/*
* som.c
*
* Implementation of Kohonen's Self Organizing Map (V3.0).
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*
* This file part of: SExtractor
*
* Copyright: (C) 1998-2010 IAP/CNRS/UPMC
* (C) 1997 ESO
* (C) 1995,1996 Sterrewacht Leiden
*
* Author: Emmanuel Bertin (IAP)
*
* License: GNU General Public License
*
* SExtractor is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* SExtractor is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with SExtractor. If not, see .
*
* Last modified: 11/10/2010
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include
#include
#include
#include "define.h"
#include "globals.h"
#include "fits/fitscat.h"
#include "prefs.h"
#include "som.h"
/********************************* som_phot **********************************/
/*
Perform SOM-fitting on a detected source: returns node number of the
best-fitting prototype.
*/
void som_phot(somstruct *som, float back, float backnoise, float gain,
float dx0, float dy0, float *vector, float clip)
{
float err, errmin, *xnt;
int i,j,nd,jmin, *nx, *mul;
nd = som->neurdim;
/* First we compute the error map */
if (clip!=0.0)
if (!som_mkweight(som, back, backnoise, gain))
{
/*---- If all weights to zero, don't go further! */
som->stderror = -1.0;
som->amp = som->sigamp = 0.0;
if (vector)
{
xnt = som->vector;
for (i=nd; i--;)
*(vector++) = 99.0;
}
return;
}
/* Use a sound starting point for the gradient search */
/*
i = nd-1;
som->vector[i--] = (dy0+0.5)*som->neursize[i]+0.4999;
som->vector[i] = (dx0+0.5)*som->neursize[i]+0.4999;
while (i--)
som->vector[i] = (som->neursize[i]-1)/2.0;
*/
errmin=BIG;
jmin = 0;
for (j=0; jnneur; j++)
{
if ((err=som_err(som, (float)j, SOM_NODE))neurstep;
nx = som->neursize;
xnt = som->vector;
for (i=nd; i--;)
*(xnt++) = (float)((jmin/(*(mul++)))%(*(nx++)));
/* Gradient search */
som_conjgrad(som, 1e-6);
/* Now perform the true photometry */
som->stderror = (float)sqrt(som_err(som, 0.0, SOM_PHOTOM));
/* Store final position vector if requested */
if (vector)
{
xnt = som->vector;
for (i=nd; i--;)
*(vector++) = *(xnt++);
}
if (clip>0.0)
{
/*-- Clip deviant pixels if requested */
float *input, *inputw, *proto, diff;
proto = som->proto;
input = som->input;
inputw = som->inputw;
for (i=som->ninput-som->nextrainput;i--; inputw++)
{
diff = *(input++)-*(proto++);
if (*inputw>0.0 && (diff*diff>clip/(*inputw)))
*inputw /= clip;
}
}
return;
}
/****************************** som_mkweight *********************************/
/*
Compute weights associated to pixels in a vignet.
*/
int som_mkweight(somstruct *som, float back, float backnoise, float gain)
{
float *yt, *wt, wstiff, pix, llim,hlim;
int i, nima, ngood;
yt = som->input;
wt = som->inputw;
nima = som->ninput-som->nextrainput;
llim = -5.0*backnoise;
hlim = thefield2.satur_level-back;
backnoise *= backnoise;
ngood = 0;
for (i=nima; i--;)
{
pix = *(yt++);
/*-- look if pixel is in the "reasonable" range */
if (pix>llim && pix0.0?pix/gain:0.0)+backnoise);
ngood++;
}
else
*(wt++) = 0.0;
}
wstiff = 1/(som->xy_stiff*som->xy_stiff);
for (i=som->nextrainput; i--;)
*(wt++) = wstiff;
return ngood;
}
/********************************** som_err **********************************/
/*
Return the reduced RMS error at some (non-integer) position in the SOM.
1 degree of freedom is left: the amplitude of the prototype.
