naxis; l++)
    {
    wcs->naxisn[l] = tab->naxisn[l];
    sprintf(str, "CTYPE%-3d", l+1);
    FITSREADS(buf, str, str, "");
    strncpy(wcs->ctype[l], str, 8);
    sprintf(str, "CUNIT%-3d", l+1);
    FITSREADS(buf, str, str, "deg");
    strncpy(wcs->cunit[l], str, 32);
    sprintf(str, "CRVAL%-3d", l+1);
    FITSREADF(buf, str, wcs->crval[l], 0.0);
    sprintf(str, "CRPIX%-3d", l+1);
    FITSREADF(buf, str, wcs->crpix[l], 1.0);
    sprintf(str, "CDELT%-3d", l+1);
    FITSREADF(buf, str, wcs->cdelt[l], 1.0);
    sprintf(str, "CRDER%-3d", l+1);
    FITSREADF(buf, str, wcs->crder[l], 0.0);
    sprintf(str, "CSYER%-3d", l+1);
    FITSREADF(buf, str, wcs->csyer[l], 0.0);
    if (fabs(wcs->cdelt[l]) < 1e-30)
      error(EXIT_FAILURE, "*Error*: CDELT parameters out of range in ",
	filename);
    }

  if (fitsfind(buf, "CD?_????")!=RETURN_ERROR)
    {
/*-- If CD keywords exist, use them for the linear mapping terms... */
    for (l=0; l<naxis; l++)
      for (j=0; j<naxis; j++)
        {
        sprintf(str, "CD%d_%d", l+1, j+1);
        FITSREADF(buf, str, wcs->cd[l*naxis+j], l==j?1.0:0.0)
        }
    }
  else if (fitsfind(buf, "PC00?00?")!=RETURN_ERROR)
/*-- ...If PC keywords exist, use them for the linear mapping terms... */
    for (l=0; l<naxis; l++)
      for (j=0; j<naxis; j++)
        {
        sprintf(str, "PC%03d%03d", l+1, j+1);
        FITSREADF(buf, str, wcs->cd[l*naxis+j], l==j?1.0:0.0)
        wcs->cd[l*naxis+j] *= wcs->cdelt[l];
        }
  else
    {
/*-- ...otherwise take the obsolete CROTA2 parameter */
    FITSREADF(buf, "CROTA2  ", drota, 0.0)
    wcs->cd[3] = wcs->cd[0] = cos(drota*DEG);
    wcs->cd[1] = -(wcs->cd[2] = sin(drota*DEG));
    wcs->cd[0] *= wcs->cdelt[0];
    wcs->cd[2] *= wcs->cdelt[0];
    wcs->cd[1] *= wcs->cdelt[1];
    wcs->cd[3] *= wcs->cdelt[1];
    }
  QCALLOC(wcs->wcsprm, struct wcsprm, 1);

/* Test if the WCS is recognized and a celestial pair is found */
  if (!wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm)
	&& wcs->wcsprm->flag<999)
    {
     char	*pstr;
     double	date;
     int	biss, dpar[3];

/*-- Coordinate reference frame */
/*-- Search for an observation date expressed in Julian days */
    FITSREADF(buf, "MJD-OBS ", date, -1.0);
/*-- Precession date (defined from Ephemerides du Bureau des Longitudes) */
/*-- in Julian years from 2000.0 */
    if (date>0.0)
      wcs->obsdate = 2000.0 - (MJD2000 - date)/365.25;
    else
      {
/*---- Search for an observation date expressed in "civilian" format */
449
      FITSREADS(buf, "DATE-OBS", str, "");
Emmanuel Bertin's avatar
Emmanuel Bertin committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
      if (*str)
        {
/*------ Decode DATE-OBS format: DD/MM/YY or YYYY-MM-DD */
        for (l=0; l<3 && (pstr = strtok_r(l?NULL:str,"/- ", &ptr)); l++)
          dpar[l] = atoi(pstr);
        if (l<3 || !dpar[0] || !dpar[1] || !dpar[2])
          {
/*-------- If DATE-OBS value corrupted or incomplete, assume 2000-1-1 */
          warning("Invalid DATE-OBS value in header: ", str);
          dpar[0] = 2000; dpar[1] = 1; dpar[2] = 1;
          }
        else if (strchr(str, '/') && dpar[0]<32 && dpar[2]<100)
          {
          j = dpar[0];
          dpar[0] = dpar[2]+1900;
          dpar[2] = j;
          }

        biss = (dpar[0]%4)?0:1;
/*------ Convert date to MJD */
        date = -678956 + (365*dpar[0]+dpar[0]/4) - biss
			+ ((dpar[1]>2?((int)((dpar[1]+1)*30.6)-63+biss)
		:((dpar[1]-1)*(63+biss))/2) + dpar[2]);
        wcs->obsdate = 2000.0 - (MJD2000 - date)/365.25;
        }
      else
/*------ Well if really no date is found */
        wcs->obsdate = 0.0;
      }

    FITSREADF(buf, "EPOCH", wcs->epoch, 2000.0);
    FITSREADF(buf, "EQUINOX", wcs->equinox, wcs->epoch);
482
    FITSREADS(buf, "RADECSYS", str,
Emmanuel Bertin's avatar
Emmanuel Bertin committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
	wcs->equinox >= 2000.0? "ICRS" : (wcs->equinox<1984.0? "FK4" : "FK5"));
    if (!strcmp(str, "ICRS"))
      wcs->radecsys = RDSYS_ICRS;
    else if (!strcmp(str, "FK5"))
      wcs->radecsys = RDSYS_FK5;
    else if (!strcmp(str, "FK4"))
      {
      if (wcs->equinox == 2000.0)
        {
        FITSREADF(buf, "EPOCH  ", wcs->equinox, 1950.0);
        FITSREADF(buf, "EQUINOX", wcs->equinox, wcs->equinox);
        }
      wcs->radecsys = RDSYS_FK4;
      warning("FK4 precession formulae not yet implemented:\n",
		"            Astrometry may be slightly inaccurate");
      }
    else if (!strcmp(str, "FK4-NO-E"))
      {
      if (wcs->equinox == 2000.0)
        {
        FITSREADF(buf, "EPOCH", wcs->equinox, 1950.0);
        FITSREADF(buf, "EQUINOX", wcs->equinox, wcs->equinox);
        }
      wcs->radecsys = RDSYS_FK4_NO_E;
      warning("FK4 precession formulae not yet implemented:\n",
		"            Astrometry may be slightly inaccurate");
      }
    else if (!strcmp(str, "GAPPT"))
      {
      wcs->radecsys = RDSYS_GAPPT;
      warning("GAPPT reference frame not yet implemented:\n",
		"            Astrometry may be slightly inaccurate");
      }
    else
      {
      warning("Using ICRS instead of unknown astrometric reference frame: ",
		str);
      wcs->radecsys = RDSYS_ICRS;
      }

