Commit 7c2ce85a authored by Shuai Feng's avatar Shuai Feng
Browse files

fix PEP8 bugs

parent 1128112c
Pipeline #7131 failed with stage
in 0 seconds
...@@ -22,13 +22,12 @@ class config(): ...@@ -22,13 +22,12 @@ class config():
dpix : float, optional dpix : float, optional
Pixel size in the spatial direction, by default 0.2arcsec Pixel size in the spatial direction, by default 0.2arcsec
""" """
def __init__(self, wave_min=3500.0, wave_max=10000.0, def __init__(self, wave_min=3500.0, wave_max=10000.0,
dlam=2.0, inst_fwhm=0.1, dlam=2.0, inst_fwhm=0.1,
nx=30, ny=30, dpix=0.2): nx=30, ny=30, dpix=0.2):
self.dlam = dlam self.dlam = dlam
self.wave = np.arange(wave_min, wave_max, dlam) self.wave = np.arange(wave_min, wave_max, dlam)
self.wave_min = wave_min self.wave_min = wave_min
self.inst_fwhm = inst_fwhm self.inst_fwhm = inst_fwhm
self.nx = nx self.nx = nx
self.ny = ny self.ny = ny
......
...@@ -9,86 +9,78 @@ class Cube3D(): ...@@ -9,86 +9,78 @@ class Cube3D():
Class of 3-dimentional spectral cube Class of 3-dimentional spectral cube
""" """
def __init__(self, config, stellar_map=None, gas_map=None): def __init__(self, config, stellar_map=None, gas_map=None):
self.config = config self.config = config
self.nx = config.nx self.nx = config.nx
self.ny = config.ny self.ny = config.ny
self.dpix = config.dpix self.dpix = config.dpix
self.fov_x = config.fov_x self.fov_x = config.fov_x
self.fov_y = config.fov_y self.fov_y = config.fov_y
self.wave = config.wave self.wave = config.wave
self.nz = len(self.wave) self.nz = len(self.wave)
self.wave0 = np.min(self.wave) self.wave0 = np.min(self.wave)
self.inst_fwhm = config.inst_fwhm self.inst_fwhm = config.inst_fwhm
self.flux = np.zeros((self.nx, self.ny, self.nz)) self.flux = np.zeros((self.nx, self.ny, self.nz))
self.stellar_map = stellar_map self.stellar_map = stellar_map
self.gas_map = gas_map self.gas_map = gas_map
def make_cube(self, stellar_tem=None, hii_tem=None): def make_cube(self, stellar_tem=None, hii_tem=None):
for i in range(self.nx): for i in range(self.nx):
for j in range(self.ny): for j in range(self.ny):
if self.stellar_map is not None: if self.stellar_map is not None:
ss = StellarContinuum(self.config, stellar_tem, mag=self.stellar_map.mag[i, j], ss = StellarContinuum(self.config, stellar_tem, mag=self.stellar_map.mag[i, j],
age=self.stellar_map.age[i, j], feh=self.stellar_map.feh[i, j], age=self.stellar_map.age[i, j], feh=self.stellar_map.feh[i, j],
vel=self.stellar_map.vel[i, j], vdisp=self.stellar_map.vdisp[i, j], vel=self.stellar_map.vel[i, j], vdisp=self.stellar_map.vdisp[i, j],
ebv=self.stellar_map.ebv[i, j]) ebv=self.stellar_map.ebv[i, j])
if self.gas_map is not None: if self.gas_map is not None:
gg = HII_Region(self.config, hii_tem, halpha=self.gas_map.halpha[i, j], gg = HII_Region(self.config, hii_tem, halpha=self.gas_map.halpha[i, j],
logz=self.gas_map.zh[i, j], vel=self.gas_map.vel[i, j], logz=self.gas_map.zh[i, j], vel=self.gas_map.vel[i, j],
vdisp=self.gas_map.vdisp[i, j], ebv=self.gas_map.ebv[i, j]) vdisp=self.gas_map.vdisp[i, j], ebv=self.gas_map.ebv[i, j])
self.flux[i, j, :] = ss.flux + gg.flux self.flux[i, j, :] = ss.flux + gg.flux
else: else:
self.flux[i, j, :] = ss.flux self.flux[i, j, :] = ss.flux
def wcs_info(self): def wcs_info(self):
# wcs = fits.Header() # wcs = fits.Header()
wcs_dict = {'CTYPE1': 'WAVE ', wcs_dict = {'CTYPE1': 'WAVE ',
'CUNIT1': 'Angstrom', 'CUNIT1': 'Angstrom',