*/
float som_err(somstruct *som, float dist, int flags)
{
static float dx[SOM_MAXDIM];
double s,sx,sxx,sy,syy,sxy,b,err,ds;
float *psft, *dxt, *wt,*xt,*yt,xi,yi,wi,wxi,wyi, diff,dd;
int i,j,k,n, nd, *nx, *mult, ix, pos,post, nima;
yt = NULL; /* To avoid gcc -Wall warnings */
n = nd = pos = 0; /* To avoid gcc -Wall warnings */
/* Is the requested position lying on a node? */
if (flags & SOM_NODE)
/*-- Yes: just use the prototype at that node */
xt = som->weight+som->ninput*(int)dist;
else
{
/*-- ...No: compute offsets and fractional parts for each dimension */
nd = som->neurdim;
nx = som->neursize;
xt = som->vector;
if (flags & SOM_LINE)
yt = som->dvector;
pos = 0;
dxt = dx;
mult = som->neurstep;
for (i=nd; i--; nx++)
{
xi = *(xt++);
if (flags & SOM_LINE)
xi += dist**(yt++);
ix = (int)xi;
if (ix<0)
ix = 0;
else if (ix>=*nx-1)
ix = *nx-2;
if (ix<0)
{
ix = 0;
*(dxt++) = 0.0;
}
else
*(dxt++) = xi - ix;
pos += ix**(mult++);
}
memset(som->proto, 0, som->ninput*sizeof(float));
n = 1<neursize;
mult = som->neurstep;
for (i=0; i1)
{
post += *mult;
dd *= *(dxt++);
}
else
dd *= (1-*(dxt++));
}
psft = som->proto;
wt = som->weight + som->ninput*post;
for (i=som->ninput; i--;)
*(psft++) += dd**(wt++);
}
xt = som->proto;
}
yt = som->input;
wt = som->inputw;
nima = som->ninput-som->nextrainput;
/* Test if we need to derive photometry, or just compute the error */
if (flags & SOM_PHOTOM)
{
/*-- Yes: photometry */
s = sx = sy = sxx = syy = sxy = 0.0;
for (i=nima; i--;)
{
s += (wi = *(wt++));
sx += (wxi = wi*(xi=*(xt++)));
sxx += wxi*xi;
sy += (wyi = wi*(yi=*(yt++)));
syy += wyi*yi;
sxy += wxi*yi;
}
/*-- First, the error from the image-fitting */
som->amp = b = sxy/sxx;
err = nima*(b*b*sxx + syy - 2.0*b*sxy)/s;
/*
err = (syy - b*sxy)/(nima-1);
*/
som->sigamp = sqrt(err*s/(s*sxx-sx*sx));
/*-- Second, the error of non-pixel parameters */
for (i=som->nextrainput; i--;)
{
diff = *(yt++) - *(xt++);
err += (diff*diff*(double)*(wt++))/(double)som->nextrainput;
}
}
else
{
/*-- No: just an estimate of error */
sxx = sxy = 0.0;
for (i=nima; i--;)
{
sxy += (wxi = *(wt++)*(xi=*(xt++)))**(yt++);
sxx += wxi*xi;
}
/*-- First, the error from the image-fitting */
err = -sxy*sxy/sxx/(nima-1);
/*-- Second, the error of non-pixel parameters */
for (i=som->nextrainput; i--;)
{
diff = *(yt++) - *(xt++);
err += (diff*diff*(double)*(wt++))/(double)som->nextrainput;
}
}
/* Compute error gradients if requested */
if (flags & SOM_GRADIENT)
{
for (k=0; kdproto, 0, som->ninput*sizeof(float));
for (j=0; jneurstep;
nx = som->neursize;
for (i=0; i1)
{
post += *mult;
if ((i++)!=k)
dd *= *dxt;
}
else
dd *= ((i++)==k ? (*nx>1?-1.0:0.0) : (1-*dxt));
}
psft = som->dproto;
wt = som->weight + som->ninput*post;
for (i=som->ninput; i--;)
*(psft++) += dd**(wt++);
}
ds = 0.0;
psft = som->dproto;
xt = som->proto;
yt = som->input;
wt = som->inputw;
for (i=nima; i--;)
ds += *(wt++)*(sxy**(xt++)-sxx**(yt++))**(psft++);
ds *= 2*sxy/(sxx*sxx)/(nima-1);
for (i=som->nextrainput; i--;)
ds += 2**(wt++)**(psft++)*(*(xt++)-*(yt++))/(double)som->nextrainput;
som->dvector[k] = (float)ds;
}
}
return (float)err;
}
/******************************** som_linmin *********************************/
/*
Perform minimisation through line-search using two routines from Numerical
Recipes in C: mnbrak() and brent() (pp. 297 and 301).
