lmdemo.c 26.3 KB
Newer Older
Emmanuel Bertin's avatar
Emmanuel Bertin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/////////////////////////////////////////////////////////////////////////////////
// 
//  Demonstration driver program for the Levenberg - Marquardt minimization
//  algorithm
//  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr)
//  Institute of Computer Science, Foundation for Research & Technology - Hellas
//  Heraklion, Crete, Greece.
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
/////////////////////////////////////////////////////////////////////////////////

/******************************************************************************** 
 * Levenberg-Marquardt minimization demo driver. Only the double precision versions
 * are tested here. See the Meyer case for an example of verifying the Jacobian 
 ********************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>

#include "lm.h"

#ifndef LM_DBL_PREC
#error Demo program assumes that levmar has been compiled with double precision, see LM_DBL_PREC!
#endif


/* Sample functions to be minimized with LM and their Jacobians.
 * More test functions at http://www.csit.fsu.edu/~burkardt/f_src/test_nls/test_nls.html
 * Check also the CUTE problems collection at ftp://ftp.numerical.rl.ac.uk/pub/cute/;
 * CUTE is searchable through http://numawww.mathematik.tu-darmstadt.de:8081/opti/select.html
 * CUTE problems can also be solved through the AMPL web interface at http://www.ampl.com/TRYAMPL/startup.html
 *
 * Nonlinear optimization models in AMPL can be found at http://www.princeton.edu/~rvdb/ampl/nlmodels/
 */

#define ROSD 105.0

/* Rosenbrock function, global minimum at (1, 1) */
void ros(double *p, double *x, int m, int n, void *data)
{
register int i;

  for(i=0; i<n; ++i)
    x[i]=((1.0-p[0])*(1.0-p[0]) + ROSD*(p[1]-p[0]*p[0])*(p[1]-p[0]*p[0]));
}

void jacros(double *p, double *jac, int m, int n, void *data)
{
register int i, j;

  for(i=j=0; i<n; ++i){
    jac[j++]=(-2 + 2*p[0]-4*ROSD*(p[1]-p[0]*p[0])*p[0]);
    jac[j++]=(2*ROSD*(p[1]-p[0]*p[0]));
  }
}


#define MODROSLAM 1E02
/* Modified Rosenbrock problem, global minimum at (1, 1) */
void modros(double *p, double *x, int m, int n, void *data)
{
register int i;

  for(i=0; i<n; i+=3){
    x[i]=10*(p[1]-p[0]*p[0]);
	  x[i+1]=1.0-p[0];
	  x[i+2]=MODROSLAM;
  }
}

void jacmodros(double *p, double *jac, int m, int n, void *data)
{
register int i, j;

  for(i=j=0; i<n; i+=3){
    jac[j++]=-20.0*p[0];
	  jac[j++]=10.0;

	  jac[j++]=-1.0;
	  jac[j++]=0.0;

	  jac[j++]=0.0;
	  jac[j++]=0.0;
  }
}


/* Powell's function, minimum at (0, 0) */
void powell(double *p, double *x, int m, int n, void *data)
{
register int i;

  for(i=0; i<n; i+=2){
    x[i]=p[0];
    x[i+1]=10.0*p[0]/(p[0]+0.1) + 2*p[1]*p[1];
  }
}

void jacpowell(double *p, double *jac, int m, int n, void *data)
{
register int i, j;

  for(i=j=0; i<n; i+=2){
    jac[j++]=1.0;
    jac[j++]=0.0;

    jac[j++]=1.0/((p[0]+0.1)*(p[0]+0.1));
    jac[j++]=4.0*p[1];
  }
}

/* Wood's function, minimum at (1, 1, 1, 1) */
void wood(double *p, double *x, int m, int n, void *data)
{
register int i;

  for(i=0; i<n; i+=6){
    x[i]=10.0*(p[1] - p[0]*p[0]);
    x[i+1]=1.0 - p[0];
    x[i+2]=sqrt(90.0)*(p[3] - p[2]*p[2]);
    x[i+3]=1.0 - p[2];
    x[i+4]=sqrt(10.0)*(p[1]+p[3] - 2.0);
    x[i+5]=(p[1] - p[3])/sqrt(10.0);
  }
}

