/*
* poly.c
*
* Manage polynomials.
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*
* This file part of: AstrOmatic WCS library
*
* Copyright: (C) 1998-2010 IAP/CNRS/UPMC
*
* Author: Emmanuel Bertin (IAP)
*
* License: GNU General Public License
*
* AstrOmatic software is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
* AstrOmatic software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with AstrOmatic software.
* If not, see .
*
* Last modified: 10/10/2010
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include
#include
#include
#include
#include "poly.h"
#ifdef HAVE_ATLAS
#include ATLAS_LAPACK_H
#endif
#define QCALLOC(ptr, typ, nel) \
{if (!(ptr = (typ *)calloc((size_t)(nel),sizeof(typ)))) \
qerror("Not enough memory for ", \
#ptr " (" #nel " elements) !");;}
#define QMALLOC(ptr, typ, nel) \
{if (!(ptr = (typ *)malloc((size_t)(nel)*sizeof(typ)))) \
qerror("Not enough memory for ", \
#ptr " (" #nel " elements) !");;}
/********************************* qerror ************************************/
/*
I hope it will never be used!
*/
void qerror(char *msg1, char *msg2)
{
fprintf(stderr, "\n> %s%s\n\n",msg1,msg2);
exit(-1);
}
/****** poly_init ************************************************************
PROTO polystruct *poly_init(int *group, int ndim, int *degree, int ngroup)
PURPOSE Allocate and initialize a polynom structure.
INPUT 1D array containing the group for each parameter,
number of dimensions (parameters),
1D array with the polynomial degree for each group,
number of groups.
OUTPUT polystruct pointer.
NOTES -.
AUTHOR E. Bertin (IAP)
VERSION 08/03/2003
***/
polystruct *poly_init(int *group, int ndim, int *degree, int ngroup)
{
void qerror(char *msg1, char *msg2);
polystruct *poly;
char str[512];
int nd[POLY_MAXDIM];
int *groupt,
d,g,n,num,den;
QCALLOC(poly, polystruct, 1);
if ((poly->ndim=ndim) > POLY_MAXDIM)
{
sprintf(str, "The dimensionality of the polynom (%d) exceeds the maximum\n"
"allowed one (%d)", ndim, POLY_MAXDIM);
qerror("*Error*: ", str);
}
if (ndim)
QMALLOC(poly->group, int, poly->ndim);
for (groupt=poly->group, d=ndim; d--;)
*(groupt++) = *(group++)-1;
poly->ngroup = ngroup;
if (ngroup)
{
group = poly->group; /* Forget the original *group */
QMALLOC(poly->degree, int, poly->ngroup);
/*-- Compute the number of context parameters for each group */
memset(nd, 0, ngroup*sizeof(int));
for (d=0; d=ngroup)
qerror("*Error*: polynomial GROUP out of range", "");
nd[g]++;
}
}
/* Compute the total number of coefficients */
poly->ncoeff = 1;
for (g=0; gdegree[g]=*(degree++))>POLY_MAXDEGREE)
{
sprintf(str, "The degree of the polynom (%d) exceeds the maximum\n"
"allowed one (%d)", poly->degree[g], POLY_MAXDEGREE);
qerror("*Error*: ", str);
}
/*-- There are (n+d)!/(n!d!) coeffs per group, that is Prod_(i<=d) (n+i)/i */
for (num=den=1, n=nd[g]; d; num*=(n+d), den*=d--);
poly->ncoeff *= num/den;
}
QMALLOC(poly->basis, double, poly->ncoeff);
QCALLOC(poly->coeff, double, poly->ncoeff);
return poly;
}
/****** poly_end *************************************************************
PROTO void poly_end(polystruct *poly)
PURPOSE Free a polynom structure and everything it contains.
INPUT polystruct pointer.
OUTPUT -.
NOTES -.
AUTHOR E. Bertin (IAP, Leiden observatory & ESO)
VERSION 09/04/2000
***/
void poly_end(polystruct *poly)
{
if (poly)
{
free(poly->coeff);
free(poly->basis);
free(poly->degree);
free(poly->group);
free(poly);
}
}
/****** poly_func ************************************************************
PROTO double poly_func(polystruct *poly, double *pos)
PURPOSE Evaluate a multidimensional polynom.