/*-- Projection parameters */
    if (!strcmp(wcs->wcsprm->pcode, "TNX"))
      {
/*---- IRAF's TNX projection: decode these #$!?@#!! WAT parameters */
      if (fitsfind(buf, "WAT?????") != RETURN_ERROR)
        {
/*------ First we need to concatenate strings */
        pstr = wstr1;
        sprintf(str, "WAT1_001");
        for (j=2; fitsread(buf,str,pstr,H_STRINGS,T_STRING)==RETURN_OK; j++)
	  {
          sprintf(str, "WAT1_%03d", j);
          pstr += strlen(pstr);
	  }
        pstr = wstr2;
        sprintf(str, "WAT2_001");
        for (j=2; fitsread(buf,str,pstr,H_STRINGS,T_STRING)==RETURN_OK; j++)
	  {
          sprintf(str, "WAT2_%03d", j);
          pstr += strlen(pstr);
	  }
/*------ LONGPOLE defaulted to 180 deg if not found */
        if ((pstr = strstr(wstr1, "longpole"))
		|| (pstr = strstr(wstr2, "longpole")))
          pstr = strpbrk(pstr, "1234567890-+.");
        wcs->longpole = pstr? atof(pstr) : 999.0;
        wcs->latpole = 999.0;
/*------ RO defaulted to 180/PI if not found */
        if ((pstr = strstr(wstr1, "ro"))
		|| (pstr = strstr(wstr2, "ro")))
          pstr = strpbrk(pstr, "1234567890-+.");
        wcs->r0 = pstr? atof(pstr) : 0.0;
/*------ Read the remaining TNX parameters */
        if ((pstr = strstr(wstr1, "lngcor"))
		|| (pstr = strstr(wstr2, "lngcor")))
          wcs->tnx_lngcor = read_tnxaxis(pstr);
        if (!wcs->tnx_lngcor)
          error(EXIT_FAILURE, "*Error*: incorrect TNX parameters in ",
			filename);
        if ((pstr = strstr(wstr1, "latcor"))
		|| (pstr = strstr(wstr2, "latcor")))
          wcs->tnx_latcor = read_tnxaxis(pstr);
        if (!wcs->tnx_latcor)
          error(EXIT_FAILURE, "*Error*: incorrect TNX parameters in ",
			filename);
        }
      }
    else
      {
      FITSREADF(buf, "LONGPOLE", wcs->longpole, 999.0);
      FITSREADF(buf, "LATPOLE ", wcs->latpole, 999.0);
/*---- Old convention */
      if (fitsfind(buf, "PROJP???") != RETURN_ERROR)
        for (j=0; j<10; j++)
          {
          sprintf(str, "PROJP%-3d", j);
          FITSREADF(buf, str, wcs->projp[j], 0.0);
          }
/*---- New convention */
      if (fitsfind(buf, "PV?_????") != RETURN_ERROR)
        for (l=0; l<naxis; l++)
          for (j=0; j<100; j++)
            {
586
            sprintf(str, "PV%d_%d ", l+1, j);
Emmanuel Bertin's avatar
Emmanuel Bertin committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            FITSREADF(buf, str, wcs->projp[j+l*100], 0.0);
            }
      }
    }

/* Initialize other WCS structures */
  init_wcs(wcs);

/* Find the range of coordinates */
  range_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);

#undef FITSREADF
#undef FITSREADI
#undef FITSREADS

  return wcs;
  }


/******* write_wcs ***********************************************************
PROTO	void write_wcs(tabstruct *tab, wcsstruct *wcs)
PURPOSE	Write WCS (World Coordinate System) info in the FITS header.
INPUT	tab structure,
	WCS structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
616
VERSION	01/09/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
617
618
619
620
 ***/
void	write_wcs(tabstruct *tab, wcsstruct *wcs)

  {
621
   double	mjd;
Emmanuel Bertin's avatar
Emmanuel Bertin committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
   char		str[MAXCHARS];
   int		j, l, naxis;

  naxis = wcs->naxis;
  addkeywordto_head(tab, "BITPIX  ", "Bits per pixel");
  fitswrite(tab->headbuf, "BITPIX  ", &tab->bitpix, H_INT, T_LONG);
  addkeywordto_head(tab, "NAXIS   ", "Number of axes");
  fitswrite(tab->headbuf, "NAXIS   ", &wcs->naxis, H_INT, T_LONG);
  for (l=0; l<naxis; l++)
    {
    sprintf(str, "NAXIS%-3d", l+1);
    addkeywordto_head(tab, str, "Number of pixels along this axis");
    fitswrite(tab->headbuf, str, &wcs->naxisn[l], H_INT, T_LONG);
    }
  addkeywordto_head(tab, "EQUINOX ", "Mean equinox");
  fitswrite(tab->headbuf, "EQUINOX ", &wcs->equinox, H_FLOAT, T_DOUBLE);
638
639
640
641
642
643
  if (wcs->obsdate!=0.0)
    {
    mjd = (wcs->obsdate-2000.0)*365.25 + MJD2000;
    addkeywordto_head(tab, "MJD-OBS ", "Modified Julian date at start");
    fitswrite(tab->headbuf, "MJD-OBS ", &mjd, H_EXPO,T_DOUBLE);
    }
Emmanuel Bertin's avatar
Emmanuel Bertin committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
  addkeywordto_head(tab, "RADECSYS", "Astrometric system");
  switch(wcs->radecsys)
    {
    case RDSYS_ICRS:
      fitswrite(tab->headbuf, "RADECSYS", "ICRS", H_STRING, T_STRING);
      break;
    case RDSYS_FK5:
      fitswrite(tab->headbuf, "RADECSYS", "FK5", H_STRING, T_STRING);
      break;
    case RDSYS_FK4:
      fitswrite(tab->headbuf, "RADECSYS", "FK4", H_STRING, T_STRING);
      break;
    case RDSYS_FK4_NO_E:
      fitswrite(tab->headbuf, "RADECSYS", "FK4-NO-E", H_STRING, T_STRING);
      break;
    case RDSYS_GAPPT:
      fitswrite(tab->headbuf, "RADECSYS", "GAPPT", H_STRING, T_STRING);
      break;
    default:
      error(EXIT_FAILURE, "*Error*: unknown RADECSYS type in write_wcs()", "");
    }
  for (l=0; l<naxis; l++)
    {
    sprintf(str, "CTYPE%-3d", l+1);
    addkeywordto_head(tab, str, "WCS projection type for this axis");
    fitswrite(tab->headbuf, str, wcs->ctype[l], H_STRING, T_STRING);
    sprintf(str, "CUNIT%-3d", l+1);
    addkeywordto_head(tab, str, "Axis unit");
    fitswrite(tab->headbuf, str, wcs->cunit[l], H_STRING, T_STRING);
    sprintf(str, "CRVAL%-3d", l+1);
    addkeywordto_head(tab, str, "World coordinate on this axis");
    fitswrite(tab->headbuf, str, &wcs->crval[l], H_EXPO, T_DOUBLE);
    sprintf(str, "CRPIX%-3d", l+1);
    addkeywordto_head(tab, str, "Reference pixel on this axis");
    fitswrite(tab->headbuf, str, &wcs->crpix[l], H_EXPO, T_DOUBLE);
    for (j=0; j<naxis; j++)
      {
      sprintf(str, "CD%d_%d", l+1, j+1);
      addkeywordto_head(tab, str, "Linear projection matrix");
      fitswrite(tab->headbuf, str, &wcs->cd[l*naxis+j], H_EXPO, T_DOUBLE);
      }
    for (j=0; j<100; j++)
      if (wcs->projp[j+100*l] != 0.0)
        {
        sprintf(str, "PV%d_%d", l+1, j);
        addkeywordto_head(tab, str, "Projection distortion parameter");
        fitswrite(tab->headbuf, str, &wcs->projp[j+100*l], H_EXPO, T_DOUBLE);
        }
    }

/* Update the tab data */
  readbasic_head(tab);

  return;
  }


/******* end_wcs **************************************************************
PROTO	void end_wcs(wcsstruct *wcs)
PURPOSE	Free WCS (World Coordinate System) infos.
INPUT	WCS structure.
OUTPUT	-.
NOTES	.
AUTHOR	E. Bertin (IAP)
VERSION	24/05/2000
 ***/
void	end_wcs(wcsstruct *wcs)

  {
  if (wcs)
    {
    if (wcs->lin)
      {
      free(wcs->lin->cdelt);
      free(wcs->lin->crpix);
      free(wcs->lin->pc);
      free(wcs->lin->piximg);
      free(wcs->lin->imgpix);
      free(wcs->lin);
      }
    free(wcs->cel);
    free(wcs->prj);
    free(wcs->wcsprm);
    free_tnxaxis(wcs->tnx_lngcor);
    free_tnxaxis(wcs->tnx_latcor);
    poly_end(wcs->inv_x);
    poly_end(wcs->inv_y);
    free(wcs->projp);
    free(wcs);
    }

  return;
  }


/******* wcs_supproj *********************************************************
PROTO	int wcs_supproj(char *name)
PURPOSE	Tell if a projection system is supported or not.
INPUT	Proposed projection code name.
OUTPUT	RETURN_OK if projection is supported, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
746
VERSION	12/04/2012
Emmanuel Bertin's avatar
Emmanuel Bertin committed
747
748
749
750
 ***/
int	wcs_supproj(char *name)