/* Meyer's (reformulated) problem, minimum at (2.48, 6.18, 3.45) */
void meyer(double *p, double *x, int m, int n, void *data)
{
register int i;
double ui;

	for(i=0; i<n; ++i){
		ui=0.45+0.05*i;
		x[i]=p[0]*exp(10.0*p[1]/(ui+p[2]) - 13.0);
	}
}

void jacmeyer(double *p, double *jac, int m, int n, void *data)
{
register int i, j;
double ui, tmp;

  for(i=j=0; i<n; ++i){
	  ui=0.45+0.05*i;
	  tmp=exp(10.0*p[1]/(ui+p[2]) - 13.0);

	  jac[j++]=tmp;
	  jac[j++]=10.0*p[0]*tmp/(ui+p[2]);
	  jac[j++]=-10.0*p[0]*p[1]*tmp/((ui+p[2])*(ui+p[2]));
  }
}

/* helical valley function, minimum at (1.0, 0.0, 0.0) */
#ifndef M_PI
#define M_PI   3.14159265358979323846  /* pi */
#endif

void helval(double *p, double *x, int m, int n, void *data)
{
double theta;

  if(p[0]<0.0)
     theta=atan(p[1]/p[0])/(2.0*M_PI) + 0.5;
  else if(0.0<p[0])
     theta=atan(p[1]/p[0])/(2.0*M_PI);
  else 
    theta=(p[1]>=0)? 0.25 : -0.25;

  x[0]=10.0*(p[2] - 10.0*theta);
  x[1]=10.0*(sqrt(p[0]*p[0] + p[1]*p[1]) - 1.0);
  x[2]=p[2];
}

void jachelval(double *p, double *jac, int m, int n, void *data)
{
register int i=0;
double tmp;

  tmp=p[0]*p[0] + p[1]*p[1];

  jac[i++]=50.0*p[1]/(M_PI*tmp);
  jac[i++]=-50.0*p[0]/(M_PI*tmp);
  jac[i++]=10.0;

  jac[i++]=10.0*p[0]/sqrt(tmp);
  jac[i++]=10.0*p[1]/sqrt(tmp);
  jac[i++]=0.0;

  jac[i++]=0.0;
  jac[i++]=0.0;
  jac[i++]=1.0;
}

/* Boggs - Tolle problem 3 (linearly constrained), minimum at (-0.76744, 0.25581, 0.62791, -0.11628, 0.25581)
 * constr1: p[0] + 3*p[1] = 0;
 * constr2: p[2] + p[3] - 2*p[4] = 0;
 * constr3: p[1] - p[4] = 0;
 */
void bt3(double *p, double *x, int m, int n, void *data)
{
register int i;
double t1, t2, t3, t4;

  t1=p[0]-p[1];
  t2=p[1]+p[2]-2.0;
  t3=p[3]-1.0;
  t4=p[4]-1.0;

  for(i=0; i<n; ++i)
    x[i]=t1*t1 + t2*t2 + t3*t3 + t4*t4;
}

void jacbt3(double *p, double *jac, int m, int n, void *data)
{
register int i, j;
double t1, t2, t3, t4;

  t1=p[0]-p[1];
  t2=p[1]+p[2]-2.0;
  t3=p[3]-1.0;
  t4=p[4]-1.0;

  for(i=j=0; i<n; ++i){
    jac[j++]=2.0*t1;
    jac[j++]=2.0*(t2-t1);
    jac[j++]=2.0*t2;
    jac[j++]=2.0*t3;
    jac[j++]=2.0*t4;
  }
}

