Position.rst 14.2 KB
Newer Older
1
2
3
4
.. File Position.rst

Position and shape parameters derived from the isophotal profile
================================================================
5
6
7
8
9
10

The following parameters are derived from the spatial distribution
:math:`\cal S` of pixels detected above the extraction threshold. *The
pixel values* :math:`I_i` *are taken from the (filtered) detection image*.

**Note that, unless otherwise noted, all parameter names given below are
11
12
only prefixes. They must be followed by “_IMAGE” if the results shall
be expressed in pixel units (see §..), or “_WORLD” for World Coordinate
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
System (WCS) units (see §[astrom])**. For example: THETA
:math:`\rightarrow` THETA\_IMAGE. In all cases, parameters are first
computed in the image coordinate system, and then converted to WCS if
requested.

Limits: XMIN, YMIN, XMAX, YMAX
------------------------------

These coordinates define two corners of a rectangle which encloses the
detected object:

.. math::

   \begin{aligned}
   {\tt XMIN} & = & \min_{i \in {\cal S}} x_i,\\
   {\tt YMIN} & = & \min_{i \in {\cal S}} y_i,\\
   {\tt XMAX} & = & \max_{i \in {\cal S}} x_i,\\
   {\tt YMAX} & = & \max_{i \in {\cal S}} y_i,
   \end{aligned}

where :math:`x_i` and :math:`y_i` are respectively the x-coordinate and
y-coordinate of pixel :math:`i`.

Barycenter: X, Y
----------------

Barycenter coordinates generally define the position of the “center” of
a source, although this definition can be inadequate or inaccurate if
its spatial profile shows a strong skewness or very large wings. X and Y
are simply computed as the first order moments of the profile:

.. math::

   \begin{aligned}
   {\tt X} & = & \overline{x} = \frac{\displaystyle \sum_{i \in {\cal S}}
48
49
50
   I_i x_i}{\displaystyle \sum_{i \in {\cal S}} I_i},\\
   {\tt Y} & = & \overline{y} = \frac{\displaystyle \sum_{i \in {\cal S}}
   I_i y_i}{\displaystyle \sum_{i \in {\cal S}} I_i}.
51
52
53
54
55
56
57
58
59
60
61
62
63
64
   \end{aligned}

In practice, :math:`x_i` and :math:`y_i` are summed relative to XMIN
and YMIN in order to reduce roundoff errors in the summing.

Position of the peak: XPEAK, YPEAK
----------------------------------

It is sometimes useful to have the position XPEAK,YPEAK of the pixel
with maximum intensity in a detected object, for instance when working
with likelihood maps, or when searching for artifacts. For better
robustness, PEAK coordinates are computed on *filtered* profiles if
available. On symmetrical profiles, PEAK positions and barycenters
coincide within a fraction of pixel (XPEAK and YPEAK coordinates are
65
quantized by steps of 1 pixel, thus XPEAK_IMAGE and YPEAK_IMAGE are
66
67
68
69
70
71
72
73
integers). This is no longer true for skewed profiles, therefore a
simple comparison between PEAK and barycenter coordinates can be used to
identify asymmetrical objects on well-sampled images.

2nd order moments: X2, Y2, XY
-----------------------------

(Centered) second-order moments are convenient for measuring the spatial
74
spread of a source profile. In |SExtractor| they are computed with:
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

.. math::

   \begin{aligned}
   {\tt X2} & = \overline{x^2} = & \frac{\displaystyle \sum_{i \in {\cal
   S}} I_i x_i^2}{\displaystyle \sum_{i \in {\cal S}} I_i} -
   \overline{x}^2,\\ {\tt Y2} & = \overline{y^2} = & \frac{\displaystyle
   \sum_{i \in {\cal S}} I_i y_i^2}{\displaystyle \sum_{i \in {\cal S}}
   I_i} - \overline{y}^2,\\ {\tt XY} & = \overline{xy} = &
   \frac{\displaystyle \sum_{i \in {\cal S}} I_i x_i y_i}{\displaystyle
   \sum_{i \in {\cal S}} I_i} - \overline{x}\,\overline{y},
   \end{aligned}

These expressions are more subject to roundoff errors than if the
1st-order moments were subtracted before summing, but allow both 1st and
2nd order moments to be computed in one pass. Roundoff errors are
however kept to a negligible value by measuring all positions relative
here again to XMIN and YMIN.