INPUT polystruct pointer,
pointer to the 1D array of input vector data.
OUTPUT Polynom value.
NOTES Values of the basis functions are updated in poly->basis.
AUTHOR E. Bertin (IAP)
VERSION 03/03/2004
***/
double poly_func(polystruct *poly, double *pos)
{
double xpol[POLY_MAXDIM+1];
double *post, *xpolt, *basis, *coeff, xval;
long double val;
int expo[POLY_MAXDIM+1], gexpo[POLY_MAXDIM+1];
int *expot, *degree,*degreet, *group,*groupt, *gexpot,
d,g,t, ndim;
/* Prepare the vectors and counters */
ndim = poly->ndim;
basis = poly->basis;
coeff = poly->coeff;
group = poly->group;
degree = poly->degree;
if (ndim)
{
for (xpolt=xpol, expot=expo, post=pos, d=ndim; --d;)
{
*(++xpolt) = 1.0;
*(++expot) = 0;
}
for (gexpot=gexpo, degreet=degree, g=poly->ngroup; g--;)
*(gexpot++) = *(degreet++);
if (gexpo[*group])
gexpo[*group]--;
}
/* The constant term is handled separately */
val = *(coeff++);
*(basis++) = 1.0;
*expo = 1;
*xpol = *pos;
/* Compute the rest of the polynom */
for (t=poly->ncoeff; --t; )
{
/*-- xpol[0] contains the current product of the x^n's */
val += (*(basis++)=*xpol)**(coeff++);
/*-- A complex recursion between terms of the polynom speeds up computations */
/*-- Not too good for roundoff errors (prefer Horner's), but much easier for */
/*-- multivariate polynomials: this is why we use a long double accumulator */
post = pos;
groupt = group;
expot = expo;
xpolt = xpol;
for (d=0; dncoeff;
ndim = poly->ndim;
matsize = ncoeff*ncoeff;
basis = poly->basis;
extbasist = extbasis;
QCALLOC(alpha, double, matsize);
QCALLOC(beta, double, ncoeff);
/* Subtract an average offset to maintain precision (droped for now ) */
/*
if (x)
{
for (d=0; dcoeff;
for (j=ncoeff; j--;)
*(coeff++) = *(betat++);
/*
poly_addcste(poly, offset);
*/
free(beta);
return;
}
/****** poly_addcste *********************************************************
PROTO void poly_addcste(polystruct *poly, double *cste)
PURPOSE Modify matrix coefficients to mimick the effect of adding a cst to
the input of a polynomial.
INPUT Pointer to the polynomial structure,
Pointer to the vector of cst.
OUTPUT -.
NOTES Requires quadruple-precision. **For the time beeing, this function
returns completely wrong results!!**
AUTHOR E. Bertin (IAP)
VERSION 05/10/2010
***/
void poly_addcste(polystruct *poly, double *cste)
{
long double *acoeff;
double *coeff,*mcoeff,*mcoefft,
val;
int *mpowers,*powers,*powerst,*powerst2,
i,j,n,p, denum, flag, maxdegree, ncoeff, ndim;
ncoeff = poly->ncoeff;
ndim = poly->ndim;
maxdegree = 0;
for (j=0; jngroup; j++)
if (maxdegree < poly->degree[j])
maxdegree = poly->degree[j];
maxdegree++; /* Actually we need maxdegree+1 terms */
QCALLOC(acoeff, long double, ncoeff);
QCALLOC(mcoeff, double, ndim*maxdegree);
QCALLOC(mpowers, int, ndim);
mcoefft = mcoeff; /* To avoid gcc -Wall warnings */
powerst = powers = poly_powers(poly);
coeff = poly->coeff;
for (i=0; indim;
group = poly->group;
degree = poly->degree;
QMALLOC(powers, int, ndim*poly->ncoeff);
if (ndim)
{
for (expot=expo, d=ndim; --d;)
*(++expot) = 0;
for (gexpot=gexpo, degreet=degree, g=poly->ngroup; g--;)
*(gexpot++) = *(degreet++);
if (gexpo[*group])
gexpo[*group]--;
}
/* The constant term is handled separately */
powerst = powers;
for (d=0; dncoeff; --t; )
{
for (d=0; d