  {
751
752
   char	projcode[28][5] =
	{"TAN", "TPV", "AZP", "SIN", "STG", "ARC", "ZPN", "ZEA", "AIR", "CYP", "CAR",
Emmanuel Bertin's avatar
Emmanuel Bertin committed
753
	"MER", "CEA", "COP", "COD", "COE", "COO", "BON", "PCO", "GLS", "PAR",
754
	"AIT", "MOL", "CSC", "QSC", "TSC", "TNX", "NONE"};
Emmanuel Bertin's avatar
Emmanuel Bertin committed
755
756
   int	i;

757
  for (i=0; i<28; i++)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    if (!strcmp(name, projcode[i]))
      return RETURN_OK;

  return RETURN_ERROR;
  }


/******* invert_wcs ***********************************************************
PROTO	void invert_wcs(wcsstruct *wcs)
PURPOSE	Invert WCS projection mapping (using a polynomial).
INPUT	WCS structure.
OUTPUT	-.
NOTES	.
AUTHOR	E. Bertin (IAP)
VERSION	06/11/2003
 ***/
void	invert_wcs(wcsstruct *wcs)

  {
   polystruct		*poly;
   double		pixin[NAXIS],raw[NAXIS],rawmin[NAXIS];
   double		*outpos,*outpost, *lngpos,*lngpost,
			*latpos,*latpost,
			lngstep,latstep, rawsize, epsilon;
   int			group[] = {1,1};
				/* Don't ask, this is needed by poly_init()! */
   int		i,j,lng,lat,deg, tnxflag, maxflag;

/* Check first that inversion is not straightforward */
  lng = wcs->wcsprm->lng;
  lat = wcs->wcsprm->lat;
  if (!strcmp(wcs->wcsprm->pcode, "TNX"))
    tnxflag = 1;
  else if (!strcmp(wcs->wcsprm->pcode, "TAN")
		&& (wcs->projp[1+lng*100] || wcs->projp[1+lat*100]))
    tnxflag = 0;
  else
    return;

/* We define x as "longitude" and y as "latitude" projections */
/* We assume that PCxx cross-terms with additional dimensions are small */
/* Sample the whole image with a regular grid */
  lngstep = wcs->naxisn[lng]/(WCS_NGRIDPOINTS-1.0);
  latstep = wcs->naxisn[lat]/(WCS_NGRIDPOINTS-1.0);
  QMALLOC(outpos, double, 2*WCS_NGRIDPOINTS2);
  QMALLOC(lngpos, double, WCS_NGRIDPOINTS2);
  QMALLOC(latpos, double, WCS_NGRIDPOINTS2);
  for (i=0; i<wcs->naxis; i++)
    raw[i] = rawmin[i] = 0.5;
  outpost = outpos;
  lngpost = lngpos;
  latpost = latpos;
  for (j=WCS_NGRIDPOINTS; j--; raw[lat]+=latstep)
    {
    raw[lng] = rawmin[lng];
    for (i=WCS_NGRIDPOINTS; i--; raw[lng]+=lngstep)
      {
      if (linrev(raw, wcs->lin, pixin))
        error(EXIT_FAILURE, "*Error*: incorrect linear conversion in ",
		wcs->wcsprm->pcode);
      *(lngpost++) = pixin[lng];
      *(latpost++) = pixin[lat];
      if (tnxflag)
        {
        *(outpost++) = pixin[lng]
			+raw_to_tnxaxis(wcs->tnx_lngcor,pixin[lng],pixin[lat]);
        *(outpost++) = pixin[lat]
			+raw_to_tnxaxis(wcs->tnx_latcor,pixin[lng],pixin[lat]);
        }
      else
        {
        raw_to_pv(wcs->prj,pixin[lng],pixin[lat], outpost, outpost+1);
        outpost += 2;
        }
      }
    }

/* Invert "longitude" */
/* Compute the extent of the pixel in reduced projected coordinates */
  linrev(rawmin, wcs->lin, pixin);
  pixin[lng] += ARCSEC/DEG;
  linfwd(pixin, wcs->lin, raw);
  rawsize = sqrt((raw[lng]-rawmin[lng])*(raw[lng]-rawmin[lng])
		+(raw[lat]-rawmin[lat])*(raw[lat]-rawmin[lat]))*DEG/ARCSEC;
  if (!rawsize)
    error(EXIT_FAILURE, "*Error*: incorrect linear conversion in ",
		wcs->wcsprm->pcode);
  epsilon = WCS_INVACCURACY/rawsize;
/* Find the lowest degree polynom */
  poly = NULL;  /* to avoid gcc -Wall warnings */
  maxflag = 1;
  for (deg=1; deg<=WCS_INVMAXDEG && maxflag; deg++)
    {
    if (deg>1)
      poly_end(poly);
    poly = poly_init(group, 2, &deg, 1);
    poly_fit(poly, outpos, lngpos, NULL, WCS_NGRIDPOINTS2, NULL);
    maxflag = 0;
    outpost = outpos;
    lngpost = lngpos;
    for (i=WCS_NGRIDPOINTS2; i--; outpost+=2)
      if (fabs(poly_func(poly, outpost)-*(lngpost++))>epsilon)
        {
        maxflag = 1;
        break;
        }
    }
  if (maxflag)
    warning("Significant inaccuracy likely to occur in projection","");
/* Now link the created structure */
  wcs->prj->inv_x = wcs->inv_x = poly;

/* Invert "latitude" */
/* Compute the extent of the pixel in reduced projected coordinates */
  linrev(rawmin, wcs->lin, pixin);
  pixin[lat] += ARCSEC/DEG;
  linfwd(pixin, wcs->lin, raw);
  rawsize = sqrt((raw[lng]-rawmin[lng])*(raw[lng]-rawmin[lng])
		+(raw[lat]-rawmin[lat])*(raw[lat]-rawmin[lat]))*DEG/ARCSEC;
  if (!rawsize)
    error(EXIT_FAILURE, "*Error*: incorrect linear conversion in ",
		wcs->wcsprm->pcode);
  epsilon = WCS_INVACCURACY/rawsize;
/* Find the lowest degree polynom */
  maxflag = 1;
  for (deg=1; deg<=WCS_INVMAXDEG && maxflag; deg++)
    {
    if (deg>1)
      poly_end(poly);
    poly = poly_init(group, 2, &deg, 1);
    poly_fit(poly, outpos, latpos, NULL, WCS_NGRIDPOINTS2, NULL);
    maxflag = 0;
    outpost = outpos;
    latpost = latpos;
    for (i=WCS_NGRIDPOINTS2; i--; outpost+=2)
      if (fabs(poly_func(poly, outpost)-*(latpost++))>epsilon)
        {
        maxflag = 1;
        break;
        }
    }
  if (maxflag)
    warning("Significant inaccuracy likely to occur in projection","");
/* Now link the created structure */
  wcs->prj->inv_y = wcs->inv_y = poly;

/* Free memory */
  free(outpos);
  free(lngpos);
  free(latpos);

  return;
  }


/******* range_wcs ***********************************************************
PROTO	void range_wcs(wcsstruct *wcs)
PURPOSE	Find roughly the range of WCS coordinates on all axes,
	and typical pixel scales.
INPUT	WCS structure.
OUTPUT	-.
NOTES	.
AUTHOR	E. Bertin (IAP)
921
VERSION	24/08/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
 ***/
void	range_wcs(wcsstruct *wcs)

  {
   double		step[NAXIS], raw[NAXIS], rawmin[NAXIS],
			world[NAXIS], world2[NAXIS];
   double		*worldmin, *worldmax, *scale, *worldc,
			rad, radmax, lc;
   int			linecount[NAXIS];
   int			i,j, naxis, npoints, lng,lat;

  naxis = wcs->naxis;

/* World range */
  npoints = 1;
  worldmin = wcs->wcsmin;
  worldmax = wcs->wcsmax;
/* First, find the center and use it as a reference point for lng */
  lng = wcs->lng;
  lat = wcs->lat;
  for (i=0; i<naxis; i++)
    raw[i] = (wcs->naxisn[i]+1.0)/2.0;
  if (raw_to_wcs(wcs, raw, world))
    {
/*-- Oops no mapping there! So explore the image in an increasingly large */
/*-- domain to find  a better "center" (now we know there must be angular */
/*-- coordinates) */
    for (j=0; j<100; j++)
      {
      for (i=0; i<naxis; i++)
        raw[i] += wcs->naxisn[i]/100.0*(0.5-(double)rand()/RAND_MAX);      
      if (!raw_to_wcs(wcs, raw, world))
        break;
      }
    }

  if (lng!=lat)
959
    lc = world[lng];
Emmanuel Bertin's avatar
Emmanuel Bertin committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
  else
    {
    lc = 0.0;   /* to avoid gcc -Wall warnings */
    lng = -1;
    }