*/
#define SHFT(a,b,c,d) {(a)=(b);(b)=(c);(c)=(d);} /* For line-search */
#define SIGN(a,b) ((b)>0.0? fabs(a) : -fabs(a)) /* For line-search */
#define GOLD 1.6180340 /* Golden section for line-search */
#define CGOLD 0.3819660 /* Complement to the golden section */
#define TINY 1e-20 /* Almost nothing */
#define GLIMIT 100.0 /* Max. magnification in line-search */
#define ITMAX 100 /* Max. nb of iter. in line-search */
#define TOL 1e-1 /* Fract. tolerance in line-search */
float som_linmin(somstruct *som)
{
float ax,bx,cx, fa,fb,fc, u,r,q,fu,dum,ulim, qmr, a,b,d,e,etemp,
fv,fw,fx, p, tol1,tol2,v,w,x,xm, *vt,*dvt;
int i,iter;
/* Normalize the gradient */
/*
dvt = som->dvector;
for (i=som->neurdim; i--; dvt++)
dum += *dvt**dvt;
if (dum>0.0)
{
dum = sqrt(dum);
dvt = som->dvector;
for (i=som->neurdim; i--;)
*(dvt++) /= dum;
}
*/
d = 0.0; /* To avoid gcc -Wall warnings */
/* Begin by bracketing a minimum of the function */
ax = 0.0; /* Initial guesses */
bx = 1.0;
if ((fb=som_err(som, bx, SOM_LINE)) > (fa=som_err(som, ax, SOM_LINE)))
{
SHFT(dum, ax, bx, dum);
SHFT(dum, fb, fa, dum);
}
fc = som_err(som, cx = bx+GOLD*(bx-ax), SOM_LINE);
while (fb > fc)
{
r = (bx-ax)*(fb-fc);
q = (bx-cx)*(fb-fa);
if (fabs(qmr = q-r)0.0?TINY:-TINY;
u = bx-((bx-cx)*q - (bx-ax)*r) / (2.0*qmr);
ulim= bx + GLIMIT*(cx-bx);
if ((bx-u)*(u-cx) > 0.0)
{
if ((fu=som_err(som, u, SOM_LINE)) < fc)
{
ax = bx;
bx = u;
fa = fb;
fb = fu;
break;
}
else if (fu > fb)
{
cx = u;
fc = fu;
break;
}
fu = som_err(som, u = cx + GOLD*(cx-bx), SOM_LINE);
}
else if ((cx-u)*(u-ulim) > 0.0)
{
if ((fu=som_err(som, u, SOM_LINE)) < fc)
{
SHFT(bx, cx, u, cx+GOLD*(cx-bx));
SHFT(fb, fc, fu, som_err(som, u, SOM_LINE));
}
}
else if ((u-ulim)*(ulim-cx) >= 0.0)
fu = som_err(som, u=ulim, SOM_LINE);
else
fu = som_err(som, u = cx + GOLD*(cx-bx), SOM_LINE);
SHFT(ax, bx, cx, u);
SHFT(fa, fb, fc, fu);
}
/* Now we step to Brent's algorithm for finding the minimum */
e = 0.0;
a = (ax < cx) ? ax : cx;
b = (ax > cx) ? ax : cx;
x = w = v = bx;
fw = fv = fx = som_err(som, x, SOM_LINE);
for (iter=ITMAX; iter--;)
{
xm = 0.5*(a+b);
tol2 = 2 * (tol1=TOL*fabs(x)+TINY);
if (fabs(x-xm) <= (tol2-0.5*(b-a)))
goto linmin_end;
if (fabs(e) > tol1)
{
r = (x-w) * (fx-fv);
q = (x-v) * (fx-fw);
p = (x-v)*q - (x-w)*r;
q = 2*(q-r);
if (q > 0.0)
p = -p;
q = fabs(q);
etemp = e;
e = d;
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