/* Hock - Schittkowski problem 28 (linearly constrained), minimum at (0.5, -0.5, 0.5)
 * constr1: p[0] + 2*p[1] + 3*p[2] = 1;
 */
void hs28(double *p, double *x, int m, int n, void *data)
{
register int i;
double t1, t2;

  t1=p[0]+p[1];
  t2=p[1]+p[2];

  for(i=0; i<n; ++i)
    x[i]=t1*t1 + t2*t2;
}

void jachs28(double *p, double *jac, int m, int n, void *data)
{
register int i, j;
double t1, t2;

  t1=p[0]+p[1];
  t2=p[1]+p[2];

  for(i=j=0; i<n; ++i){
    jac[j++]=2.0*t1;
    jac[j++]=2.0*(t1+t2);
    jac[j++]=2.0*t2;
  }
}

/* Hock - Schittkowski problem 48 (linearly constrained), minimum at (1.0, 1.0, 1.0, 1.0, 1.0)
 * constr1: sum {i in 0..4} p[i] = 5;
 * constr2: p[2] - 2*(p[3]+p[4]) = -3;
 */
void hs48(double *p, double *x, int m, int n, void *data)
{
register int i;
double t1, t2, t3;

  t1=p[0]-1.0;
  t2=p[1]-p[2];
  t3=p[3]-p[4];

  for(i=0; i<n; ++i)
    x[i]=t1*t1 + t2*t2 + t3*t3;
}

void jachs48(double *p, double *jac, int m, int n, void *data)
{
register int i, j;
double t1, t2, t3;

  t1=p[0]-1.0;
  t2=p[1]-p[2];
  t3=p[3]-p[4];

  for(i=j=0; i<n; ++i){
    jac[j++]=2.0*t1;
    jac[j++]=2.0*t2;
    jac[j++]=-2.0*t2;
    jac[j++]=2.0*t3;
    jac[j++]=-2.0*t3;
  }
}

/* Hock - Schittkowski problem 51 (linearly constrained), minimum at (1.0, 1.0, 1.0, 1.0, 1.0)
 * constr1: p[0] + 3*p[1] = 4;
 * constr2: p[2] + p[3] - 2*p[4] = 0;
 * constr3: p[1] - p[4] = 0;
 */
void hs51(double *p, double *x, int m, int n, void *data)
{
register int i;
double t1, t2, t3, t4;

  t1=p[0]-p[1];
  t2=p[1]+p[2]-2.0;
  t3=p[3]-1.0;
  t4=p[4]-1.0;

  for(i=0; i<n; ++i)
    x[i]=t1*t1 + t2*t2 + t3*t3 + t4*t4;
}

void jachs51(double *p, double *jac, int m, int n, void *data)
{
register int i, j;
double t1, t2, t3, t4;

  t1=p[0]-p[1];
  t2=p[1]+p[2]-2.0;
  t3=p[3]-1.0;
  t4=p[4]-1.0;

  for(i=j=0; i<n; ++i){
    jac[j++]=2.0*t1;
    jac[j++]=2.0*(t2-t1);
    jac[j++]=2.0*t2;
    jac[j++]=2.0*t3;
    jac[j++]=2.0*t4;
  }
}

/* Hock - Schittkowski problem 01 (box constrained), minimum at (1.0, 1.0)
 * constr1: p[1]>=-1.5;
 */
void hs01(double *p, double *x, int m, int n, void *data)
{
double t;

  t=p[0]*p[0];
  x[0]=10.0*(p[1]-t);
  x[1]=1.0-p[0];
}

void jachs01(double *p, double *jac, int m, int n, void *data)
{
register int j=0;

  jac[j++]=-20.0*p[0];
  jac[j++]=10.0;

  jac[j++]=-1.0;
  jac[j++]=0.0;
}

/* Hock - Schittkowski MODIFIED problem 21 (box constrained), minimum at (2.0, 0.0)
 * constr1: 2 <= p[0] <=50;
 * constr2: -50 <= p[1] <=50;
 *
 * Original HS21 has the additional constraint 10*p[0] - p[1] >= 10; which is inactive
 * at the solution, so it is dropped here.
 */
void hs21(double *p, double *x, int m, int n, void *data)
{
  x[0]=p[0]/10.0;
  x[1]=p[1];
}

