fitswcs.c 55.3 KB
Newer Older
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1
/*
2
*				fitswcs.c
Emmanuel Bertin's avatar
Emmanuel Bertin committed
3
*
4
* Manage World Coordinate System data.
Emmanuel Bertin's avatar
Emmanuel Bertin committed
5
*
6
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Emmanuel Bertin's avatar
Emmanuel Bertin committed
7
*
8
*	This file part of:	AstrOmatic software
Emmanuel Bertin's avatar
Emmanuel Bertin committed
9
*
10
*	Copyright:		(C) 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*
*	License:		GNU General Public License
*
*	AstrOmatic software is free software: you can redistribute it and/or
*	modify it under the terms of the GNU General Public License as
*	published by the Free Software Foundation, either version 3 of the
*	License, or (at your option) any later version.
*	AstrOmatic software is distributed in the hope that it will be useful,
*	but WITHOUT ANY WARRANTY; without even the implied warranty of
*	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*	GNU General Public License for more details.
*	You should have received a copy of the GNU General Public License
*	along with AstrOmatic software.
*	If not, see <http://www.gnu.org/licenses/>.
*
26
*	Last modified:		22/07/2011
27
28
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
Emmanuel Bertin's avatar
Emmanuel Bertin committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

#ifdef HAVE_CONFIG_H
#include	"config.h"
#endif

#ifdef HAVE_MATHIMF_H
#include <mathimf.h>
#else
#include <math.h>
#endif
#include	<stdio.h>
#include	<stdlib.h>
#include	<string.h>

#include	"fits/fitscat_defs.h"
#include	"fits/fitscat.h"
#include	"fitswcs.h"
#include	"wcscelsys.h"
#include	"wcs/wcs.h"
#include	"wcs/lin.h"
#include	"wcs/tnx.h"
#include	"wcs/poly.h"

/******* copy_wcs ************************************************************
PROTO	wcsstruct *copy_wcs(wcsstruct *wcsin)
PURPOSE	Copy a WCS (World Coordinate System) structure.
INPUT	WCS structure to be copied.
OUTPUT	pointer to a copy of the input structure.
NOTES	Actually, only FITS parameters are copied. Lower-level structures
	such as those created by the WCS or TNX libraries are generated.
AUTHOR	E. Bertin (IAP)
VERSION	31/08/2002
 ***/
wcsstruct	*copy_wcs(wcsstruct *wcsin)

  {
   wcsstruct	*wcs;

/* Copy the basic stuff */
  QMEMCPY(wcsin, wcs, wcsstruct, 1);
/* The PROJP WCS parameters */
  QMEMCPY(wcsin->projp, wcs->projp, double, wcs->naxis*100);

/* Set other structure pointers to NULL (they'll have to be reallocated) */
  wcs->wcsprm = NULL;
  wcs->lin = NULL;
  wcs->cel = NULL;
  wcs->prj = NULL;
  wcs->tnx_lngcor = copy_tnxaxis(wcsin->tnx_lngcor);
  wcs->tnx_latcor = copy_tnxaxis(wcsin->tnx_latcor);
  wcs->inv_x = wcs->inv_y = NULL;

  QCALLOC(wcs->wcsprm, struct wcsprm, 1);
/* Test if the WCS is recognized and a celestial pair is found */
  wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm);

/* Initialize other WCS structures */
  init_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);
/* Find the range of coordinates */
  range_wcs(wcs);  

  return wcs;
  }


/******* create_wcs ***********************************************************
PROTO	wcsstruct *create_wcs(char **ctype, double *crval, double *crpix,
			double *cdelt, int *naxisn, int naxis)
PURPOSE	Generate a simple WCS (World Coordinate System) structure.
INPUT	Pointer to an array of char strings with WCS projection on each axis,
	pointer to an array of center coordinates (double),
	pointer to an array of device coordinates (double),
	pointer to an array of pixel scales (double),
	pointer to an array of image dimensions (int),
	number of dimensions.
OUTPUT	pointer to a WCS structure.
NOTES	If a pointer is set to null, the corresponding variables are set to
	default values.
AUTHOR	E. Bertin (IAP)
VERSION	09/08/2006
 ***/
wcsstruct	*create_wcs(char **ctype, double *crval, double *crpix,
			double *cdelt, int *naxisn, int naxis)

  {
   wcsstruct	*wcs;
   int		l;

  QCALLOC(wcs, wcsstruct, 1);
  wcs->naxis = naxis;
  QCALLOC(wcs->projp, double, naxis*100);
  wcs->nprojp = 0;

  wcs->longpole = wcs->latpole = 999.0;
  for (l=0; l<naxis; l++)
    {
    wcs->naxisn[l] = naxisn? naxisn[l] : 360.0;
/*-- The default WCS projection system is an all-sky Aitoff projection */
    if (ctype)
      strncpy(wcs->ctype[l], ctype[l], 8);
    else if (l==0)
      strncpy(wcs->ctype[l], "RA---AIT", 8);
    else if (l==1)
      strncpy(wcs->ctype[l], "DEC--AIT", 8);
    wcs->crval[l] = crval? crval[l]: 0.0;
    wcs->crpix[l] = crpix? crpix[l]: 0.0;
    wcs->cdelt[l] = 1.0;
    wcs->cd[l*(naxis+1)] = cdelt? cdelt[l] : 1.0;
    }

  wcs->epoch = wcs->equinox = 2000.0;
  QCALLOC(wcs->wcsprm, struct wcsprm, 1);