Basic shape parameters: A, B, THETA
-----------------------------------

These parameters are intended to describe the detected object as an
elliptical shape. A and B are its semi-major and semi-minor axis
lengths, respectively. More precisely, they represent the maximum and
minimum spatial dispersion of the object profile along any direction.
THETA is the position-angle of the A axis relative to the first image
axis. It is counted positive in the direction of the second axis. Here
is how they are computed:

2nd-order moments can easily be expressed in a referential rotated from
the :math:`x,y` image coordinate system by an angle +\ :math:`\theta`:

.. math::

   \label{eq:varproj}
   \begin{array}{lcrrr}
   \overline{x_{\theta}^2} & = & \cos^2\theta\:\overline{x^2} & +\,\sin^2\theta\:\overline{y^2}
               & -\,2 \cos\theta \sin\theta\:\overline{xy},\\
   \overline{y_{\theta}^2} & = & \sin^2\theta\:\overline{x^2} & +\,\cos^2\theta\:\overline{y^2}
               & +\,2 \cos\theta \sin\theta\:\overline{xy},\\
   \overline{xy_{\theta}} & = & \cos\theta \sin\theta\:\overline{x^2} &
   -\,\cos\theta \sin\theta\:\overline{y^2} & +\,(\cos^2\theta -
   \sin^2\theta)\:\overline{xy}.
   \end{array}

One can find interesting angles :math:`\theta_0` for which the variance
is minimized (or maximized) along :math:`x_{\theta}`:

.. math:: {\left.\frac{\partial \overline{x_{\theta}^2}}{\partial \theta} \right|}_{\theta_0} = 0,

which leads to

.. math::

   2 \cos\theta \sin\theta_0\:(\overline{y^2} - \overline{x^2})
       + 2 (\cos^2\theta_0 - \sin^2\theta_0)\:\overline{xy} = 0.

If :math:`\overline{y^2} \neq \overline{x^2}`, this implies:

.. math::

   \label{eq:theta0}
   \tan 2\theta_0 = 2 \frac{\overline{xy}}{\overline{x^2} - \overline{y^2}},

a result which can also be obtained by requiring the covariance
:math:`\overline{xy_{\theta_0}}` to be null. Over the domain
:math:`[-\pi/2, +\pi/2[`, two different angles — with opposite signs —
satisfy ([eq:theta0]). By definition, THETA is the position angle for
which :math:`\overline{x_{\theta}^2}` is *max*\ imized. THETA is
therefore the solution to ([eq:theta0]) that has the same sign as the
covariance :math:`\overline{xy}`. A and B can now simply be expressed
as:

.. math::

   \begin{aligned}
   {\tt A}^2 & = & \overline{x^2}_{\tt THETA},\ \ \ {\rm and}\\
   {\tt B}^2 & = & \overline{y^2}_{\tt THETA}.\end{aligned}

A and B can be computed directly from the 2nd-order moments, using the
following equations derived from ([eq:varproj]) after some algebra:

.. math::

   \begin{aligned}
   \label{eq:aimage}
   {\tt A}^2 & = & \frac{\overline{x^2}+\overline{y^2}}{2}
       + \sqrt{\left(\frac{\overline{x^2}-\overline{y^2}}{2}\right)^2 + \overline{xy}^2},\\
   {\tt B}^2 & = & \frac{\overline{x^2}+\overline{y^2}}{2}
       - \sqrt{\left(\frac{\overline{x^2}-\overline{y^2}}{2}\right)^2 + \overline{xy}^2}.\end{aligned}

Note that A and B are exactly halves the :math:`a` and :math:`b`
168
169
170
parameters computed by the COSMOS image analyser :cite:`1980SPIE..264..208S`.
Actually, :math:`a` and :math:`b` are defined in :cite:`1980SPIE..264..208S`
as the semi-major and semi-minor axes of an elliptical shape with constant
171
surface brightness, which would have the same 2nd-order moments as the
172
analyzed object.
173
174
175
176
177

Ellipse parameters: CXX, CYY, CXY
---------------------------------

A, B and THETA are not very convenient to use when, for instance, one
178
wants to know if a particular |SExtractor| detection extends over some
179
180
181
182
183
184
185
186
187
188
189
190
position. For this kind of application, three other ellipse parameters
are provided; CXX, CYY and CXY. They do nothing more than describing the
same ellipse, but in a different way: the elliptical shape associated to
a detection is now parameterized as