'CDELT1': self.config.dlam, 'CDELT1': self.config.dlam,
'CRPIX1': 1, 'CRPIX1': 1,
'CRVAL1': np.min(self.wave), 'CRVAL1': np.min(self.wave),
'CTYPE2': 'RA---TAN', 'CTYPE2': 'RA---TAN',
'CUNIT2': 'deg', 'CUNIT2': 'deg',
'CDELT2': self.dpix / 3600., 'CDELT2': self.dpix / 3600.,
'CRPIX2': np.round(self.ny / 2.), 'CRPIX2': np.round(self.ny / 2.),
'CRVAL2': 0.5, 'CRVAL2': 0.5,
'CTYPE3': 'DEC--TAN', 'CTYPE3': 'DEC--TAN',
'CUNIT3': 'deg', 'CUNIT3': 'deg',
'CDELT3': self.dpix / 3600., 'CDELT3': self.dpix / 3600.,
'CRPIX3': np.round(self.nx / 2.), 'CRPIX3': np.round(self.nx / 2.),
'CRVAL3': 1, 'CRVAL3': 1,
'BUNIT': '10**(-17)*erg/s/cm**2/Angstrom'} 'BUNIT': '10**(-17)*erg/s/cm**2/Angstrom'}
input_wcs = astropy.wcs.WCS(wcs_dict) input_wcs = astropy.wcs.WCS(wcs_dict)
self.wcs_header = input_wcs.to_header() self.wcs_header = input_wcs.to_header()
def insert_spec(self, spec, dx=0, dy=0): def insert_spec(self, spec, dx=0, dy=0):
x0 = np.int(np.round(self.config.nx / 2.)) x0 = np.int(np.round(self.config.nx / 2.))
y0 = np.int(np.round(self.config.ny / 2.)) y0 = np.int(np.round(self.config.ny / 2.))
self.flux[x0 + dx, y0 + dy, :] = self.flux[x0 + dx, y0 + dy, :] + spec.flux self.flux[x0 + dx, y0 + dy, :] = self.flux[x0 + dx, y0 + dy, :] + spec.flux
def savefits(self, filename, path='./'): def savefits(self, filename, path='./'):
hdr = fits.Header() hdr = fits.Header()
hdr['FILETYPE'] = 'SCICUBE' hdr['FILETYPE'] = 'SCICUBE'
hdr['CODE'] = 'CSST-IFS-GEHONG' hdr['CODE'] = 'CSST-IFS-GEHONG'
hdr['VERSION'] = '0.0.1' hdr['VERSION'] = '0.0.1'
hdr['OBJECT'] = 'NGC1234' hdr['OBJECT'] = 'NGC1234'
hdr['RA'] = 0.0 hdr['RA'] = 0.0
hdr['DEC'] = 0.0 hdr['DEC'] = 0.0
hdu0 = fits.PrimaryHDU(header=hdr) hdu0 = fits.PrimaryHDU(header=hdr)
self.wcs_info() self.wcs_info()
hdr = self.wcs_header hdr = self.wcs_header
hdu1 = fits.ImageHDU(self.flux, header=hdr) hdu1 = fits.ImageHDU(self.flux, header=hdr)
# Output # Output
hdulist = fits.HDUList([hdu0, hdu1]) hdulist = fits.HDUList([hdu0, hdu1])
hdulist.writeto(path + filename, overwrite=True) hdulist.writeto(path + filename, overwrite=True)
\ No newline at end of file
...@@ -49,23 +49,23 @@ def Sersic2D(x, y, mag=12.0, r_eff=1.0, n=2.0, ellip=0.5, ...@@ -49,23 +49,23 @@ def Sersic2D(x, y, mag=12.0, r_eff=1.0, n=2.0, ellip=0.5,
x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta
z = (abs(x_maj / a) ** 2 + abs(x_min / b) ** 2) ** (1 / 2) z = (abs(x_maj / a) ** 2 + abs(x_min / b) ** 2) ** (1 / 2)
profile = np.exp(-bn * (z ** (1 / n) - 1)) profile = np.exp(-bn * (z ** (1 / n) - 1))
# Normalization # Normalization
integral = a * b * 2 * np.pi * n * np.exp(bn) / (bn ** (2 * n)) * sp.gamma(2 * n) integral = a * b * 2 * np.pi * n * np.exp(bn) / (bn ** (2 * n)) * sp.gamma(2 * n)
prof_norm = profile / integral * pixelscale prof_norm = profile / integral * pixelscale
# Calibration # Calibration
total_flux = 10. ** ((22.5 - mag) * 0.4) total_flux = 10. ** ((22.5 - mag) * 0.4)
sb_mag = 22.5 - 2.5 * np.log10(prof_norm * total_flux / pixelscale) sb_mag = 22.5 - 2.5 * np.log10(prof_norm * total_flux / pixelscale)
return sb_mag return sb_mag
def VelMap2D(x, y, vmax=200.0, rt=1.0, ellip=0.5, def VelMap2D(x, y, vmax=200.0, rt=1.0, ellip=0.5,
theta=0.0, x_0=0.0, y_0=0.0): theta=0.0, x_0=0.0, y_0=0.0):
""" """
VelMap2D: Caculate the velocity at given spatial position base on the rotating disk model. VelMap2D: Caculate the velocity at given spatial position base on the rotating disk model.