/* Test if the WCS is recognized and a celestial pair is found */
  wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm);

/* Initialize other WCS structures */
  init_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);
/* Find the range of coordinates */
  range_wcs(wcs);  

  return wcs;
  }


/******* init_wcs ************************************************************
PROTO	void init_wcs(wcsstruct *wcs)
PURPOSE	Initialize astrometry and WCS (World Coordinate System) structures.
INPUT	WCS structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	17/05/2007
 ***/
void	init_wcs(wcsstruct *wcs)

  {
   int		l,n,lng,lat,naxis;

  naxis = wcs->naxis;
  if (wcs->lin)
    {
    free(wcs->lin->cdelt);
    free(wcs->lin->crpix);
    free(wcs->lin->pc);
    free(wcs->lin->piximg);
    free(wcs->lin->imgpix);
    free(wcs->lin);
    }
  QCALLOC(wcs->lin, struct linprm, 1);
  QCALLOC(wcs->lin->cdelt, double, naxis);
  QCALLOC(wcs->lin->crpix, double, naxis);
  QCALLOC(wcs->lin->pc, double, naxis*naxis);


  if (wcs->cel)
    free(wcs->cel);
  QCALLOC(wcs->cel, struct celprm, 1);

  if (wcs->prj)
    free(wcs->prj);
  QCALLOC(wcs->prj, struct prjprm, 1);

  if (wcs->inv_x)
    {
    poly_end(wcs->inv_x);
    wcs->inv_x = NULL;
    }
  if (wcs->inv_y)
    {
    poly_end(wcs->inv_y);
    wcs->inv_y = NULL;
    }

/* Set WCS flags to 0: structures will be reinitialized by the WCS library */
  wcs->lin->flag = wcs->cel->flag = wcs->prj->flag = 0;
  wcs->lin->naxis = naxis;

/* wcsprm structure */
  lng = wcs->lng = wcs->wcsprm->lng;
  lat = wcs->lat = wcs->wcsprm->lat;

/* linprm structure */
  for (l=0; l<naxis; l++)
    {
    wcs->lin->crpix[l] = wcs->crpix[l];
    wcs->lin->cdelt[l] = 1.0;
    }

  for (l=0; l<naxis*naxis; l++)
    wcs->lin->pc[l] = wcs->cd[l];

/* celprm structure */
  if (lng>=0)
    {
    wcs->cel->ref[0] = wcs->crval[lng];
    wcs->cel->ref[1] = wcs->crval[lat];
    }
  else
    {
    wcs->cel->ref[0] = wcs->crval[0];
    wcs->cel->ref[1] = wcs->crval[1];
    }
  wcs->cel->ref[2] = wcs->longpole;
  wcs->cel->ref[3] = wcs->latpole;

/* prjprm structure */
  wcs->prj->r0 = wcs->r0;
  wcs->prj->tnx_lngcor = wcs->tnx_lngcor;
  wcs->prj->tnx_latcor = wcs->tnx_latcor;
  if (lng>=0)
    {
    n = 0;
    for (l=100; l--;)
      {
      wcs->prj->p[l] = wcs->projp[l+lat*100];	/* lat comes first for ... */
      wcs->prj->p[l+100] = wcs->projp[l+lng*100];/* ... compatibility reasons */
      if (!n && (wcs->prj->p[l] || wcs->prj->p[l+100]))
        n = l+1;
      }
    wcs->nprojp = n;
    }

/* Check-out chirality */
  wcs->chirality = wcs_chirality(wcs);

/* Initialize Equatorial <=> Celestial coordinate system transforms */
  init_wcscelsys(wcs);

  return;
  }


/******* init_wcscelsys *******************************************************
PROTO	void init_wcscelsys(wcsstruct *wcs)
PURPOSE	Initialize Equatorial <=> Celestial coordinate system transforms.
INPUT	WCS structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	18/07/2006
 ***/
void	init_wcscelsys(wcsstruct *wcs)

