import numpy as np import re from .target import spectrum_generator from .optics import make_focus_image, focal_mask, optics_config from .psf_simulation import simulate_psf from .camera import EMCCD, CosmicRayFrameMaker, sky_frame_maker from .io import save_fits, log from .config import which_focalplane def psf_function(band, cstar_spectrum, shape, error=0.1): cstar = True if shape < 300: cstar = False return simulate_psf(error, band, cstar_spectrum, nsample=1, cstar=cstar) def observation_simulation( target: dict, skybg: float, expt: float, nframe: int, band: str, emgain: float, obsid: int = 51900000000, rotation: float = 0, shift: list = [0, 0], gnc_info: dict = {}, csst_format: bool = True, psf_function: callable = psf_function): """ Simulate the observation. All-In-One function of the package. Parameters ----------- target: dict The target information. See target.py for details. skybg: float magnitude of the skybackground at the input b and. (abmag system) expt: float exposure time in second. nframe: int number of frames to be simulated. band: str the band of the observation. (e.g. 'f661') emgain: float the EM gain of the camera. obsid: int the observation id. Default is 51900000000. rotation: float the rotation angle of the target in degree. Default is 0. shift: list the shift of the target in arcsec. Default is [0, 0]. gnc_info: dict the gnc information. Default is {}. See io.py for details. csst_format: bool whether to save the fits file in CSST format. Default is True. psf_function: callable the function to generate the psf. See optics.py for details. Returns ----------- np.ndarray of the simulated images with shape (nframe, 1088, 1050). """ target_list = [] if 'cstar' in target.keys(): target_list = spectrum_generator(target) focal_name = which_focalplane(band) this_focal_config = optics_config[focal_name] telescope_config = optics_config['telescope'] area = telescope_config['aperature_area'] if focal_name == 'vis': camera = EMCCD() else: raise ValueError('Only VIS focal plane is supported.') platescale = this_focal_config['platescale'] iwa = this_focal_config['mask_width'] / 2 crmaker = CosmicRayFrameMaker() images = [] params = { 'target': target, 'skybg': skybg, 'expt': expt, 'nframe': nframe, 'band': band, 'emgain': emgain, 'obsid': obsid, 'rotation': rotation, 'shift': shift, } paramstr = ', '.join([f'{k}={v}' for k, v in params.items()]) log.debug(f"parameters: {paramstr}") for i in range(nframe): log.info(f'Simulation Running: Frame {i+1}/{nframe}') focal_frame = make_focus_image( band, target_list, psf_function, platesize=camera.flat_shape, rotation=rotation, init_shifts=shift, ) if skybg is None or skybg > 100: sky_bkg_frame = 0 else: sky_bkg_frame = sky_frame_maker( band, skybg, platescale, camera.flat_shape ) focal_frame = (focal_frame + sky_bkg_frame) * area focal_frame = focal_mask(focal_frame, iwa, platescale) cr_frame = crmaker.make_cr_frame(camera.dark_shape, expt) img = camera.readout( focal_frame, emgain, expt, image_cosmic_ray=cr_frame ) images.append(img) images = np.array(images) save_fits(images, params, gnc_info, csst_format=csst_format) return images def quick_run( target_str: str, skymag: float, band: str, expt: float, nframe: int, emgain: float, rotation: float = 0, shift: list = [0, 0]) -> np.ndarray: """ A quick run function to simulate the observation. Parameters ----------- target_str: str The target information in string format. In the format of "\*5.1/25.3(1.3,1.5)/22.1(2.3,-4.5)" which means a central star with magnitude 5.1, and two substellar with magnitude 25.3 and 22.1, respectively. The first number in the parenthesis is the x position in arcsec, and the second is the y position. skybg: float magnitude of the skybackground at the input band. (abmag system) band: str the band of the observation. (e.g. 'f661') expt: float exposure time in second. nframe: int number of frames to be simulated. emgain: float the EM gain of the camera. rotation: float (optional) the rotation angle of the target in degree. Default is 0. shift: list (optional) the shift of the target in arcsec. Default is [0, 0]. Returns ----------- np.ndarray of the simulated images, with shape (nframe, 1088, 1050) Notes ----------- 1. stars are assumed to be G0III with distance 10pc. 2. magnitude of the star and substellar are assumed to be in the same band. 3. Csst format is not supported. 4. The psf is assumed to be the default one. 5. fits file will be saved in the current directory. """ log.info(f'Quick Run: {target_str}') target_dict = { 'name': 'cal', } if (target_str != '') and (target_str[0] == '*'): objects = target_str[1:].split('/') cstar_mag = float(objects[0]) cstar = { 'magnitude': cstar_mag, 'ra': '0d', 'dec': '0d', 'sptype': 'G0III', 'distance': 10, 'mag_input_band': band } stars = [] for sub_stellar in objects[1:]: float_regex = R"[+-]?\d+(?:\.\d+)?" match = re.match( rf"({float_regex})\(({float_regex}),({float_regex})\)", sub_stellar) if not match: raise ValueError('Wrong format for sub stellar.') mag = float(match.group(1)) x = float(match.group(2)) y = float(match.group(3)) pangle = np.arctan2(x, y) * 180 / np.pi separation = np.sqrt(x**2 + y**2) stars.append({ 'magnitude': mag, 'pangle': pangle, 'separation': separation, 'sptype': 'G0III', 'mag_input_band': band }) target_dict = { 'name': target_str[1:], 'cstar': cstar, 'stars': stars, } return observation_simulation( target=target_dict, skybg=skymag, expt=expt, nframe=nframe, band=band, emgain=emgain, csst_format=False, shift=shift, rotation=rotation, ) # observation_simulation( # target={}, # skybg=15, # expt=10, # nframe=2, # band='f661', # emgain=30, # obsid=50112345678, # ) # quick_run('*5.1/25.3(0.8,0.8)', None, 'f661', 10, 1, 10) # quick_run('*5/20(0.8,0.8)', None, 'f883', 10, 1, 10) # # quick *5.1/25.3(1.3,1.5) expt nframe emgain band rotation shift # # quick target_name expt nframe emgain band rotation shift # # plan plan_file_or_folder if __name__ == '__main__': # pragma: no cover target_example = { 'cstar': { 'magnitude': 1, 'ra': '120d', 'dec': '40d', 'distance': 10, 'sptype': 'F0III', }, 'stars': [ { 'magnitude': 20, 'pangle': 60, 'separation': 1, 'sptype': 'F0III' } ] } # quick_run('', 10, 'f661', 1, 1, 30) # quick_run('*2.4/10(3,5)/15(-4,2)', 21, 'f661', 1, 1, 30) # # normal target observation_simulation( target=target_example, skybg=21, expt=1, nframe=2, band='f661', emgain=30, obsid=51012345678, ) # # bias # observation_simulation( # target=target_example, # skybg=999, # expt=1, # nframe=2, # band='f661', # emgain=1, # obsid=51012345678, # shift=[3, 3], # rotation=60 # ) # # bias-gain # observation_simulation( # target={}, # skybg=999, # expt=0.01, # nframe=2, # band='f661', # emgain=1000, # obsid=50012345678, # ) # # dark # observation_simulation( # target={}, # skybg=999, # expt=100, # nframe=2, # band='f661', # emgain=30, # obsid=50112345678, # ) # # flat # observation_simulation( # target={}, # skybg=15, # expt=10, # nframe=2, # band='f661', # emgain=30, # obsid=50112345678, # )