The rotation curve is adpot as the tanh model. The rotation curve is adpot as the tanh model.
Parameters Parameters
---------- ----------
...@@ -102,15 +102,15 @@ def VelMap2D(x, y, vmax=200.0, rt=1.0, ellip=0.5, ...@@ -102,15 +102,15 @@ def VelMap2D(x, y, vmax=200.0, rt=1.0, ellip=0.5,
x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta
z = (abs(x_maj / a) ** 2 + abs(x_min / b) ** 2) ** (1 / 2) z = (abs(x_maj / a) ** 2 + abs(x_min / b) ** 2) ** (1 / 2)
profile = vmax * np.tanh(z) * ((x_maj / a) / z) profile = vmax * np.tanh(z) * ((x_maj / a) / z)
return profile return profile
def GradMap2D(x, y, a0=10.0, r_eff=1.0, gred=-1.0, ellip=0.5, def GradMap2D(x, y, a0=10.0, r_eff=1.0, gred=-1.0, ellip=0.5,
theta=0.0, x_0=0.0, y_0=0.0): theta=0.0, x_0=0.0, y_0=0.0):
""" """
GradMap2D: Caculate the intensity at given spatial position base on the disk model. GradMap2D: Caculate the intensity at given spatial position base on the disk model.
The radial profile is adpot as the gradient model. The radial profile is adpot as the gradient model.
Parameters Parameters
---------- ----------
...@@ -149,7 +149,7 @@ def GradMap2D(x, y, a0=10.0, r_eff=1.0, gred=-1.0, ellip=0.5, ...@@ -149,7 +149,7 @@ def GradMap2D(x, y, a0=10.0, r_eff=1.0, gred=-1.0, ellip=0.5,
x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta x_min = -(x - x_0) * sin_theta + (y - y_0) * cos_theta
z = (abs(x_maj / a) ** 2 + abs(x_min / b) ** 2) ** (1 / 2) z = (abs(x_maj / a) ** 2 + abs(x_min / b) ** 2) ** (1 / 2)
profile = a0 + z * gred profile = a0 + z * gred
return profile return profile
...@@ -207,7 +207,7 @@ class Map2d(object): ...@@ -207,7 +207,7 @@ class Map2d(object):
xsh_rot = xsh * np.cos(pa_radians) + ysh * np.sin(pa_radians) xsh_rot = xsh * np.cos(pa_radians) + ysh * np.sin(pa_radians)
ysh_rot = -xsh * np.sin(pa_radians) + ysh * np.cos(pa_radians) ysh_rot = -xsh * np.sin(pa_radians) + ysh * np.cos(pa_radians)
return ysh_rot, xsh_rot return ysh_rot, xsh_rot
def sersic_map(self, mag=12.0, r_eff=2.0, n=2.5, ellip=0.5, theta=-50.0): def sersic_map(self, mag=12.0, r_eff=2.0, n=2.5, ellip=0.5, theta=-50.0):
""" """
Generate 2D map of Sersic model Generate 2D map of Sersic model
...@@ -246,11 +246,11 @@ class Map2d(object): ...@@ -246,11 +246,11 @@ class Map2d(object):
self.n = n self.n = n
self.ellip = ellip self.ellip = ellip
self.theta = theta self.theta = theta
self.map = Sersic2D(self.x, self.y, mag=self.mag, self.map = Sersic2D(self.x, self.y, mag=self.mag,
r_eff=self.reff, n=self.n, r_eff=self.reff, n=self.n,
ellip=self.ellip, theta=self.theta, ellip=self.ellip, theta=self.theta,
pixelscale=self.xsamp * self.ysamp) pixelscale=self.xsamp * self.ysamp)
def tanh_map(self, vmax=200.0, rt=2.0, ellip=0.5, theta=-50.0): def tanh_map(self, vmax=200.0, rt=2.0, ellip=0.5, theta=-50.0):
""" """
Generate 2D velocity map of rotating disk according to tanh rotation curve Generate 2D velocity map of rotating disk according to tanh rotation curve
...@@ -284,9 +284,9 @@ class Map2d(object): ...@@ -284,9 +284,9 @@ class Map2d(object):
self.rt = rt / self.xsamp self.rt = rt / self.xsamp
self.ellip = ellip self.ellip = ellip
self.theta = theta self.theta = theta