  {
  double	*mat,
		a0,d0,ap,dp,ap2,y;
  int		s,lng,lat;

  lng = wcs->wcsprm->lng;
  lat = wcs->wcsprm->lat;
/* Is it a celestial system? If not, exit! */
  if (lng==lat)
    {
    wcs->celsysconvflag = 0;
    return;
    }
/* Find the celestial system */
  for (s=0; *celsysname[s][0] && strncmp(wcs->ctype[lng], celsysname[s][0], 4);
	s++);
/* Is it a known, non-equatorial system? If not, exit! */
  if (!s || !*celsysname[s][0])
    {
    wcs->celsysconvflag = 0;
    return;
    }
  wcs->celsys = (celsysenum)s;
/* Some shortcuts */
  a0 = celsysorig[s][0]*DEG;
  d0 = celsysorig[s][1]*DEG;
  ap = celsyspole[s][0]*DEG;
  dp = celsyspole[s][1]*DEG;
/* First compute in the output referential the longitude of the south pole */
  y = sin(ap - a0);
/*
  x = cos(d0)*(cos(d0)*sin(dp)*cos(ap-a0)-sin(d0)*cos(dp));
  ap2 = atan2(y,x);
*/
  ap2 = asin(cos(d0)*y) ;
/* Equatorial <=> Celestial System transformation parameters */
  mat = wcs->celsysmat;
  mat[0] = ap;
  mat[1] = ap2;
  mat[2] = cos(dp);
  mat[3] = sin(dp);

  wcs->celsysconvflag = 1;
  return;
  }


/******* read_wcs *************************************************************
PROTO	wcsstruct *read_wcs(tabstruct *tab)
PURPOSE	Read WCS (World Coordinate System) info in the FITS header.
INPUT	tab structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
331
VERSION	22/07/2011
Emmanuel Bertin's avatar
Emmanuel Bertin committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
 ***/
wcsstruct	*read_wcs(tabstruct *tab)

  {
#define	FITSREADF(buf, k, val, def) \
		{if (fitsread(buf,k, &val, H_FLOAT,T_DOUBLE) != RETURN_OK) \
		   val = def; \
		}

#define	FITSREADI(buf, k, val, def) \
		{if (fitsread(buf,k, &val, H_INT,T_LONG) != RETURN_OK) \
		   val = def; \
		}

#define	FITSREADS(buf, k, str, def) \
		{if (fitsread(buf,k,str, H_STRING,T_STRING) != RETURN_OK) \
		   strcpy(str, (def)); \
		}
   char		str[MAXCHARS];
   char		wstr1[TNX_MAXCHARS], wstr2[TNX_MAXCHARS];

   wcsstruct	*wcs;
   double	drota;
   int		j, l, naxis;
   char		name[16],
		*buf, *filename, *ptr;

  buf = tab->headbuf;
  filename = (tab->cat? tab->cat->filename : strcpy(name, "internal header"));

  FITSREADS(buf, "OBJECT  ", str, "Unnamed");

  QCALLOC(wcs, wcsstruct, 1);
  if (tab->naxis > NAXIS)
    {
    warning("Maximum number of dimensions supported by this version of the ",
	"software exceeded\n");
    tab->naxis = 2;
    }

  wcs->naxis = naxis = tab->naxis;
  QCALLOC(wcs->projp, double, naxis*100);

  for (l=0; l<naxis; l++)
    {
    wcs->naxisn[l] = tab->naxisn[l];
    sprintf(str, "CTYPE%-3d", l+1);
    FITSREADS(buf, str, str, "");
    strncpy(wcs->ctype[l], str, 8);
    sprintf(str, "CUNIT%-3d", l+1);
    FITSREADS(buf, str, str, "deg");
    strncpy(wcs->cunit[l], str, 32);
    sprintf(str, "CRVAL%-3d", l+1);
    FITSREADF(buf, str, wcs->crval[l], 0.0);
    sprintf(str, "CRPIX%-3d", l+1);
    FITSREADF(buf, str, wcs->crpix[l], 1.0);
    sprintf(str, "CDELT%-3d", l+1);
    FITSREADF(buf, str, wcs->cdelt[l], 1.0);
    sprintf(str, "CRDER%-3d", l+1);
    FITSREADF(buf, str, wcs->crder[l], 0.0);
    sprintf(str, "CSYER%-3d", l+1);
    FITSREADF(buf, str, wcs->csyer[l], 0.0);
    if (fabs(wcs->cdelt[l]) < 1e-30)
      error(EXIT_FAILURE, "*Error*: CDELT parameters out of range in ",
	filename);
    }

  if (fitsfind(buf, "CD?_????")!=RETURN_ERROR)
    {
/*-- If CD keywords exist, use them for the linear mapping terms... */
    for (l=0; l<naxis; l++)
      for (j=0; j<naxis; j++)
        {
        sprintf(str, "CD%d_%d", l+1, j+1);
        FITSREADF(buf, str, wcs->cd[l*naxis+j], l==j?1.0:0.0)
        }
    }
  else if (fitsfind(buf, "PC00?00?")!=RETURN_ERROR)
/*-- ...If PC keywords exist, use them for the linear mapping terms... */
    for (l=0; l<naxis; l++)
      for (j=0; j<naxis; j++)
        {
        sprintf(str, "PC%03d%03d", l+1, j+1);
        FITSREADF(buf, str, wcs->cd[l*naxis+j], l==j?1.0:0.0)
        wcs->cd[l*naxis+j] *= wcs->cdelt[l];
        }
  else
    {
/*-- ...otherwise take the obsolete CROTA2 parameter */
    FITSREADF(buf, "CROTA2  ", drota, 0.0)
    wcs->cd[3] = wcs->cd[0] = cos(drota*DEG);
    wcs->cd[1] = -(wcs->cd[2] = sin(drota*DEG));
    wcs->cd[0] *= wcs->cdelt[0];
    wcs->cd[2] *= wcs->cdelt[0];
    wcs->cd[1] *= wcs->cdelt[1];
    wcs->cd[3] *= wcs->cdelt[1];
    }
  QCALLOC(wcs->wcsprm, struct wcsprm, 1);