d = CGOLD*(e=(x >= xm ? a-x : b-x));
else
{
d = p/q;
u = x+d;
if (u-a < tol2 || b-u < tol2)
d = SIGN(tol1,xm-x);
}
}
else
d = CGOLD*(e=(x >= xm ? a-x : b-x));
u = (fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
if ((fu=som_err(som, u, SOM_LINE)) <= fx)
{
if (u >= x)
a = x;
else
b = x;
SHFT(v, w, x, u);
SHFT(fv, fw, fx, fu);
}
else
{
if (u < x)
a = u;
else
b = u;
if (fu <= fw || w == x)
{
v = w;
w = u;
fv = fw;
fw = fu;
}
else if (fu <= fv || v == x || v == w)
{
v = u;
fv = fu;
}
}
}
warning("Too many iterations in ", "som_linmin()");
/* Finally we set the SOM vector to the new minimum */
linmin_end:
vt = som->vector;
dvt = som->dvector;
for (i=som->neurdim; i--;)
*(vt++) += x**(dvt++);
return fx;
}
#undef SHFT
#undef SIGN
#undef GOLD
#undef CGOLD
#undef TINY
#undef GLIMIT
#undef ITMAX
#undef TOL
/******************************** som_conjgrad *******************************/
/*
Perform Polak-Ribiere minimization (adapted from Numerical Recipes in C,p.432).
*/
#define ITMAX 100
#define EPS 1.0e-10
void som_conjgrad(somstruct *som, float ftol)
{
static float g[SOM_MAXDIM], h[SOM_MAXDIM];
int j, nd, its;
float *xi, *xit,*gt,*ht,tmp,tmp2,
gg,gam,fp,fret,dgg;
nd = som->neurdim;
xi = som->dvector;
fp = som_err(som, 0.0, SOM_GRADIENT);
gt = g;
xit = xi;
ht = h;
for (j=nd;j--;)
tmp = -*xit, *(xit++) = *(ht++)= *(gt++) = tmp;
for (its=ITMAX;its--;)
{
fret = som_linmin(som);
if (2.0*fabs(fret-fp) <= ftol*(fabs(fret)+fabs(fp)+EPS))
return;
fp=som_err(som, 0.0, SOM_GRADIENT);
dgg=gg=0.0;
gt = g;
xit = xi;
for (j=nd;j--; xit++)
{
gg += *gt**gt;
dgg += (*xit+*(gt++))**xit;
}
if (gg == 0.0)
return;
gam=dgg/gg;
gt = g;
xit = xi;
ht = h;
for (j=nd;j--;)
tmp = -*xit,tmp2 = *ht, *(xit++) = *(ht++) = (*(gt++) = tmp) + gam*tmp2;
}
warning("Too many iterations during SOM-Fitting","");
}
#undef ITMAX
#undef EPS
/********************************* som_end ***********************************/
/*
Terminate SOM.
*/
void som_end(somstruct *som)
{
/* Free memory*/
free(som->weight);
free(som->input);
free(som->inputw);
free(som->proto);
free(som->dproto);
free(som->vector);
free(som->dvector);
free(som->freq);
free(som->inputsize);
free(som->neursize);
free(som->neurstep);
free(som);
/* locals */
return;
}
/********************************* som_load **********************************/
/*
Read the SOM weights in a FITS file.