self.map = VelMap2D(self.x, self.y, vmax=self.vmax, rt=self.rt, self.map = VelMap2D(self.x, self.y, vmax=self.vmax, rt=self.rt,
ellip=self.ellip, theta=self.theta) ellip=self.ellip, theta=self.theta)
def gred_map(self, a0=10, r_eff=1, gred=-1, ellip=0.5, theta=0): def gred_map(self, a0=10, r_eff=1, gred=-1, ellip=0.5, theta=0):
""" """
Generate 2D maps according to the radial gradient form Generate 2D maps according to the radial gradient form
...@@ -319,9 +319,9 @@ class Map2d(object): ...@@ -319,9 +319,9 @@ class Map2d(object):
self.gred = gred self.gred = gred
self.ellip = ellip self.ellip = ellip
self.theta = theta self.theta = theta
self.map = GradMap2D(self.x, self.y, a0=self.a0, r_eff=self.reff, self.map = GradMap2D(self.x, self.y, a0=self.a0, r_eff=self.reff,
gred=self.gred, ellip=self.ellip, theta=self.theta) gred=self.gred, ellip=self.ellip, theta=self.theta)
def load_map(self, image): def load_map(self, image):
""" """
Generate 2D map according to input image Generate 2D map according to input image
...@@ -339,10 +339,10 @@ class Map2d(object): ...@@ -339,10 +339,10 @@ class Map2d(object):
class StellarPopulationMap(): class StellarPopulationMap():
""" """
Class of 2D maps for the parameters of stellar population, such as Class of 2D maps for the parameters of stellar population, such as
surface brightness, median age and metallicity of stellar population, surface brightness, median age and metallicity of stellar population,
velocity and velocity dispersion maps, and dust extinction. velocity and velocity dispersion maps, and dust extinction.
Parameters Parameters
---------- ----------
config : class config : class
...@@ -360,7 +360,7 @@ class StellarPopulationMap(): ...@@ -360,7 +360,7 @@ class StellarPopulationMap():
ebv : class, optional ebv : class, optional
Class of the map of dust extinction, by default None Class of the map of dust extinction, by default None
""" """
def __init__(self, config, sbright=None, logage=None, def __init__(self, config, sbright=None, logage=None,
feh=None, vel=None, vdisp=None, ebv=None): feh=None, vel=None, vdisp=None, ebv=None):
self.nx = config.nx self.nx = config.nx
...@@ -368,29 +368,29 @@ class StellarPopulationMap(): ...@@ -368,29 +368,29 @@ class StellarPopulationMap():
self.dpix = config.dpix self.dpix = config.dpix
self.fov_x = config.fov_x self.fov_x = config.fov_x
self.fov_y = config.fov_y self.fov_y = config.fov_y
if (sbright is None): if (sbright is None):
print('Input SurfaceBrightness Map is empty!') print('Input SurfaceBrightness Map is empty!')
else: else:
self.sbright = sbright.map self.sbright = sbright.map
self.mag = self.sbright - 2.5 * np.log10(self.dpix * self.dpix) self.mag = self.sbright - 2.5 * np.log10(self.dpix * self.dpix)
if (logage is None): if (logage is None):
print('Input Age Map is empty!') print('Input Age Map is empty!')
else: else:
self.logage = logage.map self.logage = logage.map
self.age = 10 ** self.logage / 1e9 self.age = 10 ** self.logage / 1e9
if (feh is None): if (feh is None):
print('Input Metallicity Map is empty!') print('Input Metallicity Map is empty!')
else: else:
self.feh = feh.map self.feh = feh.map
if (vel is None): if (vel is None):
print('Input Velocity Map is empty!') print('Input Velocity Map is empty!')