/* Test if the WCS is recognized and a celestial pair is found */
  if (!wcsset(wcs->naxis,(const char(*)[9])wcs->ctype, wcs->wcsprm)
	&& wcs->wcsprm->flag<999)
    {
     char	*pstr;
     double	date;
     int	biss, dpar[3];

/*-- Coordinate reference frame */
/*-- Search for an observation date expressed in Julian days */
    FITSREADF(buf, "MJD-OBS ", date, -1.0);
/*-- Precession date (defined from Ephemerides du Bureau des Longitudes) */
/*-- in Julian years from 2000.0 */
    if (date>0.0)
      wcs->obsdate = 2000.0 - (MJD2000 - date)/365.25;
    else
      {
/*---- Search for an observation date expressed in "civilian" format */
449
      FITSREADS(buf, "DATE-OBS", str, "");
Emmanuel Bertin's avatar
Emmanuel Bertin committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
      if (*str)
        {
/*------ Decode DATE-OBS format: DD/MM/YY or YYYY-MM-DD */
        for (l=0; l<3 && (pstr = strtok_r(l?NULL:str,"/- ", &ptr)); l++)
          dpar[l] = atoi(pstr);
        if (l<3 || !dpar[0] || !dpar[1] || !dpar[2])
          {
/*-------- If DATE-OBS value corrupted or incomplete, assume 2000-1-1 */
          warning("Invalid DATE-OBS value in header: ", str);
          dpar[0] = 2000; dpar[1] = 1; dpar[2] = 1;
          }
        else if (strchr(str, '/') && dpar[0]<32 && dpar[2]<100)
          {
          j = dpar[0];
          dpar[0] = dpar[2]+1900;
          dpar[2] = j;
          }

        biss = (dpar[0]%4)?0:1;
/*------ Convert date to MJD */
        date = -678956 + (365*dpar[0]+dpar[0]/4) - biss
			+ ((dpar[1]>2?((int)((dpar[1]+1)*30.6)-63+biss)
		:((dpar[1]-1)*(63+biss))/2) + dpar[2]);
        wcs->obsdate = 2000.0 - (MJD2000 - date)/365.25;
        }
      else
/*------ Well if really no date is found */
        wcs->obsdate = 0.0;
      }

    FITSREADF(buf, "EPOCH", wcs->epoch, 2000.0);
    FITSREADF(buf, "EQUINOX", wcs->equinox, wcs->epoch);
482
483
    if (fitsread(buf, "RADESYS", str, H_STRING,T_STRING) != RETURN_OK)
      FITSREADS(buf, "RADECSYS", str,
Emmanuel Bertin's avatar
Emmanuel Bertin committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
	wcs->equinox >= 2000.0? "ICRS" : (wcs->equinox<1984.0? "FK4" : "FK5"));
    if (!strcmp(str, "ICRS"))
      wcs->radecsys = RDSYS_ICRS;
    else if (!strcmp(str, "FK5"))
      wcs->radecsys = RDSYS_FK5;
    else if (!strcmp(str, "FK4"))
      {
      if (wcs->equinox == 2000.0)
        {
        FITSREADF(buf, "EPOCH  ", wcs->equinox, 1950.0);
        FITSREADF(buf, "EQUINOX", wcs->equinox, wcs->equinox);
        }
      wcs->radecsys = RDSYS_FK4;
      warning("FK4 precession formulae not yet implemented:\n",
		"            Astrometry may be slightly inaccurate");
      }
    else if (!strcmp(str, "FK4-NO-E"))
      {
      if (wcs->equinox == 2000.0)
        {
        FITSREADF(buf, "EPOCH", wcs->equinox, 1950.0);
        FITSREADF(buf, "EQUINOX", wcs->equinox, wcs->equinox);
        }
      wcs->radecsys = RDSYS_FK4_NO_E;
      warning("FK4 precession formulae not yet implemented:\n",
		"            Astrometry may be slightly inaccurate");
      }
    else if (!strcmp(str, "GAPPT"))
      {
      wcs->radecsys = RDSYS_GAPPT;
      warning("GAPPT reference frame not yet implemented:\n",
		"            Astrometry may be slightly inaccurate");
      }
    else
      {
      warning("Using ICRS instead of unknown astrometric reference frame: ",
		str);
      wcs->radecsys = RDSYS_ICRS;
      }