/* Pixel scales at image center */
  scale = wcs->wcsscale;
  for (i=0; i<naxis; i++)
    {
    if ((i==lng || i==lat) && lng!=lat)
      wcs->pixscale = scale[i] = sqrt(wcs_scale(wcs, raw));
    else
      {
      raw[i] += 1.0;
      raw_to_wcs(wcs, raw, world2);
      scale[i] = fabs(world2[i] - world[i]);
      raw[i] -= 1.0;
      if (lng==lat)
        wcs->pixscale = scale[i];
      }
    wcs->wcsscalepos[i] = world[i];
    }


/* Find "World limits" */
  for (i=0; i<naxis; i++)
    {
    raw[i] = rawmin[i] = 0.5;
    step[i] = wcs->naxisn[i]/(WCS_NRANGEPOINTS-1.0);
    npoints *= WCS_NRANGEPOINTS;
    worldmax[i] = -(worldmin[i] = 1e31);
    linecount[i] = 0;
    }

  radmax = 0.0;
  worldc = wcs->wcsscalepos;

  for (j=npoints; j--;)
    {
    raw_to_wcs(wcs, raw, world);
1001
1002
1003
/*-- Compute maximum distance to center */
    if ((rad=wcs_dist(wcs, world, worldc)) > radmax)
      radmax = rad;
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1004
1005
1006
    for (i=0; i<naxis; i++)
      {
/*---- Handle longitudes around 0 */
1007
1008
1009
1010
1011
1012
1013
1014
      if (i==lng)
        {
        world[i] -= lc;
        if (world[i]>180.0)
          world[i] -= 360.0;
        else if (world[i] <= -180.0)
          world[i] += 360.0;
        }
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
      if (world[i]<worldmin[i])
        worldmin[i] = world[i];
      if (world[i]>worldmax[i])
        worldmax[i] = world[i];
      }


    for (i=0; i<naxis; i++)
      {
      raw[i] += step[i];
      if (++linecount[i]<WCS_NRANGEPOINTS)
        break;
      else
        {
        linecount[i] = 0;       /* No need to initialize it to 0! */
        raw[i] = rawmin[i];
        }
      }
    }

  wcs->wcsmaxradius = radmax;

  if (lng!=lat)
    {
1039
1040
    worldmin[lng] = fmod_0_p360(worldmin[lng]+lc);
    worldmax[lng] = fmod_0_p360(worldmax[lng]+lc);
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    if (worldmax[lat]<-90.0)
      worldmax[lat] = -90.0;
    if (worldmax[lat]>90.0)
      worldmax[lat] = 90.0;
    }

  return;
  }


/******* frame_wcs ***********************************************************
1052
PROTO	int frame_wcs(wcsstruct *wcsin, wcsstruct *wcsout)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1053
1054
1055
PURPOSE	Find the x and y limits of an input frame in an output image.
INPUT	WCS structure of the input frame,
	WCS structure of the output frame.
1056
1057
OUTPUT	1 if frames overlap, 0 otherwise.
NOTES	-.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1058
AUTHOR	E. Bertin (IAP)
1059
VERSION	26/03/2012
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1060
 ***/
1061
int	frame_wcs(wcsstruct *wcsin, wcsstruct *wcsout)
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1062
1063
1064
1065
1066
1067

  {
   double		rawin[NAXIS], rawout[NAXIS], world[NAXIS];
   int			linecount[NAXIS];
   double		worldc;
   int			*min, *max,
1068
			i,j, naxis, npoints, out, swapflag, overlapflag;
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

  naxis = wcsin->naxis;

/* World range */
  npoints = 1;
  min = wcsin->outmin;
  max = wcsin->outmax;
  for (i=0; i<naxis; i++)
    {
    rawin[i] = 0.5;	/* Lower pixel limits */
    npoints *= WCS_NRANGEPOINTS;
    max[i] = -(min[i] = 1<<30);
    linecount[i] = 0;
    }

/* Check if lng and lat are swapped between in and out wcs (vicious idea!) */
  swapflag = (((wcsin->lng != wcsout->lng) || (wcsin->lat != wcsout->lat))
	&& (wcsin->lng != wcsin->lat) && (wcsout->lng != wcsout->lat));

  for (j=npoints; j--;)
    {
    if (!raw_to_wcs(wcsin, rawin, world))
      {
      if (swapflag)
        {
        worldc = world[wcsout->lat];
        world[wcsout->lat] = world[wcsin->lat];
        world[wcsin->lat] = worldc;
        }
      if (!wcs_to_raw(wcsout, world, rawout))
        for (i=0; i<naxis; i++)
          {
          if ((out=(int)(rawout[i]+0.499))<min[i])
            min[i] = out;
          if (out>max[i])
            max[i] = out;
          }
      }
    for (i=0; i<naxis; i++)
      {
      rawin[i] = 0.5 + 0.5*wcsin->naxisn[i]
	*(1-cos(PI*(linecount[i]+1.0)/(WCS_NRANGEPOINTS-1)));
      if (++linecount[i]<WCS_NRANGEPOINTS)
        break;
      else
        {
        linecount[i] = 0;       /* No need to initialize it to 0! */
        rawin[i] =  0.5;
        }
      }
    }

1121
/* Add a little margin, just in case... */
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1122
1123
1124
1125
1126
1127
1128
1129
  for (i=0; i<naxis; i++)
    {
    if (min[i]>-2147483647)
      min[i] -= 2;
    if (max[i]>2147483647)
      max[i] += 2;
    }

1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
/* Check overlap */
  overlapflag = 1;
  for (i=0; i<naxis; i++)
    if (min[i]>wcsout->naxisn[i] || max[i]<0)
      {
      overlapflag = 0;
      break;
      }

  return overlapflag;
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
  }


/******* reaxe_wcs ***********************************************************
PROTO	int reaxe_wcs(wcsstruct *wcs, int lng, int lat)
PURPOSE	Reformulate a wcs structure to match lng and lat axis indices
INPUT	WCS structure,
	longitude index,
	latitude index.
OUTPUT	RETURN_OK if successful, RETURN_ERROR otherwise.
NOTES	.
AUTHOR	E. Bertin (IAP)
VERSION	20/11/2003
 ***/
int	reaxe_wcs(wcsstruct *wcs, int lng, int lat)

  {
   char		strlng[80], strlat[80];
   double	dlng,dlat,dlng2,dlat2;
   int		l, ilng,ilat,olng,olat, naxis;

  olng = wcs->lng;
  olat = wcs->lat;
  if (lng<0 || lat<0 || olng<0 || olat<0)
    return RETURN_ERROR;

  ilng = wcs->naxisn[olng];
  ilat = wcs->naxisn[olat];
  wcs->naxisn[lng] = ilng;
  wcs->naxisn[lat] = ilat;
  strcpy(strlng, wcs->ctype[olng]);
  strcpy(strlat, wcs->ctype[olat]);
  strcpy(wcs->ctype[lng], strlng);
  strcpy(wcs->ctype[lat], strlat);
  dlng = wcs->crval[olng];
  dlat = wcs->crval[olat];
  wcs->crval[lng] = dlng;
  wcs->crval[lat] = dlat;
  naxis = wcs->naxis;
  dlng =  wcs->cd[olng+olng*naxis];
  dlng2 = wcs->cd[olng+olat*naxis];
  dlat =  wcs->cd[olat+olat*naxis];
  dlat2 = wcs->cd[olat+olng*naxis];
  wcs->cd[lng+lng*naxis] = dlng2;
  wcs->cd[lng+lat*naxis] = dlng;
  wcs->cd[lat+lat*naxis] = dlat2;
  wcs->cd[lat+lng*naxis] = dlat;
  for (l=0; l<100; l++)
    {
    dlng = wcs->projp[l+olng*100];
    dlat = wcs->projp[l+olat*100];
    wcs->projp[l+lng*100] = dlng;
    wcs->projp[l+lat*100] = dlat;
    }