void jachs21(double *p, double *jac, int m, int n, void *data)
{
register int j=0;

  jac[j++]=0.1;
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=1.0;
}

/* Problem hatfldb (box constrained), minimum at (0.947214, 0.8, 0.64, 0.4096)
 * constri: p[i]>=0.0; (i=1..4)
 * constr5: p[1]<=0.8;
 */
void hatfldb(double *p, double *x, int m, int n, void *data)
{
register int i;

  x[0]=p[0]-1.0;

  for(i=1; i<m; ++i)
     x[i]=p[i-1]-sqrt(p[i]);
}

void jachatfldb(double *p, double *jac, int m, int n, void *data)
{
register int j=0;

  jac[j++]=1.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=1.0;
  jac[j++]=-0.5/sqrt(p[1]);
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=1.0;
  jac[j++]=-0.5/sqrt(p[2]);
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=1.0;
  jac[j++]=-0.5/sqrt(p[3]);
}

/* Problem hatfldc (box constrained), minimum at (1.0, 1.0, 1.0, 1.0)
 * constri: p[i]>=0.0; (i=1..4)
 * constri+4: p[i]<=10.0; (i=1..4)
 */
void hatfldc(double *p, double *x, int m, int n, void *data)
{
register int i;

  x[0]=p[0]-1.0;

  for(i=1; i<m-1; ++i)
     x[i]=p[i-1]-sqrt(p[i]);

  x[m-1]=p[m-1]-1.0;
}

void jachatfldc(double *p, double *jac, int m, int n, void *data)
{
register int j=0;

  jac[j++]=1.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=1.0;
  jac[j++]=-0.5/sqrt(p[1]);
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=1.0;
  jac[j++]=-0.5/sqrt(p[2]);
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=1.0;
}

/* Hock - Schittkowski (modified) problem 52 (box/linearly constrained), minimum at (-0.09, 0.03, 0.25, -0.19, 0.03)
 * constr1: p[0] + 3*p[1] = 0;
 * constr2: p[2] +   p[3] - 2*p[4] = 0;
 * constr3: p[1] -   p[4] = 0;
 *
 * To the above 3 constraints, we add the following 5:
 * constr4: -0.09 <= p[0];
 * constr5:   0.0 <= p[1] <= 0.3;
 * constr6:          p[2] <= 0.25;
 * constr7:  -0.2 <= p[3] <= 0.3;
 * constr8:   0.0 <= p[4] <= 0.3;
 *
 */
void modhs52(double *p, double *x, int m, int n, void *data)
{
  x[0]=4.0*p[0]-p[1];
  x[1]=p[1]+p[2]-2.0;
  x[2]=p[3]-1.0;
  x[3]=p[4]-1.0;
}

void jacmodhs52(double *p, double *jac, int m, int n, void *data)
{
register int j=0;

  jac[j++]=4.0;
  jac[j++]=-1.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=1.0;
  jac[j++]=1.0;
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=1.0;
  jac[j++]=0.0;

  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=0.0;
  jac[j++]=1.0;
}

/* Schittkowski (modified) problem 235 (box/linearly constrained), minimum at (-1.725, 2.9, 0.725)
 * constr1: p[0] + p[2] = -1.0;
 *
 * To the above constraint, we add the following 2:
 * constr2: p[1] - 4*p[2] = 0;
 * constr3: 0.1 <= p[1] <= 2.9;
 * constr4: 0.7 <= p[2];
 *
 */
void mods235(double *p, double *x, int m, int n, void *data)
{
  x[0]=0.1*(p[0]-1.0);
  x[1]=p[1]-p[0]*p[0];
}

void jacmods235(double *p, double *jac, int m, int n, void *data)
{
register int j=0;

  jac[j++]=0.1;
  jac[j++]=0.0;
  jac[j++]=0.0;