/*-- Projection parameters */
    if (!strcmp(wcs->wcsprm->pcode, "TNX"))
      {
/*---- IRAF's TNX projection: decode these #$!?@#!! WAT parameters */
      if (fitsfind(buf, "WAT?????") != RETURN_ERROR)
        {
/*------ First we need to concatenate strings */
        pstr = wstr1;
        sprintf(str, "WAT1_001");
        for (j=2; fitsread(buf,str,pstr,H_STRINGS,T_STRING)==RETURN_OK; j++)
	  {
          sprintf(str, "WAT1_%03d", j);
          pstr += strlen(pstr);
	  }
        pstr = wstr2;
        sprintf(str, "WAT2_001");
        for (j=2; fitsread(buf,str,pstr,H_STRINGS,T_STRING)==RETURN_OK; j++)
	  {
          sprintf(str, "WAT2_%03d", j);
          pstr += strlen(pstr);
	  }
/*------ LONGPOLE defaulted to 180 deg if not found */
        if ((pstr = strstr(wstr1, "longpole"))
		|| (pstr = strstr(wstr2, "longpole")))
          pstr = strpbrk(pstr, "1234567890-+.");
        wcs->longpole = pstr? atof(pstr) : 999.0;
        wcs->latpole = 999.0;
/*------ RO defaulted to 180/PI if not found */
        if ((pstr = strstr(wstr1, "ro"))
		|| (pstr = strstr(wstr2, "ro")))
          pstr = strpbrk(pstr, "1234567890-+.");
        wcs->r0 = pstr? atof(pstr) : 0.0;
/*------ Read the remaining TNX parameters */
        if ((pstr = strstr(wstr1, "lngcor"))
		|| (pstr = strstr(wstr2, "lngcor")))
          wcs->tnx_lngcor = read_tnxaxis(pstr);
        if (!wcs->tnx_lngcor)
          error(EXIT_FAILURE, "*Error*: incorrect TNX parameters in ",
			filename);
        if ((pstr = strstr(wstr1, "latcor"))
		|| (pstr = strstr(wstr2, "latcor")))
          wcs->tnx_latcor = read_tnxaxis(pstr);
        if (!wcs->tnx_latcor)
          error(EXIT_FAILURE, "*Error*: incorrect TNX parameters in ",
			filename);
        }
      }
    else
      {
      FITSREADF(buf, "LONGPOLE", wcs->longpole, 999.0);
      FITSREADF(buf, "LATPOLE ", wcs->latpole, 999.0);
/*---- Old convention */
      if (fitsfind(buf, "PROJP???") != RETURN_ERROR)
        for (j=0; j<10; j++)
          {
          sprintf(str, "PROJP%-3d", j);
          FITSREADF(buf, str, wcs->projp[j], 0.0);
          }
/*---- New convention */
      if (fitsfind(buf, "PV?_????") != RETURN_ERROR)
        for (l=0; l<naxis; l++)
          for (j=0; j<100; j++)
            {
587
            sprintf(str, "PV%d_%d ", l+1, j);
Emmanuel Bertin's avatar
Emmanuel Bertin committed
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
            FITSREADF(buf, str, wcs->projp[j+l*100], 0.0);
            }
      }
    }

/* Initialize other WCS structures */
  init_wcs(wcs);

/* Find the range of coordinates */
  range_wcs(wcs);
/* Invert projection corrections */
  invert_wcs(wcs);

#undef FITSREADF
#undef FITSREADI
#undef FITSREADS

  return wcs;
  }


/******* write_wcs ***********************************************************
PROTO	void write_wcs(tabstruct *tab, wcsstruct *wcs)
PURPOSE	Write WCS (World Coordinate System) info in the FITS header.
INPUT	tab structure,
	WCS structure.
OUTPUT	-.
NOTES	-.
AUTHOR	E. Bertin (IAP)
617
VERSION	01/09/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
618
619
620
621
 ***/
void	write_wcs(tabstruct *tab, wcsstruct *wcs)

  {
622
   double	mjd;
Emmanuel Bertin's avatar
Emmanuel Bertin committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
   char		str[MAXCHARS];
   int		j, l, naxis;