/*-- Reinitialize wcs */
    wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm);

/*-- Initialize other WCS structures */
    init_wcs(wcs);
/*-- Find the range of coordinates */
    range_wcs(wcs);

  return RETURN_OK;
  }


/******* celsys_to_eq *********************************************************
PROTO	int celsys_to_eq(wcsstruct *wcs, double *wcspos)
PURPOSE	Convert arbitrary celestial coordinates to equatorial.
INPUT	WCS structure,
	Coordinate vector.
OUTPUT	RETURN_OK if mapping successful, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	08/02/2007
 ***/
int	celsys_to_eq(wcsstruct *wcs, double *wcspos)

  {
   double	*mat,
		a2,d2,sd2,cd2cp,sd,x,y;
   int		lng, lat;

  mat = wcs->celsysmat;
  a2 = wcspos[lng = wcs->wcsprm->lng]*DEG - mat[1];
  d2 = wcspos[lat = wcs->wcsprm->lat]*DEG;
/* A bit of spherical trigonometry... */
/* Compute the latitude... */
  sd2 = sin(d2);
  cd2cp = cos(d2)*mat[2];
  sd = sd2*mat[3]-cd2cp*cos(a2);
/* ...and the longitude */
  y = cd2cp*sin(a2);
  x = sd2 - sd*mat[3];
  wcspos[lng] = fmod((atan2(y,x) + mat[0])/DEG+360.0, 360.0);
  wcspos[lat] = asin(sd)/DEG;

  return RETURN_OK;
  }


/******* eq_to_celsys *********************************************************
PROTO	int eq_to_celsys(wcsstruct *wcs, double *wcspos)
PURPOSE	Convert equatorial to arbitrary celestial coordinates.
INPUT	WCS structure,
	Coordinate vector.
OUTPUT	RETURN_OK if mapping successful, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	08/02/2007
 ***/
int	eq_to_celsys(wcsstruct *wcs, double *wcspos)

  {
   double	*mat,
		a,d,sd2,cdcp,sd,x,y;
   int		lng, lat;

  mat = wcs->celsysmat;
  a = wcspos[lng = wcs->wcsprm->lng]*DEG - mat[0];
  d = wcspos[lat = wcs->wcsprm->lat]*DEG;
/* A bit of spherical trigonometry... */
/* Compute the latitude... */
  sd = sin(d);
  cdcp = cos(d)*mat[2];
  sd2 = sd*mat[3]+cdcp*cos(a);
/* ...and the longitude */
  y = cdcp*sin(a);
  x = sd2*mat[3]-sd;
  wcspos[lng] = fmod((atan2(y,x) + mat[1])/DEG+360.0, 360.0);
  wcspos[lat] = asin(sd2)/DEG;

  return RETURN_OK;
  }


/******* raw_to_wcs ***********************************************************
PROTO	int raw_to_wcs(wcsstruct *, double *, double *)
PURPOSE	Convert raw (pixel) coordinates to WCS (World Coordinate System).
INPUT	WCS structure,
	Pointer to the array of input coordinates,
	Pointer to the array of output coordinates.
OUTPUT	RETURN_OK if mapping successful, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	08/02/2007
 ***/
int	raw_to_wcs(wcsstruct *wcs, double *pixpos, double *wcspos)

  {
   double	imgcrd[NAXIS],
		phi,theta;
   int		i;

  if (wcsrev((const char(*)[9])wcs->ctype, wcs->wcsprm, pixpos,
	wcs->lin,imgcrd, wcs->prj, &phi, &theta, wcs->crval, wcs->cel, wcspos))
    {
    for (i=0; i<wcs->naxis; i++)
      wcspos[i] = WCS_NOCOORD;
    return RETURN_ERROR;
    }

/* If needed, convert from a different coordinate system to equatorial */
  if (wcs->celsysconvflag)
    celsys_to_eq(wcs, wcspos);

  return RETURN_OK;
  }


/******* wcs_to_raw ***********************************************************
PROTO	int wcs_to_raw(wcsstruct *, double *, double *)
PURPOSE	Convert WCS (World Coordinate System) coords to raw (pixel) coords.
INPUT	WCS structure,
	Pointer to the array of input coordinates,
	Pointer to the array of output coordinates.
OUTPUT	RETURN_OK if mapping successful, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	08/02/2007
 ***/
int	wcs_to_raw(wcsstruct *wcs, double *wcspos, double *pixpos)

  {
   double	imgcrd[NAXIS],
		phi,theta;
   int		i;

/* If needed, convert to a coordinate system different from equatorial */
  if (wcs->celsysconvflag)
    eq_to_celsys(wcs, wcspos);

  if (wcsfwd((const char(*)[9])wcs->ctype,wcs->wcsprm,wcspos,
	wcs->crval, wcs->cel,&phi,&theta,wcs->prj, imgcrd,wcs->lin,pixpos))
    {
    for (i=0; i<wcs->naxis; i++)
      pixpos[i] = WCS_NOCOORD;
    return RETURN_ERROR;
    }

  return RETURN_OK;
  }


/******* red_to_raw **********************************************************
PROTO	int red_to_raw(wcsstruct *, double *, double *)
PURPOSE	Convert reduced (World Coordinate System) coords to raw (pixel)
	coords.
INPUT	WCS structure,
	Pointer to the array of input (reduced) coordinates,
	Pointer to the array of output (pixel) coordinates.
OUTPUT	RETURN_OK if mapping successful, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	23/10/2003
 ***/
int	red_to_raw(wcsstruct *wcs, double *redpos, double *pixpos)

  {
   struct wcsprm	*wcsprm;
   double		offset;

  wcsprm = wcs->wcsprm;
/* Initialize if required */
  if (wcsprm && wcsprm->flag != WCSSET)
    {
    if (wcsset(wcs->naxis, (const char(*)[9])wcs->ctype, wcsprm))
      return RETURN_ERROR;
    }

  if (wcsprm && wcsprm->flag != 999 && wcsprm->cubeface != -1)
    {
/*-- Separation between faces */
    offset = (wcs->prj->r0 == 0.0 ? 90.0 : wcs->prj->r0*PI/2.0);
/*-- Stack faces in a cube */
    if (redpos[wcs->lat] < -0.5*offset)
      {
      redpos[wcs->lat] += offset;
      redpos[wcsprm->cubeface] = 5.0;
      }
    else if (redpos[wcs->lat] > 0.5*offset)
      {
      redpos[wcs->lat] -= offset;
      redpos[wcsprm->cubeface] = 0.0;
      }
    else if (redpos[wcs->lng] > 2.5*offset)
      {
      redpos[wcs->lng] -= 3.0*offset;
      redpos[wcsprm->cubeface] = 4.0;
      }
    else if (redpos[wcs->lng] > 1.5*offset)
      {
      redpos[wcs->lng] -= 2.0*offset;
      redpos[wcsprm->cubeface] = 3.0;
      }
    else if (redpos[wcs->lng] > 0.5*offset)
      {
      redpos[wcs->lng] -= offset;
      redpos[wcsprm->cubeface] = 2.0;
      }
    else
      redpos[wcsprm->cubeface] = 1.0;
    }

/* Apply forward linear transformation */
  if (linfwd(redpos, wcs->lin, pixpos))
      return RETURN_ERROR;

  return RETURN_OK;
  }


/******* raw_to_red **********************************************************
PROTO	int raw_to_red(wcsstruct *, double *, double *)
PURPOSE	Convert raw (pixel) coordinates to reduced WCS coordinates.
INPUT	WCS structure,
	Pointer to the array of input (pixel) coordinates,
	Pointer to the array of output (reduced) coordinates.
OUTPUT	RETURN_OK if mapping successful, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	23/10/2003
 ***/
int	raw_to_red(wcsstruct *wcs, double *pixpos, double *redpos)

  {
   struct wcsprm	*wcsprm;
   double		offset;
   int			face;

  wcsprm = wcs->wcsprm;
/* Initialize if required */
  if (wcsprm && wcsprm->flag != WCSSET)
    {
    if (wcsset(wcs->naxis, (const char(*)[9])wcs->ctype, wcsprm))
      return RETURN_ERROR;
    }
   