.. math::

   {\tt CXX} (x-\overline{x})^2 + {\tt CYY} (y-\overline{y})^2
       + {\tt CXY} (x-\overline{x})(y-\overline{y}) = R^2,

where :math:`R` is a parameter which scales the ellipse, in units of A
(or B). Generally, the isophotal limit of a detected object is well
191
represented by :math:`R\approx 3` (:numref:`fig_ellipse`). Ellipse
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
parameters can be derived from the 2nd order moments:

.. math::

   \begin{aligned}
   {\tt CXX} & = & \frac{\cos^2 {\tt THETA}}{{\tt A}^2} + \frac{\sin^2
   {\tt THETA}}{{\tt B}^2} =
   \frac{\overline{y^2}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\\
   {\tt CYY} & = & \frac{\sin^2 {\tt THETA}}{{\tt
   A}^2} + \frac{\cos^2 {\tt THETA}}{{\tt B}^2} =
   \frac{\overline{x^2}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\\
   {\tt CXY} & = & 2 \,\cos {\tt THETA}\,\sin {\tt
   THETA} \left( \frac{1}{{\tt A}^2} - \frac{1}{{\tt B}^2}\right) = -2\,
   \frac{\overline{xy}}{\overline{x^2} \overline{y^2} - \overline{xy}^2}\end{aligned}

207
208
209
210
211
212
213
214
.. _fig_ellipse:

.. figure:: figures/ellipse.*
   :figwidth: 100%
   :align: center

   Meaning of shape parameters.

215
216
217
218
219
220
221
222
223
224
225
By-products of shape parameters: ELONGATION and ELLIPTICITY [1]_
----------------------------------------------------------------

These parameters are directly derived from A and B:

.. math::

   \begin{aligned}
   {\tt ELONGATION} & = & \frac{\tt A}{\tt B}\ \ \ \ \ \mbox{and}\\
   {\tt ELLIPTICITY} & = & 1 - \frac{\tt B}{\tt A}.\end{aligned}

226
227
Position uncertainties: ERRX2, ERRY2, ERRXY, ERRA, ERRB, ERRTHETA, ERRCXX, ERRCYY, ERRCXY
-----------------------------------------------------------------------------------------
228
229

Uncertainties on the position of the barycenter can be estimated using
230
231
232
233
234
photon statistics. In practice, such estimates are a lower-value of the full
uncertainties because they do not include, for instance, the contribution of
detection biases or contamination by neighbors. Furthermore, |SExtractor| does
not currently take into account possible correlations of the noise between adjacent
pixels. Hence variances simply write:
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

.. math::

   \begin{aligned}
   {\tt ERRX2} & = {\rm var}(\overline{x}) = & \frac{\displaystyle
   \sum_{i \in {\cal S}} \sigma^2_i (x_i-\overline{x})^2} {\displaystyle
   \left(\sum_{i \in {\cal S}} I_i\right)^2},\\ {\tt ERRY2} & = {\rm
   var}(\overline{y}) = & \frac{\displaystyle \sum_{i \in {\cal S}}
   \sigma^2_i (y_i-\overline{y})^2} {\displaystyle \left(\sum_{i \in
   {\cal S}} I_i\right)^2},\\ {\tt ERRXY} & = {\rm
   cov}(\overline{x},\overline{y}) = & \frac{\displaystyle \sum_{i \in
   {\cal S}} \sigma^2_i (x_i-\overline{x})(y_i-\overline{y})}
   {\displaystyle \left(\sum_{i \in {\cal S}} I_i\right)^2}.\end{aligned}

:math:`\sigma_i` is the flux uncertainty estimated for pixel :math:`i`:

.. math:: \sigma^2_i = {\sigma_B}^2_i + \frac{I_i}{g_i},

where :math:`{\sigma_B}_i` is the local background noise and
:math:`g_i` the local gain — conversion factor — for pixel :math:`i`
(see §[chap:weight] for more details). Semi-major axis ERRA, semi-minor
axis ERRB, and position angle ERRTHETA of the :math:`1\sigma` position
error ellipse are computed from the covariance matrix exactly like in
[chap:abtheta] for shape parameters:

.. math::

   \begin{aligned}
   \label{eq:erra}
   {\tt ERRA}^2 & = & \frac{{\rm var}(\overline{x})+{\rm var}(\overline{y})}{2}
       + \sqrt{\left(\frac{{\rm var}(\overline{x})-{\rm var}(\overline{y})}{2}\right)^2
       + {\rm cov}^2(\overline{x},\overline{y})},\\
   \label{eq:errb}
   {\tt ERRB}^2 & = & \frac{{\rm var}(\overline{x})+{\rm var}(\overline{y})}{2}
       - \sqrt{\left(\frac{{\rm var}(\overline{x})-{\rm var}(\overline{y})}{2}\right)^2
       + {\rm cov}^2(\overline{x},\overline{y})},\\
   \label{eq:errtheta}
   \tan (2{\tt ERRTHETA}) & = & 2 \,\frac{{\rm cov}(\overline{x},\overline{y})}
                       {{\rm var}(\overline{x}) - {\rm var}(\overline{y})}.\end{aligned}

And the ellipse parameters are:

.. math::

   \begin{aligned}
   \label{eq:errcxx}
   {\tt ERRCXX} & = & \frac{\cos^2 {\tt ERRTHETA}}{{\tt ERRA}^2} +
   \frac{\sin^2 {\tt ERRTHETA}}{{\tt ERRB}^2} = \frac{{\rm
   var}(\overline{y})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})},\\
   \label{eq:errcyy}
   {\tt ERRCYY} & = & \frac{\sin^2 {\tt ERRTHETA}}{{\tt ERRA}^2} +
   \frac{\cos^2 {\tt ERRTHETA}}{{\tt ERRB}^2} =
   \frac{{\rm var}(\overline{x})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})},\\
   \label{eq:errcxy}
   {\tt ERRCXY} & = & 2 \cos {\tt
   ERRTHETA}\sin {\tt ERRTHETA} \left( \frac{1}{{\tt ERRA}^2} -
   \frac{1}{{\tt ERRB}^2}\right)\\ & = & -2 \frac{{\rm
   cov}(\overline{x},\overline{y})}{{\rm var}(\overline{x}) {\rm var}(\overline{y}) -
   {\rm cov}^2(\overline{x},\overline{y})}.\end{aligned}

Handling of “infinitely thin” detections
----------------------------------------

Apart from the mathematical singularities that can be found in some of
301
the above equations describing shape parameters (and which |SExtractor|
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
handles, of course), some detections with very specific shapes may yield
quite unphysical parameters, namely null values for B, ERRB, or even A
and ERRA. Such detections include single-pixel objects and horizontal,
vertical or diagonal lines which are 1-pixel wide. They will generally
originate from glitches; but very undersampled and/or low S/N genuine
sources may also produce such shapes.

For basic shape parameters, the following convention was adopted: if the
light distribution of the object falls on one single pixel, or lies on a
sufficiently thin line of pixels, which we translate mathematically by

.. math::

   \label{eq:singutest}
   \overline{x^2}\,\overline{y^2} - \overline{xy}^2 < \rho^2,

then :math:`\overline{x^2}` and :math:`\overline{y^2}` are incremented
319
by :math:`\rho`. |SExtractor| sets :math:`\rho=1/12`, which is the
320
321
variance of a 1-dimensional top-hat distribution with unit width.
Therefore :math:`1/\sqrt{12}` represents the typical minor-axis values
322
assigned (in pixels units) to undersampled sources in |SExtractor|.
323
324
325

Positional errors are more difficult to handle, as objects with very
high signal-to-noise can yield extremely small position uncertainties,
326
just like singular profiles do. Therefore |SExtractor| first checks that
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
([eq:singutest]) is true. If this is the case, a new test is conducted:

.. math::

   \label{eq:singutest2}
   {\rm var}(\overline{x})\,{\rm var}(\overline{y}) - {\rm
   covar}^2(\overline{x}, \overline{y}) < \rho^2_e,

where :math:`\rho_e` is arbitrarily set to :math:`\left( \sum_{i \in {\cal S}}
\sigma^2_i \right) / \left(\sum_{i \in {\cal S}} I_i\right)^2`. If
([eq:singutest2]) is true, then :math:`\overline{x^2}` and
:math:`\overline{y^2}` are incremented by :math:`\rho_e`.

.. [1]
   Such parameters are dimensionless and therefore do not accept any
342
343
344
345
   _IMAGE or _WORLD suffix

.. include:: keys.rst