  naxis = wcs->naxis;
  addkeywordto_head(tab, "BITPIX  ", "Bits per pixel");
  fitswrite(tab->headbuf, "BITPIX  ", &tab->bitpix, H_INT, T_LONG);
  addkeywordto_head(tab, "NAXIS   ", "Number of axes");
  fitswrite(tab->headbuf, "NAXIS   ", &wcs->naxis, H_INT, T_LONG);
  for (l=0; l<naxis; l++)
    {
    sprintf(str, "NAXIS%-3d", l+1);
    addkeywordto_head(tab, str, "Number of pixels along this axis");
    fitswrite(tab->headbuf, str, &wcs->naxisn[l], H_INT, T_LONG);
    }
  addkeywordto_head(tab, "EQUINOX ", "Mean equinox");
  fitswrite(tab->headbuf, "EQUINOX ", &wcs->equinox, H_FLOAT, T_DOUBLE);
639
640
641
642
643
644
  if (wcs->obsdate!=0.0)
    {
    mjd = (wcs->obsdate-2000.0)*365.25 + MJD2000;
    addkeywordto_head(tab, "MJD-OBS ", "Modified Julian date at start");
    fitswrite(tab->headbuf, "MJD-OBS ", &mjd, H_EXPO,T_DOUBLE);
    }
Emmanuel Bertin's avatar
Emmanuel Bertin committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
  addkeywordto_head(tab, "RADECSYS", "Astrometric system");
  switch(wcs->radecsys)
    {
    case RDSYS_ICRS:
      fitswrite(tab->headbuf, "RADECSYS", "ICRS", H_STRING, T_STRING);
      break;
    case RDSYS_FK5:
      fitswrite(tab->headbuf, "RADECSYS", "FK5", H_STRING, T_STRING);
      break;
    case RDSYS_FK4:
      fitswrite(tab->headbuf, "RADECSYS", "FK4", H_STRING, T_STRING);
      break;
    case RDSYS_FK4_NO_E:
      fitswrite(tab->headbuf, "RADECSYS", "FK4-NO-E", H_STRING, T_STRING);
      break;
    case RDSYS_GAPPT:
      fitswrite(tab->headbuf, "RADECSYS", "GAPPT", H_STRING, T_STRING);
      break;
    default:
      error(EXIT_FAILURE, "*Error*: unknown RADECSYS type in write_wcs()", "");
    }
  for (l=0; l<naxis; l++)
    {
    sprintf(str, "CTYPE%-3d", l+1);
    addkeywordto_head(tab, str, "WCS projection type for this axis");
    fitswrite(tab->headbuf, str, wcs->ctype[l], H_STRING, T_STRING);
    sprintf(str, "CUNIT%-3d", l+1);
    addkeywordto_head(tab, str, "Axis unit");
    fitswrite(tab->headbuf, str, wcs->cunit[l], H_STRING, T_STRING);
    sprintf(str, "CRVAL%-3d", l+1);
    addkeywordto_head(tab, str, "World coordinate on this axis");
    fitswrite(tab->headbuf, str, &wcs->crval[l], H_EXPO, T_DOUBLE);
    sprintf(str, "CRPIX%-3d", l+1);
    addkeywordto_head(tab, str, "Reference pixel on this axis");
    fitswrite(tab->headbuf, str, &wcs->crpix[l], H_EXPO, T_DOUBLE);
    for (j=0; j<naxis; j++)
      {
      sprintf(str, "CD%d_%d", l+1, j+1);
      addkeywordto_head(tab, str, "Linear projection matrix");
      fitswrite(tab->headbuf, str, &wcs->cd[l*naxis+j], H_EXPO, T_DOUBLE);
      }
    for (j=0; j<100; j++)
      if (wcs->projp[j+100*l] != 0.0)
        {
        sprintf(str, "PV%d_%d", l+1, j);
        addkeywordto_head(tab, str, "Projection distortion parameter");
        fitswrite(tab->headbuf, str, &wcs->projp[j+100*l], H_EXPO, T_DOUBLE);
        }
    }

/* Update the tab data */
  readbasic_head(tab);

  return;
  }


/******* end_wcs **************************************************************
PROTO	void end_wcs(wcsstruct *wcs)
PURPOSE	Free WCS (World Coordinate System) infos.
INPUT	WCS structure.
OUTPUT	-.
NOTES	.
AUTHOR	E. Bertin (IAP)
VERSION	24/05/2000
 ***/
void	end_wcs(wcsstruct *wcs)

  {
  if (wcs)
    {
    if (wcs->lin)
      {
      free(wcs->lin->cdelt);
      free(wcs->lin->crpix);
      free(wcs->lin->pc);
      free(wcs->lin->piximg);
      free(wcs->lin->imgpix);
      free(wcs->lin);
      }
    free(wcs->cel);
    free(wcs->prj);
    free(wcs->wcsprm);
    free_tnxaxis(wcs->tnx_lngcor);
    free_tnxaxis(wcs->tnx_latcor);
    poly_end(wcs->inv_x);
    poly_end(wcs->inv_y);
    free(wcs->projp);
    free(wcs);
    }

  return;
  }


/******* wcs_supproj *********************************************************
PROTO	int wcs_supproj(char *name)
PURPOSE	Tell if a projection system is supported or not.
INPUT	Proposed projection code name.
OUTPUT	RETURN_OK if projection is supported, RETURN_ERROR otherwise.
NOTES	-.
AUTHOR	E. Bertin (IAP)
VERSION	24/05/2000
 ***/
int	wcs_supproj(char *name)