/* Apply reverse linear transformation */
   if (linrev(pixpos, wcs->lin, redpos))
     return RETURN_ERROR;

  if (wcsprm && wcsprm->flag != 999 && wcsprm->cubeface != -1)
    {
/*-- Do we have a CUBEFACE axis? */
    face = (int)(redpos[wcsprm->cubeface] + 0.5);
    if (fabs(redpos[wcsprm->cubeface]-face) > 1e-10)
      return RETURN_ERROR;

/*-- Separation between faces. */
    offset = (wcs->prj->r0 == 0.0 ? 90.0 : wcs->prj->r0*PI/2.0);
/*-- Lay out faces in a plane. */
    switch (face)
      {
      case 0:
        redpos[wcs->lat] += offset;
        break;
      case 1:
        break;
      case 2:
        redpos[wcs->lng] += offset;
        break;
      case 3:
        redpos[wcs->lng] += offset*2;
        break;
      case 4:
        redpos[wcs->lng] += offset*3;
        break;
      case 5:
        redpos[wcs->lat] -= offset;
        break;
      default:
        return RETURN_ERROR;
      }
    }

  return RETURN_OK;
  }


/******* wcs_dist ***********************************************************
PROTO	double wcs_dist(wcsstruct *wcs, double *wcspos1, double *wcspos2)
PURPOSE	Compute the angular distance between 2 points on the sky.
INPUT	WCS structure,
	Pointer to the first array of world coordinates,
	Pointer to the second array of world coordinates.
OUTPUT	Angular distance (in degrees) between points.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	24/07/2002
 ***/
double	wcs_dist(wcsstruct *wcs, double *wcspos1, double *wcspos2)

  {
  double	d, dp;
  int		i, lng, lat;

  lng = wcs->lng;
  lat = wcs->lat;
  if (lat!=lng)
    {
/*-- We are operating in angular coordinates */
    d = sin(wcspos1[lat]*DEG)*sin(wcspos2[lat]*DEG)
	+ cos(wcspos1[lat]*DEG)*cos(wcspos2[lat]*DEG)
		*cos((wcspos1[lng]-wcspos2[lng])*DEG);
    return d>-1.0? (d<1.0 ? acos(d)/DEG : 0.0) : 180.0;
    }
  else
    {
    d = 0.0;
    for (i=0; i<wcs->naxis; i++)
      {
      dp = wcspos1[i] - wcspos2[i];
      d += dp*dp;
      }
    return sqrt(d);
    }
  }


/******* wcs_scale ***********************************************************
PROTO	double wcs_scale(wcsstruct *wcs, double *pixpos)
PURPOSE	Compute the sky area equivalent to a local pixel.
INPUT	WCS structure,
	Pointer to the array of local raw coordinates,
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	03/01/2008
 ***/
double	wcs_scale(wcsstruct *wcs, double *pixpos)

  {
   double	wcspos[NAXIS], wcspos1[NAXIS], wcspos2[NAXIS], pixpos2[NAXIS];
   double	dpos1,dpos2;
   int		lng, lat;

  if (raw_to_wcs(wcs, pixpos, wcspos))
    return 0.0;

  lng = wcs->lng;
  lat = wcs->lat;
  if (lng == lat)
    {
    lng = 0;
    lat = 1;
    }

/* Compute pixel scale */
  pixpos2[lng] = pixpos[lng] + 1.0;
  pixpos2[lat] = pixpos[lat];
  if (raw_to_wcs(wcs, pixpos2, wcspos1))
    return 0.0;
  pixpos2[lng] -= 1.0;
  pixpos2[lat] += 1.0;
  if (raw_to_wcs(wcs, pixpos2, wcspos2))
    return 0.0;
  dpos1 = wcspos1[lng]-wcspos[lng];
  dpos2 = wcspos2[lng]-wcspos[lng];
  if (wcs->lng!=wcs->lat)
    {
    if (dpos1>180.0)
      dpos1 -= 360.0;
    else if (dpos1<-180.0)
      dpos1 += 360.0;
    if (dpos2>180.0)
      dpos2 -= 360.0;
    else if (dpos2<-180.0)
      dpos2 += 360.0;
    return fabs((dpos1*(wcspos2[lat]-wcspos[lat])
		-(wcspos1[lat]-wcspos[lat])*dpos2)*cos(wcspos[lat]*DEG));
    }
  else
    return fabs((dpos1*(wcspos2[lat]-wcspos[lat])
		-(wcspos1[lat]-wcspos[lat])*dpos2));
  }


/****** wcs jacobian *********************************************************
PROTO	double wcs_jacobian(wcsstruct *wcs, double *pixpos, double *jacob)
1581
PURPOSE	Compute the local Jacobian matrix of the astrometric deprojection.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
INPUT	WCS structure,
	Pointer to the array of local raw coordinates,
	Pointer to the jacobian array (output).
OUTPUT	Determinant over spatial coordinates (=pixel area), or -1.0 if mapping
	was unsuccesful.
NOTES   Memory must have been allocated (naxis*naxis*sizeof(double)) for the
        Jacobian array.
AUTHOR	E. Bertin (IAP)
VERSION	11/10/2007
 ***/
double	wcs_jacobian(wcsstruct *wcs, double *pixpos, double *jacob)
  {
   double	pixpos0[NAXIS], wcspos0[NAXIS], wcspos[NAXIS],
		dpos;
   int		i,j, lng,lat,naxis;

  lng = wcs->lng;
  lat = wcs->lat;
  naxis = wcs->naxis;
  for (i=0; i<naxis; i++)
    pixpos0[i] = pixpos[i];
  if (raw_to_wcs(wcs, pixpos0, wcspos0) == RETURN_ERROR)
    return -1.0;
  for (i=0; i<naxis; i++)
    {
    pixpos0[i] += 1.0;
    if (raw_to_wcs(wcs, pixpos0, wcspos) == RETURN_ERROR)
      return -1.0;
    pixpos0[i] -= 1.0;
    for (j=0; j<naxis; j++)
      {
      dpos = wcspos[j]-wcspos0[j];
      if (lng!=lat && j==lng)
        {
        if (dpos>180.0)
          dpos -= 360.0;
        else if (dpos<-180.0)
          dpos += 360.0;
        dpos *= cos(wcspos0[lat]*DEG);
        }
      jacob[j*naxis+i] = dpos;
      }
    }

  if (lng==lat)
    {
    lng = 0;
    lat = 1;
    }

  return fabs(jacob[lng+naxis*lng]*jacob[lat+naxis*lat]
		- jacob[lat+naxis*lng]*jacob[lng+naxis*lat]);
  }


1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
/****** wcs rawtoraw *********************************************************
PROTO	double wcs_rawtoraw(wcsstruct *wcsin, wcsstruct *wcsout,
		double *pixpos, double *jacob)
PURPOSE	Convert raw coordinates from input wcs structure to raw coordinates
	from output wcs structure, and the local Jacobian matrix of the
	reprojection.
INPUT	WCS input structure,
	WCS output structure,
	pointer to the array of local input raw coordinates,
	pointer to the array of local output raw coordinates (output),
	pointer to the jacobian array (output).
OUTPUT	Determinant over spatial coordinates (ratio of pixel areas),
	0.0 if jacob is NULL (Jacobian not computed in that case),
	or -1.0 if mapping was unsuccesful.
NOTES   Memory must have been allocated (naxis*naxis*sizeof(double)) for the
        Jacobian array.
AUTHOR	E. Bertin (IAP)
VERSION	31/03/2012
 ***/
double	wcs_rawtoraw(wcsstruct *wcsin, wcsstruct *wcsout,
		double *pixposin, double *pixposout, double *jacob)
  {
   double	pixpos0[NAXIS], pixpos2[NAXIS], wcspos[NAXIS],
		dpos;
   int		i,j, lng,lat,naxis;

  naxis = wcsin->naxis;
  for (i=0; i<naxis; i++)
    pixpos0[i] = pixposin[i];

/* Coordinate transformation */
  if (raw_to_wcs(wcsin, pixposin, wcspos) == RETURN_ERROR)
    return -1.0;
  if (wcs_to_raw(wcsout, wcspos, pixposout) == RETURN_ERROR)
    return -1.0;
 