else: else:
self.vel = vel.map self.vel = vel.map
if (vdisp is None): if (vdisp is None):
print('Input VelocityDispersion Map is empty!') print('Input VelocityDispersion Map is empty!')
else: else:
...@@ -399,7 +399,7 @@ class StellarPopulationMap(): ...@@ -399,7 +399,7 @@ class StellarPopulationMap():
if len(self.vdisp[ind_overrange]) > 0: if len(self.vdisp[ind_overrange]) > 0:
print("Notice: Spaxel with <10km/s in the input vdisp map will be automatically adjusted to 10km/s.") print("Notice: Spaxel with <10km/s in the input vdisp map will be automatically adjusted to 10km/s.")
self.vdisp[ind_overrange] = 10 self.vdisp[ind_overrange] = 10
if (ebv is None): if (ebv is None):
print('Input EBV Map is empty!') print('Input EBV Map is empty!')
else: else:
...@@ -408,12 +408,12 @@ class StellarPopulationMap(): ...@@ -408,12 +408,12 @@ class StellarPopulationMap():
if len(self.ebv[ind_overrange]) > 0: if len(self.ebv[ind_overrange]) > 0:
print("Notice: Spaxel with < 0 mag in the input ebv map will be automatically adjusted to 0 mag.") print("Notice: Spaxel with < 0 mag in the input ebv map will be automatically adjusted to 0 mag.")
self.ebv[ind_overrange] = 0 self.ebv[ind_overrange] = 0
class IonizedGasMap(): class IonizedGasMap():
""" """
Class of 2D maps for the parameters of ionized gas, such as Class of 2D maps for the parameters of ionized gas, such as
Halpha flux map, gas-phase metallicity map, Halpha flux map, gas-phase metallicity map,
velocity and velocity dispersion maps, and dust extinction. velocity and velocity dispersion maps, and dust extinction.
Parameters Parameters
...@@ -432,13 +432,13 @@ class IonizedGasMap(): ...@@ -432,13 +432,13 @@ class IonizedGasMap():
Class of the map of dust extinction, by default None Class of the map of dust extinction, by default None
""" """
def __init__(self, config, halpha=None, zh=None, vel=None, vdisp=None, ebv=None): def __init__(self, config, halpha=None, zh=None, vel=None, vdisp=None, ebv=None):
self.nx = config.nx self.nx = config.nx
self.ny = config.ny self.ny = config.ny
self.dpix = config.dpix self.dpix = config.dpix
self.fov_x = config.fov_x self.fov_x = config.fov_x
self.fov_y = config.fov_y self.fov_y = config.fov_y
if (halpha is None): if (halpha is None):
print('Input Halpha Map is empty!') print('Input Halpha Map is empty!')
else: else:
...@@ -470,4 +470,4 @@ class IonizedGasMap(): ...@@ -470,4 +470,4 @@ class IonizedGasMap():
ind_overrange = (self.ebv < 0) ind_overrange = (self.ebv < 0)
if len(self.ebv[ind_overrange]) > 0: if len(self.ebv[ind_overrange]) > 0:
print("Notice: Spaxel with < 0 mag in the input ebv map will be automatically adjusted to 0 mag.") print("Notice: Spaxel with < 0 mag in the input ebv map will be automatically adjusted to 0 mag.")
self.ebv[ind_overrange] = 0 self.ebv[ind_overrange] = 0
\ No newline at end of file
...@@ -47,8 +47,8 @@ def readcol(filename, **kwargs): ...@@ -47,8 +47,8 @@ def readcol(filename, **kwargs):
def log_rebin(lamRange, spec, oversample=False, velscale=None, flux=False): def log_rebin(lamRange, spec, oversample=False, velscale=None, flux=False):
""" """
Logarithmically rebin a spectrum, while rigorously conserving the flux. Logarithmically rebin a spectrum, while rigorously conserving the flux.
This function is taken from ppxf. This function is taken from ppxf.