  jac[j++]=-2.0*p[0];
  jac[j++]=1.0;
  jac[j++]=0.0;
}

/* Boggs and Tolle modified problem 7 (box/linearly constrained), minimum at (0.7, 0.49, 0.19, 1.19, -0.2)
 * We keep the original objective function & starting point and use the following constraints:
 *
 * subject to cons1:
 *  x[1]+x[2] - x[3] = 1.0;
 * subject to cons2:
 *   x[2] - x[4] + x[1] = 0.0;
 * subject to cons3:
 *   x[5] + x[1] = 0.5;
 * subject to cons4:
 *   x[5]>=-0.3;
 * subject to cons5:
 *    x[1]<=0.7;
 *
 */
void modbt7(double *p, double *x, int m, int n, void *data)
{
register int i;

  for(i=0; i<n; ++i)
    x[i]=100.0*(p[1]-p[0]*p[0])*(p[1]-p[0]*p[0]) + (p[0]-1.0)*(p[0]-1.0);
}

void jacmodbt7(double *p, double *jac, int m, int n, void *data)
{
register int i, j;

  for(i=j=0; i<m; ++i){
    jac[j++]=-400.0*(p[1]-p[0]*p[0])*p[0] + 2.0*p[0] - 2.0;
    jac[j++]=200.0*(p[1]-p[0]*p[0]);
    jac[j++]=0.0;
    jac[j++]=0.0;
    jac[j++]=0.0;
  }
}

/* Equilibrium combustion problem, constrained nonlinear equation from the book by Floudas et al.
 * Minimum at (0.0034, 31.3265, 0.0684, 0.8595, 0.0370)
 * constri: p[i]>=0.0001; (i=1..5)
 * constri+5: p[i]<=100.0; (i=1..5)
 */
void combust(double *p, double *x, int m, int n, void *data)
{
  double R, R5, R6, R7, R8, R9, R10;

  R=10;
  R5=0.193;
  R6=4.10622*1e-4;
  R7=5.45177*1e-4;
  R8=4.4975*1e-7;
  R9=3.40735*1e-5;
  R10=9.615*1e-7;

  x[0]=p[0]*p[1]+p[0]-3*p[4];
  x[1]=2*p[0]*p[1]+p[0]+3*R10*p[1]*p[1]+p[1]*p[2]*p[2]+R7*p[1]*p[2]+R9*p[1]*p[3]+R8*p[1]-R*p[4];
  x[2]=2*p[1]*p[2]*p[2]+R7*p[1]*p[2]+2*R5*p[2]*p[2]+R6*p[2]-8*p[4];
  x[3]=R9*p[1]*p[3]+2*p[3]*p[3]-4*R*p[4];
  x[4]=p[0]*p[1]+p[0]+R10*p[1]*p[1]+p[1]*p[2]*p[2]+R7*p[1]*p[2]+R9*p[1]*p[3]+R8*p[1]+R5*p[2]*p[2]+R6*p[2]+p[3]*p[3]-1.0;
}

void jaccombust(double *p, double *jac, int m, int n, void *data)
{
register int j=0;
  double R, R5, R6, R7, R8, R9, R10;

  R=10;
  R5=0.193;
  R6=4.10622*1e-4;
  R7=5.45177*1e-4;
  R8=4.4975*1e-7;
  R9=3.40735*1e-5;
  R10=9.615*1e-7;

  for(j=0; j<m*n; ++j) jac[j]=0.0;

  j=0;
  jac[j]=p[1]+1;
  jac[j+1]=p[0];
  jac[j+4]=-3;

  j+=m;
  jac[j]=2*p[1]+1;
  jac[j+1]=2*p[0]+6*R10*p[1]+p[2]*p[2]+R7*p[2]+R9*p[3]+R8;
  jac[j+2]=2*p[1]*p[2]+R7*p[1];
  jac[j+3]=R9*p[1];
  jac[j+4]=-R;