/* Jacobian */
  if (!jacob)
    return 0.0;

  lng = wcsin->lng;
  lat = wcsin->lat;
  for (i=0; i<naxis; i++)
    {
    pixpos0[i] += 1.0;
    if (raw_to_wcs(wcsin, pixpos0, wcspos) == RETURN_ERROR)
      return -1.0;
    if (wcs_to_raw(wcsout, wcspos, pixpos2) == RETURN_ERROR)
      return -1.0;
    pixpos0[i] -= 1.0;
    for (j=0; j<naxis; j++)
      jacob[j*naxis+i] = pixpos2[j] - pixposout[j];
    }

  if (lng==lat)
    {
    lng = 0;
    lat = 1;
    }

  return fabs(jacob[lng+naxis*lng]*jacob[lat+naxis*lat]
		- jacob[lat+naxis*lng]*jacob[lng+naxis*lat]);
  }


Emmanuel Bertin's avatar
Emmanuel Bertin committed
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
/******* wcs_chirality *******************************************************
PROTO	int wcs_chirality(wcsstruct *wcs)
PURPOSE	Compute the chirality of a WCS projection.
INPUT	WCS structure.
OUTPUT	+1 if determinant of matrix is positive, -1 if negative, 0 if null.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	26/09/2006
 ***/
int	wcs_chirality(wcsstruct *wcs)

  {
   double	a;
   int		lng,lat, naxis;

  lng = wcs->lng;
  lat = wcs->lat;
  naxis = wcs->naxis;
  if (lng==lat && naxis>=2)
    {
    lng = 0;
    lat = 1;
    }

  a = wcs->cd[lng*naxis+lng]*wcs->cd[lat*naxis+lat]
	- wcs->cd[lng*naxis+lat]*wcs->cd[lat*naxis+lng];
  return a>TINY? 1 : (a<-TINY? -1 : 0);
  }


/****** precess_wcs **********************************************************
PROTO	void precess_wcs(wcsstruct *wcs, double yearin, double yearout)
PURPOSE	Precess the content of a WCS structure according to the equinox.
INPUT	WCS structure,
	Input year,
	Output year.
OUTPUT	-.
NOTES	Epoch for coordinates should be J2000 (FK5 system).
AUTHOR	E. Bertin (IAP)
VERSION	04/01/2008
 ***/
void	precess_wcs(wcsstruct *wcs, double yearin, double yearout)

  {
   double	crval[NAXIS],a[NAXIS*NAXIS],b[NAXIS*NAXIS],
		*c,*at,
		val, cas, sas, angle, dalpha;
   int		i,j,k, lng,lat, naxis;

  lng = wcs->lng;
  lat = wcs->lat;
  if (lat==lng || yearin==yearout)
    return;
  naxis = wcs->naxis;
/* Precess to year out */
  precess(yearin, wcs->crval[lng], wcs->crval[lat], yearout,
	&crval[lng], &crval[lat]);

  dalpha = (crval[lng] - wcs->crval[lng])*DEG;

/* Compute difference angle with the north axis between start and end */
  angle = (dalpha!=0.0 && (crval[lat] - wcs->crval[lat])*DEG != 0.0) ?
	180.0 - (atan2(sin(dalpha),
	cos(crval[lat]*DEG)*tan(wcs->crval[lat]*DEG)
	- sin(crval[lat]*DEG)*cos(dalpha))
	+ atan2(sin(dalpha),
	cos(wcs->crval[lat]*DEG)*tan(crval[lat]*DEG)
	- sin(wcs->crval[lat]*DEG)*cos(dalpha)))/DEG
	: 0.0;

/* A = C*B */
  c = wcs->cd;
/* The B matrix is made of 2 numbers */

  cas = cos(angle*DEG);
  sas = sin(-angle*DEG);
  for (i=0; i<naxis; i++)
    b[i+i*naxis] = 1.0;
  b[lng+lng*naxis] = cas;
  b[lat+lng*naxis] = -sas;
  b[lng+lat*naxis] = sas;
  b[lat+lat*naxis] = cas;
  at = a;
  for (j=0; j<naxis; j++)
    for (i=0; i<naxis; i++)
      {
      val = 0.0;
      for (k=0; k<naxis; k++)
        val += c[k+j*naxis]*b[i+k*naxis];
      *(at++) = val;
      }

  at = a;

  for (i=0; i<naxis*naxis; i++)
    *(c++) = *(at++);

  wcs->crval[lng] = crval[lng];
  wcs->crval[lat] = crval[lat];
  wcs->equinox = yearout;

/* Initialize other WCS structures */
  init_wcs(wcs);
/* Find the range of coordinates */
  range_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);

  return;
  }


/********************************* precess ***********************************/
/*
precess equatorial coordinates according to the equinox (from Ephemerides du
Bureau des Longitudes 1992). Epoch for coordinates should be J2000
(FK5 system).
*/
void	precess(double yearin, double alphain, double deltain,
		double yearout, double *alphaout, double *deltaout)

  {
   double	dzeta,theta,z, t1,t1t1, t2,t2t2,t2t2t2,
		cddsadz, cddcadz, cdd, sdd, adz, cdin,sdin,ct,st,caindz;

  alphain *= DEG;
  deltain *= DEG;

  t1 = (yearin - 2000.0)/1000.0;
  t2 = (yearout - yearin)/1000.0;
  t1t1 = t1*t1;
  t2t2t2 = (t2t2 = t2*t2)*t2;
  theta = (97171.735e-06 - 413.691e-06*t1 - 1.052e-06 * t1t1) * t2
	+ (-206.846e-06 - 1.052e-06*t1) * t2t2 - 202.812e-06 * t2t2t2;
  dzeta = (111808.609e-06 + 677.071e-06*t1 - 0.674e-06 * t1t1) * t2
	+ (146.356e-06 - 1.673e-06*t1) * t2t2 + 87.257e-06 * t2t2t2;
  z = (111808.609e-06 +677.071e-06*t1 - 0.674e-06 * t1t1) * t2
	+ (530.716e-06 + 0.320e-06*t1) * t2t2 + 88.251e-06 * t2t2t2;
  cddsadz = (cdin=cos(deltain)) * sin(alphain+dzeta);
  cddcadz = -(sdin=sin(deltain))*(st=sin(theta))
	+cdin*(ct=cos(theta))*(caindz=cos(alphain+dzeta));
  sdd = sdin*ct + cdin*st*caindz;
  cdd = cos(*deltaout = asin(sdd));
  adz = asin(cddsadz/cdd);
  if (cddcadz<0.0)
    adz = PI - adz;
  if (adz<0.0)
    adz += 2.0*PI;
  adz += z;
  *alphaout = adz/DEG;
  *deltaout /= DEG;

  return;
  }


/********************************* b2j ***********************************/
/*
conver equatorial coordinates from equinox and epoch B1950 to equinox and
epoch J2000 for extragalactic sources (from Aoki et al. 1983).
*/
void	b2j(double yearobs, double alphain, double deltain,
		double *alphaout, double *deltaout)
  {
   int		i,j;
   double	a[3] = {-1.62557e-6, -0.31919e-6, -0.13843e-6},
		ap[3] = {1.245e-3, -1.580e-3, -0.659e-3},
		m[6][6] = {
  { 0.9999256782,     -0.0111820611,     -0.0048579477,
    0.00000242395018, -0.00000002710663, -0.00000001177656},
  { 0.0111820610,      0.9999374784,     -0.0000271765,
    0.00000002710663,  0.00000242397878, -0.00000000006587},
  { 0.0048579479,     -0.0000271474,      0.9999881997,
    0.00000001177656, -0.00000000006582,  0.00000242410173},
  {-0.000551,        -0.238565,           0.435739,
    0.99994704,	     -0.01118251,        -0.00485767},
  { 0.238514,        -0.002662,          -0.008541,
    0.01118251,	      0.99995883,        -0.00002718},
  {-0.435623,         0.012254,           0.002117,
    0.00485767,      -0.00002714,         1.00000956}},
 		a1[3], r[3], ro[3], r1[3], r2[3], v1[3], v[3];
   double		cai, sai, cdi, sdi, dotp, rmod, alpha, delta,
			t1 = (yearobs - 1950.0)/100.0;