*/
somstruct *som_load(char *filename)
{
somstruct *som;
catstruct *cat;
tabstruct *tab;
keystruct *key;
char *head, str[80];
int i;
/* Open the cat (well it is not a "cat", but simply a FITS file */
if (!(cat = read_cat(filename)))
error(EXIT_FAILURE, "*Error*: SOM file not found: ", filename);
if (!(tab = name_to_tab(cat, "SOM", 0)))
error(EXIT_FAILURE, "*Error*: SOM table not found in catalog ",
filename);
/* OK, we now allocate memory for the SOM structure itself */
QCALLOC(som, somstruct, 1);
/* Load important scalars (which are stored as FITS keywords) */
head = tab->headbuf;
/* Dimensionality of the input */
if (fitsread(head, "INPNAXIS", &som->inputdim, H_INT, T_LONG) != RETURN_OK)
goto headerror;
if (som->inputdim>INPUT_MAXDIM)
{
sprintf(str, "%d", INPUT_MAXDIM);
error(EXIT_FAILURE, "*Error*: This package is presently limited to inputs"
"with dimensionality less or equal to ", str);
}
QMALLOC(som->inputsize, int, INPUT_MAXDIM);
for (i=0; iinputsize[i] = 1;
som->ninput = 1;
for (i=0; iinputdim; i++)
{
sprintf(str, "INPAXIS%1d", i+1);
if (fitsread(head, str, &som->inputsize[i], H_INT,T_LONG) != RETURN_OK)
goto headerror;
som->ninput *= som->inputsize[i];
}
if (fitsread(head,"INPNEXTR",&som->nextrainput,H_INT,T_LONG) != RETURN_OK)
som->nextrainput = 0;
som->ninput += som->nextrainput;
/* Dimensionality of the SOM */
if (fitsread(head, "SOMNAXIS", &som->neurdim, H_INT, T_LONG) != RETURN_OK)
goto headerror;
QMALLOC(som->neursize, int, som->neurdim);
QMALLOC(som->neurstep, int, som->neurdim);
QCALLOC(som->vector, float, som->neurdim);
QCALLOC(som->dvector, float, som->neurdim);
for (i=0; ineurdim; i++)
som->neursize[i] = 1;
som->nneur = 1;
for (i=0; ineurdim; i++)
{
sprintf(str, "SOMAXIS%1d", i+1);
if (fitsread(head, str, &som->neursize[i], H_INT,T_LONG) != RETURN_OK)
goto headerror;
som->neurstep[i] = som->nneur;
som->nneur *= som->neursize[i];
}
/* Other scalars */
if (fitsread(head, "SOMLRATE", &som->learnrate,H_FLOAT,T_FLOAT) != RETURN_OK)
goto headerror;
som->clearnrate = som->learnrate;
if (fitsread(head, "SOMKERNW", &som->kernw, H_FLOAT,T_FLOAT) != RETURN_OK)
goto headerror;
som->ckernw = som->kernw;
if (fitsread(head, "SOMNPASS", &som->ntrain , H_INT, T_LONG) != RETURN_OK)
goto headerror;
if (fitsread(head, "SOMNSWEE", &som->nsweep , H_INT, T_LONG) != RETURN_OK)
goto headerror;
som->nweight = som->nneur*som->ninput;
QMALLOC(som->weight, float, som->nneur*som->ninput);
QMALLOC(som->input, float, som->ninput);
QMALLOC(som->inputw, float, som->ninput);
QMALLOC(som->proto, float, som->ninput);
QMALLOC(som->dproto, float, som->ninput);
QCALLOC(som->freq, int, som->nneur);
/* Locals */
/* Load the weight vector */
key = read_key(tab, "WEIGHTS");
som->weight = key->ptr;
/* But don't touch my arrays!! */
blank_keys(tab);
free_cat(&cat, 1);
return som;
headerror:
error(EXIT_FAILURE, "*Error*: Incorrect or obsolete SOM data in ", filename);
return NULL;
}