  {
   char	projcode[26][5] =
	{"AZP", "TAN", "SIN", "STG", "ARC", "ZPN", "ZEA", "AIR", "CYP", "CAR",
	"MER", "CEA", "COP", "COD", "COE", "COO", "BON", "PCO", "GLS", "PAR",
	"AIT", "MOL", "CSC", "QSC", "TSC", "NONE"};
   int	i;

  for (i=0; i<26; i++)
    if (!strcmp(name, projcode[i]))
      return RETURN_OK;

  return RETURN_ERROR;
  }


/******* invert_wcs ***********************************************************
PROTO	void invert_wcs(wcsstruct *wcs)
PURPOSE	Invert WCS projection mapping (using a polynomial).
INPUT	WCS structure.
OUTPUT	-.
NOTES	.
AUTHOR	E. Bertin (IAP)
VERSION	06/11/2003
 ***/
void	invert_wcs(wcsstruct *wcs)

  {
   polystruct		*poly;
   double		pixin[NAXIS],raw[NAXIS],rawmin[NAXIS];
   double		*outpos,*outpost, *lngpos,*lngpost,
			*latpos,*latpost,
			lngstep,latstep, rawsize, epsilon;
   int			group[] = {1,1};
				/* Don't ask, this is needed by poly_init()! */
   int		i,j,lng,lat,deg, tnxflag, maxflag;

/* Check first that inversion is not straightforward */
  lng = wcs->wcsprm->lng;
  lat = wcs->wcsprm->lat;
  if (!strcmp(wcs->wcsprm->pcode, "TNX"))
    tnxflag = 1;
  else if (!strcmp(wcs->wcsprm->pcode, "TAN")
		&& (wcs->projp[1+lng*100] || wcs->projp[1+lat*100]))
    tnxflag = 0;
  else
    return;

/* We define x as "longitude" and y as "latitude" projections */
/* We assume that PCxx cross-terms with additional dimensions are small */
/* Sample the whole image with a regular grid */
  lngstep = wcs->naxisn[lng]/(WCS_NGRIDPOINTS-1.0);
  latstep = wcs->naxisn[lat]/(WCS_NGRIDPOINTS-1.0);
  QMALLOC(outpos, double, 2*WCS_NGRIDPOINTS2);
  QMALLOC(lngpos, double, WCS_NGRIDPOINTS2);
  QMALLOC(latpos, double, WCS_NGRIDPOINTS2);
  for (i=0; i<wcs->naxis; i++)
    raw[i] = rawmin[i] = 0.5;
  outpost = outpos;
  lngpost = lngpos;
  latpost = latpos;
  for (j=WCS_NGRIDPOINTS; j--; raw[lat]+=latstep)
    {
    raw[lng] = rawmin[lng];
    for (i=WCS_NGRIDPOINTS; i--; raw[lng]+=lngstep)
      {
      if (linrev(raw, wcs->lin, pixin))
        error(EXIT_FAILURE, "*Error*: incorrect linear conversion in ",
		wcs->wcsprm->pcode);
      *(lngpost++) = pixin[lng];
      *(latpost++) = pixin[lat];
      if (tnxflag)
        {
        *(outpost++) = pixin[lng]
			+raw_to_tnxaxis(wcs->tnx_lngcor,pixin[lng],pixin[lat]);
        *(outpost++) = pixin[lat]
			+raw_to_tnxaxis(wcs->tnx_latcor,pixin[lng],pixin[lat]);
        }
      else
        {
        raw_to_pv(wcs->prj,pixin[lng],pixin[lat], outpost, outpost+1);
        outpost += 2;
        }
      }
    }

/* Invert "longitude" */
/* Compute the extent of the pixel in reduced projected coordinates */
  linrev(rawmin, wcs->lin, pixin);
  pixin[lng] += ARCSEC/DEG;
  linfwd(pixin, wcs->lin, raw);
  rawsize = sqrt((raw[lng]-rawmin[lng])*(raw[lng]-rawmin[lng])
		+(raw[lat]-rawmin[lat])*(raw[lat]-rawmin[lat]))*DEG/ARCSEC;
  if (!rawsize)
    error(EXIT_FAILURE, "*Error*: incorrect linear conversion in ",
		wcs->wcsprm->pcode);
  epsilon = WCS_INVACCURACY/rawsize;
/* Find the lowest degree polynom */
  poly = NULL;  /* to avoid gcc -Wall warnings */
  maxflag = 1;
  for (deg=1; deg<=WCS_INVMAXDEG && maxflag; deg++)
    {
    if (deg>1)
      poly_end(poly);
    poly = poly_init(group, 2, &deg, 1);
    poly_fit(poly, outpos, lngpos, NULL, WCS_NGRIDPOINTS2, NULL);
    maxflag = 0;
    outpost = outpos;
    lngpost = lngpos;
    for (i=WCS_NGRIDPOINTS2; i--; outpost+=2)
      if (fabs(poly_func(poly, outpost)-*(lngpost++))>epsilon)
        {
        maxflag = 1;
        break;
        }
    }
  if (maxflag)
    warning("Significant inaccuracy likely to occur in projection","");
/* Now link the created structure */
  wcs->prj->inv_x = wcs->inv_x = poly;