  j+=m;
  jac[j+1]=2*p[2]*p[2]+R7*p[2];
  jac[j+2]=4*p[1]*p[2]+R7*p[1]+4*R5*p[2]+R6;
  jac[j+4]=-8;

  j+=m;
  jac[j+1]=R9*p[3];
  jac[j+3]=R9*p[1]+4*p[3];
  jac[j+4]=-4*R;

  j+=m;
  jac[j]=p[1]+1;
  jac[j+1]=p[0]+2*R10*p[1]+p[2]*p[2]+R7*p[2]+R9*p[3]+R8;
  jac[j+2]=2*p[1]*p[2]+R7*p[1]+2*R5*p[2]+R6;
  jac[j+3]=R9*p[1]+2*p[3];
}



int main()
{
register int i, j;
int problem, ret;
double p[5], // 6 is max(2, 3, 5)
	   x[16]; // 16 is max(2, 3, 5, 6, 16)
int m, n;
double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
char *probname[]={
    "Rosenbrock function",
    "modified Rosenbrock problem",
    "Powell's function",
    "Wood's function",
    "Meyer's (reformulated) problem",
    "helical valley function",
    "Boggs & Tolle's problem #3",
    "Hock - Schittkowski problem #28",
    "Hock - Schittkowski problem #48",
    "Hock - Schittkowski problem #51",
    "Hock - Schittkowski problem #01",
    "Hock - Schittkowski modified problem #21",
    "hatfldb problem",
    "hatfldc problem",
    "equilibrium combustion problem",
    "Hock - Schittkowski modified problem #52",
    "Schittkowski modified problem #235",
    "Boggs & Tolle modified problem #7",
};

  opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
688
689
  opts[4]=LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
  //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
Emmanuel Bertin's avatar
Emmanuel Bertin committed
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028

  /* uncomment the appropriate line below to select a minimization problem */
  problem=
		  //0; // Rosenbrock function
		  //1; // modified Rosenbrock problem
		  //2; // Powell's function
      //3; // Wood's function
		  4; // Meyer's (reformulated) problem
      //5; // helical valley function
#ifdef HAVE_LAPACK
      //6; // Boggs & Tolle's problem 3
      //7; // Hock - Schittkowski problem 28
      //8; // Hock - Schittkowski problem 48
      //9; // Hock - Schittkowski problem 51
#else // no LAPACK
#ifdef _MSC_VER
#pragma message("LAPACK not available, some test problems cannot be used")
#else
#warning LAPACK not available, some test problems cannot be used
#endif // _MSC_VER

#endif /* HAVE_LAPACK */
      //10; // Hock - Schittkowski problem 01
      //11; // Hock - Schittkowski modified problem 21
      //12; // hatfldb problem
      //13; // hatfldc problem
      //14; // equilibrium combustion problem
#ifdef HAVE_LAPACK
      //15; // Hock - Schittkowski modified problem 52
      //16; // Schittkowski modified problem 235
      //17; // Boggs & Tolle modified problem #7
#endif /* HAVE_LAPACK */
				
  switch(problem){
  default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem);
           exit(1);
    break;
  case 0:
  /* Rosenbrock function */
    m=2; n=2;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(ros, jacros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(ros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 1:
  /* modified Rosenbrock problem */
    m=2; n=3;
    p[0]=-1.2; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(modros, jacmodros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(modros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 2:
  /* Powell's function */
    m=2; n=2;
    p[0]=3.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(powell, jacpowell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(powell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);		// no Jacobian
  break;

  case 3:
  /* Wood's function */
    m=4; n=6;
    p[0]=-3.0; p[1]=-1.0; p[2]=-3.0; p[3]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_dif(wood, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

  case 4:
  /* Meyer's data fitting problem */
    m=3; n=16;
    p[0]=8.85; p[1]=4.0; p[2]=2.5;
    x[0]=34.780;	x[1]=28.610; x[2]=23.650; x[3]=19.630;
    x[4]=16.370;	x[5]=13.720; x[6]=11.540; x[7]=9.744;
    x[8]=8.261;	x[9]=7.030; x[10]=6.005; x[11]=5.147;
    x[12]=4.427;	x[13]=3.820; x[14]=3.307; x[15]=2.872;
    //ret=dlevmar_der(meyer, jacmeyer, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian

   { double *work, *covar;
    work=malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
    if(!work){
    	fprintf(stderr, "memory allocation request failed in main()\n");
      exit(1);
    }
    covar=work+LM_DIF_WORKSZ(m, n);

    ret=dlevmar_dif(meyer, p, x, m, n, 1000, opts, info, work, covar, NULL); // no Jacobian, caller allocates work memory, covariance estimated

    printf("Covariance of the fit:\n");
    for(i=0; i<m; ++i){
      for(j=0; j<m; ++j)
        printf("%g ", covar[i*m+j]);
      printf("\n");
    }
    printf("\n");

    free(work);
   }

/* uncomment the following block to verify Jacobian */
/*
   {
    double err[16];
    dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err); 
    for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]);
   }
*/

  break;

  case 5:
  /* helical valley function */
    m=3; n=3;
    p[0]=-1.0; p[1]=0.0; p[2]=0.0;
    for(i=0; i<n; i++) x[i]=0.0;
    ret=dlevmar_der(helval, jachelval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    //ret=dlevmar_dif(helval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL);  // no Jacobian
  break;

#ifdef HAVE_LAPACK
  case 6:
  /* Boggs-Tolle problem 3 */
    m=5; n=5;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

    ret=dlevmar_lec_der(bt3, jacbt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(bt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;
  case 7:
  /* Hock - Schittkowski problem 28 */
    m=3; n=3;
    p[0]=-4.0; p[1]=1.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[1*3]={1.0, 2.0, 3.0},
             b[1]={1.0};

    ret=dlevmar_lec_der(hs28, jachs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;
  case 8:
  /* Hock - Schittkowski problem 48 */
    m=5; n=5;
    p[0]=3.0; p[1]=5.0; p[2]=-3.0;
    p[3]=2.0; p[4]=-2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*5]={1.0, 1.0, 1.0, 1.0, 1.0,  0.0, 0.0, 1.0, -2.0, -2.0},
             b[2]={5.0, -3.0};

    ret=dlevmar_lec_der(hs48, jachs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;
  case 9:
  /* Hock - Schittkowski problem 51 */
    m=5; n=5;
    p[0]=2.5; p[1]=0.5; p[2]=2.0;
    p[3]=-1.0; p[4]=0.5;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={4.0, 0.0, 0.0};

    ret=dlevmar_lec_der(hs51, jachs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
    //ret=dlevmar_lec_dif(hs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
    }
  break;
#endif /* HAVE_LAPACK */

  case 10:
  /* Hock - Schittkowski problem 01 */
    m=2; n=2;
    p[0]=-2.0; p[1]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs01, jachs01, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=-DBL_MAX; lb[1]=-1.5;
      ub[0]=ub[1]=DBL_MAX;

      ret=dlevmar_bc_der(hs01, jachs01, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;
  case 11:
  /* Hock - Schittkowski (modified) problem 21 */
    m=2; n=2;
    p[0]=-1.0; p[1]=-1.0;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hs21, jachs21, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[2], ub[2];

      lb[0]=2.0; lb[1]=-50.0;
      ub[0]=50.0; ub[1]=50.0;

      ret=dlevmar_bc_der(hs21, jachs21, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;
  case 12:
  /* hatfldb problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.1;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldb, jachatfldb, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[2]=ub[3]=DBL_MAX;
      ub[1]=0.8;

      ret=dlevmar_bc_der(hatfldb, jachatfldb, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;
  case 13:
  /* hatfldc problem */
    m=4; n=4;
    p[0]=p[1]=p[2]=p[3]=0.9;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(hatfldc, jachatfldc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[4], ub[4];