  alphain *= PI/180.0;
  deltain *= PI/180.0;
  cai = cos(alphain);
  sai = sin(alphain);
  cdi = cos(deltain);
  sdi = sin(deltain);
  ro[0] = cdi*cai;
  ro[1] = cdi*sai;
  ro[2] = sdi;
  dotp = 0.0;
  for (i=0; i<3; i++)
    {
    a1[i] = a[i]+ap[i]*ARCSEC*t1;
    dotp += a1[i]*ro[i];
    }
  for (i=0; i<3; i++)
    {
    r1[i] = ro[i] - a1[i] + dotp*ro[i];
    r[i] = v[i] = v1[i] = 0.0;
    }
  for (j=0; j<6; j++)
    for (i=0; i<6; i++)
      {
      if (j<3)
        r[j] += m[j][i]*(i<3?r1[i]:v1[i-3]);
      else
         v[j-3] += m[j][i]*(i<3?r1[i]:v1[i-3]);
      }
  rmod = 0.0;
  for (i=0; i<3; i++)
    {
    r2[i] = r[i]+v[i]*ARCSEC*(t1-0.5);
    rmod += r2[i]*r2[i];
    }
  rmod = sqrt(rmod);
  delta = asin(r2[2]/rmod);
  alpha = acos(r2[0]/cos(delta)/rmod);
  if (r2[1]<0)
    alpha = 2*PI - alpha;
  *alphaout = alpha*180.0/PI;
  *deltaout = delta*180.0/PI;

  return;			
  }


/*********************************** j2b *************************************/
/*
conver equatorial coordinates from equinox and epoch J2000 to equinox and
epoch B1950 for extragalactic sources (from Aoki et al. 1983, after
inversion of their matrix and some custom arrangements).
*/
void    j2b(double yearobs, double alphain, double deltain,
	double *alphaout, double *deltaout)
  {
   int			i,j;
   double		a[3] = {-1.62557e-6, -0.31919e-6, -0.13843e-6},
                        ap[3] = {1.245e-3, -1.580e-3, -0.659e-3},
                        m[6][6] = {
  { 0.9999256794678425,    0.01118148281196562,   0.004859003848996022,
   -2.423898417033081e-06,-2.710547600126671e-08,-1.177738063266745e-08},
  {-0.01118148272969232,   0.9999374849247641,   -2.717708936468247e-05,
    2.710547578707874e-08,-2.423927042585208e-06, 6.588254898401055e-11},
  {-0.00485900399622881,  -2.715579322970546e-05, 0.999988194643078,
    1.177738102358923e-08, 6.582788892816657e-11,-2.424049920613325e-06},
  {-0.0005508458576414713, 0.2384844384742432,   -0.4356144527773499,
    0.9999043171308133,    0.01118145410120206,   0.004858518651645554},
  {-0.2385354433560954,   -0.002664266996872802,  0.01225282765749546,
   -0.01118145417187502,   0.9999161290795875,   -2.717034576263522e-05},
  { 0.4357269351676567,   -0.008536768476441086,  0.002113420799663768,
   -0.004858518477064975, -2.715994547222661e-05, 0.9999668385070383}},
			a1[3], r[3], ro[3], r1[3], r2[3], v1[3], v[3];
   double		cai, sai, cdi, sdi, dotp, rmod, alpha, delta, t1;

/* Convert Julian years from J2000.0 to tropic centuries from B1950.0 */
  t1 = ((yearobs - 2000.0) + (MJD2000 - MJD1950)/365.25)*JU2TROP/100.0;
  alphain *= DEG;
  deltain *= DEG;
  cai = cos(alphain);
  sai = sin(alphain);
  cdi = cos(deltain);
  sdi = sin(deltain);
  r[0] = cdi*cai;
  r[1] = cdi*sai;
  r[2] = sdi;
  for (i=0; i<3; i++)
    v[i] = r2[i] = v1[i] = 0.0;
  for (j=0; j<6; j++)
    for (i=0; i<6; i++)
      if (j<3)
        r2[j] += m[j][i]*(i<3?r[i]:v[i-3]);
      else
        v1[j-3] += m[j][i]*(i<3?r[i]:v[i-3]);

  for (i=0; i<3; i++)
    r1[i] = r2[i]+v1[i]*ARCSEC*t1;

  dotp = 0.0;
  for (i=0; i<3; i++)
    {
    a1[i] = a[i]+ap[i]*ARCSEC*t1;
    dotp += a1[i]*(r1[i]+a1[i]);
    }
  dotp = 2.0/(sqrt(1+4.0*dotp)+1.0);
  rmod = 0.0;
  for (i=0; i<3; i++)
    {
    ro[i] = dotp*(r1[i]+a1[i]);
    rmod += ro[i]*ro[i];
    }
  rmod = sqrt(rmod);
  delta = asin(ro[2]/rmod);
  alpha = acos(ro[0]/cos(delta)/rmod);
  if (ro[1]<0)
    alpha = 2.0*PI - alpha;
  *alphaout = alpha/DEG;
  *deltaout = delta/DEG;

  return;
  }


/******************************** degtosexal *********************************/
/*
Convert degrees to hh mm ss.xx alpha coordinates.
*/
char    *degtosexal(double alpha, char *str)

  {
   int		hh, mm;
   double	ss;

  if (alpha>=0.0 && alpha <360.0)
    {
    hh = (int)(alpha/15.0);
    mm = (int)(60.0*(alpha/15.0 - hh));
    ss = 60.0*(60.0*(alpha/15.0 - hh) - mm);
    }
  else
    hh = mm = ss = 0.0;
  sprintf(str,"%02d:%02d:%05.2f", hh, mm, ss);

  return str;
  }


/******************************** degtosexde *********************************/
/*
Convert degrees to dd dm ds.x delta coordinates.
*/
char    *degtosexde(double delta, char *str)

  {
   char		sign;
   double	ds;
   int		dd, dm;

  sign = delta<0.0?'-':'+';
  delta = fabs(delta);
  if (delta>=-90.0 && delta <=90.0)
    {
    dd = (int)delta;
    dm = (int)(60.0*(delta - dd));
    ds = 60.0*fabs(60.0*(delta - dd) - dm);
    }
  else
    dd = dm = ds = 0.0;
  sprintf(str,"%c%02d:%02d:%04.1f", sign, dd, dm, ds);
  return str;
  }


/******************************** sextodegal *********************************/
/*
Convert hh mm ss.xxx alpha coordinates to degrees.
*/
double  sextodegal(char *hms)
  {
   double	val;
   char		*ptr;

  val = atof(strtok_r(hms, ": \t", &ptr))*15.0;		/* Hours */
  val += atof(strtok_r(NULL, ": \t", &ptr))/4.0;	/* Minutes */
  val += atof(strtok_r(NULL, ": \t", &ptr))/240.0;	/* Seconds */

  return val;
  }


/******************************** sextodegde *********************************/
/*
Convert dd dm ds.xxx delta coordinates to degrees.
*/
double  sextodegde(char *dms)
  {
   double	val, sgn;
   char		*str, *ptr;

  str = strtok_r(dms, ": \t", &ptr);
  sgn = (strchr(str, '-') ? -1.0:1.0);
  val = atof(dms);					/* Degrees */
  val += atof(strtok_r(NULL, ": \t", &ptr))*sgn/60.0;	/* Minutes */
  val += atof(strtok_r(NULL, ": \t", &ptr))*sgn/3600.0;	/* Seconds */

  return val;
  }


/******************************** fmod_0_p360 *******************************/
/*
Fold input angle in the [0,+360[ domain.
*/
double  fmod_0_p360(double angle)
  {
  return angle>0.0? fmod(angle,360.0) : fmod(angle,360.0)+360.0;
  }


/******************************** fmod_m90_p90 *******************************/
/*
Fold input angle in the [-90,+90[ domain.
*/
double  fmod_m90_p90(double angle)
  {
  return angle>0.0? fmod(angle+90.0,180.0)-90.0 : fmod(angle-90.0,180.0)+90.0;
  }


2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
/********************************* fcmp_0_p360 *******************************/
/*
Compare angles in the [0,+360[ domain: return 1 if anglep>anglem, 0 otherwise.
*/
int  fcmp_0_p360(double anglep, double anglem)
  {
   double dval = anglep - anglem;

  return (int)((dval>0.0 && dval<180.0) || dval<-180.0);
  }