/* Invert "latitude" */
/* Compute the extent of the pixel in reduced projected coordinates */
  linrev(rawmin, wcs->lin, pixin);
  pixin[lat] += ARCSEC/DEG;
  linfwd(pixin, wcs->lin, raw);
  rawsize = sqrt((raw[lng]-rawmin[lng])*(raw[lng]-rawmin[lng])
		+(raw[lat]-rawmin[lat])*(raw[lat]-rawmin[lat]))*DEG/ARCSEC;
  if (!rawsize)
    error(EXIT_FAILURE, "*Error*: incorrect linear conversion in ",
		wcs->wcsprm->pcode);
  epsilon = WCS_INVACCURACY/rawsize;
/* Find the lowest degree polynom */
  maxflag = 1;
  for (deg=1; deg<=WCS_INVMAXDEG && maxflag; deg++)
    {
    if (deg>1)
      poly_end(poly);
    poly = poly_init(group, 2, &deg, 1);
    poly_fit(poly, outpos, latpos, NULL, WCS_NGRIDPOINTS2, NULL);
    maxflag = 0;
    outpost = outpos;
    latpost = latpos;
    for (i=WCS_NGRIDPOINTS2; i--; outpost+=2)
      if (fabs(poly_func(poly, outpost)-*(latpost++))>epsilon)
        {
        maxflag = 1;
        break;
        }
    }
  if (maxflag)
    warning("Significant inaccuracy likely to occur in projection","");
/* Now link the created structure */
  wcs->prj->inv_y = wcs->inv_y = poly;

/* Free memory */
  free(outpos);
  free(lngpos);
  free(latpos);

  return;
  }


/******* range_wcs ***********************************************************
PROTO	void range_wcs(wcsstruct *wcs)
PURPOSE	Find roughly the range of WCS coordinates on all axes,
	and typical pixel scales.
INPUT	WCS structure.
OUTPUT	-.
NOTES	.
AUTHOR	E. Bertin (IAP)
922
VERSION	24/08/2010
Emmanuel Bertin's avatar
Emmanuel Bertin committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
 ***/
void	range_wcs(wcsstruct *wcs)

  {
   double		step[NAXIS], raw[NAXIS], rawmin[NAXIS],
			world[NAXIS], world2[NAXIS];
   double		*worldmin, *worldmax, *scale, *worldc,
			rad, radmax, lc;
   int			linecount[NAXIS];
   int			i,j, naxis, npoints, lng,lat;

  naxis = wcs->naxis;

/* World range */
  npoints = 1;
  worldmin = wcs->wcsmin;
  worldmax = wcs->wcsmax;
/* First, find the center and use it as a reference point for lng */
  lng = wcs->lng;
  lat = wcs->lat;
  for (i=0; i<naxis; i++)
    raw[i] = (wcs->naxisn[i]+1.0)/2.0;
  if (raw_to_wcs(wcs, raw, world))
    {
/*-- Oops no mapping there! So explore the image in an increasingly large */
/*-- domain to find  a better "center" (now we know there must be angular */
/*-- coordinates) */
    for (j=0; j<100; j++)
      {
      for (i=0; i<naxis; i++)
        raw[i] += wcs->naxisn[i]/100.0*(0.5-(double)rand()/RAND_MAX);      
      if (!raw_to_wcs(wcs, raw, world))
        break;
      }
    }

  if (lng!=lat)
960
    lc = world[lng];
Emmanuel Bertin's avatar
Emmanuel Bertin committed
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
  else
    {
    lc = 0.0;   /* to avoid gcc -Wall warnings */
    lng = -1;
    }

/* Pixel scales at image center */
  scale = wcs->wcsscale;
  for (i=0; i<naxis; i++)
    {
    if ((i==lng || i==lat) && lng!=lat)
      wcs->pixscale = scale[i] = sqrt(wcs_scale(wcs, raw));
    else
      {
      raw[i] += 1.0;
      raw_to_wcs(wcs, raw, world2);
      scale[i] = fabs(world2[i] - world[i]);
      raw[i] -= 1.0;
      if (lng==lat)
        wcs->pixscale = scale[i];
      }
    wcs->wcsscalepos[i] = world[i];
    }


/* Find "World limits" */
  for (i=0; i<naxis; i++)
    {
    raw[i] = rawmin[i] = 0.5;
    step[i] = wcs->naxisn[i]/(WCS_NRANGEPOINTS-1.0);
    npoints *= WCS_NRANGEPOINTS;
    worldmax[i] = -(worldmin[i] = 1e31);
    linecount[i] = 0;
    }

  radmax = 0.0;
  worldc = wcs->wcsscalepos;

  for (j=npoints; j--;)
    {
For faster browsing, not all history is shown. View entire blame