      lb[0]=lb[1]=lb[2]=lb[3]=0.0;

      ub[0]=ub[1]=ub[2]=ub[3]=10.0;

      ret=dlevmar_bc_der(hatfldc, jachatfldc, p, x, m, n, lb, ub, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;
  case 14:
  /* equilibrium combustion problem */
    m=5; n=5;
    p[0]=p[1]=p[2]=p[3]=p[4]=0.0001;
    for(i=0; i<n; i++) x[i]=0.0;
    //ret=dlevmar_der(combust, jaccombust, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    {
      double lb[5], ub[5];

      lb[0]=lb[1]=lb[2]=lb[3]=lb[4]=0.0001;

      ub[0]=ub[1]=ub[2]=ub[3]=ub[4]=100.0;

      ret=dlevmar_bc_der(combust, jaccombust, p, x, m, n, lb, ub, 5000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
    }
    break;
#ifdef HAVE_LAPACK
  case 15:
  /* Hock - Schittkowski modified problem 52 */
    m=5; n=4;
    p[0]=2.0; p[1]=2.0; p[2]=2.0;
    p[3]=2.0; p[4]=2.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0,  0.0, 0.0, 1.0, 1.0, -2.0,  0.0, 1.0, 0.0, 0.0, -1.0},
             b[3]={0.0, 0.0, 0.0};

      double lb[5], ub[5];

      double weights[5]={2000.0, 2000.0, 2000.0, 2000.0, 2000.0}; // penalty terms weights

      lb[0]=-0.09; lb[1]=0.0; lb[2]=-DBL_MAX; lb[3]=-0.2; lb[4]=0.0;
      ub[0]=DBL_MAX; ub[1]=0.3; ub[2]=0.25; ub[3]=0.3; ub[4]=0.3;

      ret=dlevmar_blec_der(modhs52, jacmodhs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(modhs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;
  case 16:
  /* Schittkowski modified problem 235 */
    m=3; n=2;
    p[0]=-2.0; p[1]=3.0; p[2]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[2*3]={1.0, 0.0, 1.0,  0.0, 1.0, -4.0},
             b[2]={-1.0, 0.0};

      double lb[3], ub[3];

      lb[0]=-DBL_MAX; lb[1]=0.1; lb[2]=0.7;
      ub[0]=DBL_MAX; ub[1]=2.9; ub[2]=DBL_MAX;

      ret=dlevmar_blec_der(mods235, jacmods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(mods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;
  case 17:
  /* Boggs & Tolle modified problem 7 */
    m=5; n=5;
    p[0]=-2.0; p[1]=1.0; p[2]=1.0; p[3]=1.0; p[4]=1.0;
    for(i=0; i<n; i++) x[i]=0.0;

    {
      double A[3*5]={1.0, 1.0, -1.0, 0.0, 0.0,   1.0, 1.0, 0.0, -1.0, 0.0,   1.0, 0.0, 0.0, 0.0, 1.0},
             b[3]={1.0, 0.0, 0.5};

      double lb[5], ub[5];

      lb[0]=-DBL_MAX; lb[1]=-DBL_MAX; lb[2]=-DBL_MAX; lb[3]=-DBL_MAX; lb[4]=-0.3;
      ub[0]=0.7;      ub[1]= DBL_MAX; ub[2]= DBL_MAX; ub[3]= DBL_MAX; ub[4]=DBL_MAX;

      ret=dlevmar_blec_der(modbt7, jacmodbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
      //ret=dlevmar_blec_dif(modbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 10000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
    }
    break;
#endif /* HAVE_LAPACK */
  } /* switch */
  
  printf("Results for %s:\n", probname[problem]);
  printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]);
  for(i=0; i<m; ++i)
    printf("%.7g ", p[i]);
  printf("\n\nMinimization info:\n");
  for(i=0; i<LM_INFO_SZ; ++i)
    printf("%g ", info[i]);
  printf("\n");

  return 0;
}