Parameters Parameters
---------- ----------
...@@ -175,7 +175,7 @@ def calibrate(wave, flux, mag, filtername='SLOAN_SDSS.r'): ...@@ -175,7 +175,7 @@ def calibrate(wave, flux, mag, filtername='SLOAN_SDSS.r'):
else: else:
filter_file = data_path + '/data/filter/' + filtername + '.filter' filter_file = data_path + '/data/filter/' + filtername + '.filter'
wave0, response0 = readcol(filter_file) wave0, response0 = readcol(filter_file)
# Setting the response # Setting the response
func = interp1d(wave0, response0) func = interp1d(wave0, response0)
response = np.copy(wave) response = np.copy(wave)
...@@ -183,17 +183,17 @@ def calibrate(wave, flux, mag, filtername='SLOAN_SDSS.r'): ...@@ -183,17 +183,17 @@ def calibrate(wave, flux, mag, filtername='SLOAN_SDSS.r'):
response[ind_extra] = 0 response[ind_extra] = 0
ind_inside = (wave < max(wave0)) & (wave > min(wave0)) ind_inside = (wave < max(wave0)) & (wave > min(wave0))
response[ind_inside] = func(wave[ind_inside]) response[ind_inside] = func(wave[ind_inside])
# Flux map of datacube for given filter band # Flux map of datacube for given filter band
preflux = np.sum(flux * response * np.mean(np.diff(wave))) / np.sum(response * np.mean(np.diff(wave))) preflux = np.sum(flux * response * np.mean(np.diff(wave))) / np.sum(response * np.mean(np.diff(wave)))
# Real flux from magnitude for given filter # Real flux from magnitude for given filter
realflux = (mag * u.STmag).to(u.erg / u.s / u.cm**2 / u.AA).value realflux = (mag * u.STmag).to(u.erg / u.s / u.cm**2 / u.AA).value
# Normalization # Normalization
flux_ratio = realflux / preflux flux_ratio = realflux / preflux
flux_calibrate = flux * flux_ratio * 1e17 # Units: 10^-17 erg/s/A/cm^2 flux_calibrate = flux * flux_ratio * 1e17 # Units: 10^-17 erg/s/A/cm^2
return flux_calibrate return flux_calibrate
# ---------------- # ----------------
...@@ -218,11 +218,10 @@ def Calzetti_Law(wave, Rv=4.05): ...@@ -218,11 +218,10 @@ def Calzetti_Law(wave, Rv=4.05):
""" """
wave_number = 1. / (wave * 1e-4) wave_number = 1. / (wave * 1e-4)
reddening_curve = np.zeros(len(wave)) reddening_curve = np.zeros(len(wave))
idx = (wave >= 1200) & (wave < 6300) idx = (wave >= 1200) & (wave < 6300)
reddening_curve[idx] = 2.659 * (-2.156 + 1.509 * wave_number[idx] - 0.198 * reddening_curve[idx] = 2.659 * (-2.156 + 1.509 * wave_number[idx] - 0.198 * (wave_number[idx] ** 2)) + 0.011 * (wave_number[idx] ** 3) + Rv
(wave_number[idx] ** 2)) + 0.011 * (wave_number[idx] ** 3) + Rv
idx = (wave >= 6300) & (wave <= 22000) idx = (wave >= 6300) & (wave <= 22000)
reddening_curve[idx] = 2.659 * (-1.857 + 1.040 * wave_number[idx]) + Rv reddening_curve[idx] = 2.659 * (-1.857 + 1.040 * wave_number[idx]) + Rv
return reddening_curve return reddening_curve
...@@ -277,7 +276,7 @@ def SingleEmissinoLine(wave, line_wave, FWHM_inst): ...@@ -277,7 +276,7 @@ def SingleEmissinoLine(wave, line_wave, FWHM_inst):
float array float array
Spectra of single emission line Spectra of single emission line
""" """
sigma = FWHM_inst / 2.355 sigma = FWHM_inst / 2.355
flux = norm.pdf(wave, line_wave, sigma) flux = norm.pdf(wave, line_wave, sigma)
return flux return flux
...@@ -295,20 +294,20 @@ class EmissionLineTemplate(): ...@@ -295,20 +294,20 @@ class EmissionLineTemplate():
dlam : float, optional dlam : float, optional
Wavelength width per pixel, by default 0.1A Wavelength width per pixel, by default 0.1A
model : str, optional model : str, optional
Emission line model, including 'hii' for HII region and 'nlr' for narrow line region of AGN, Emission line model, including 'hii' for HII region and 'nlr' for narrow line region of AGN,
by default 'hii' by default 'hii'
""" """
def __init__(self, config, lam_range=[500, 15000], dlam=0.1, model='hii'): def __init__(self, config, lam_range=[500, 15000], dlam=0.1, model='hii'):
self.lam_range = lam_range self.lam_range = lam_range
self.wave = np.arange(lam_range[0], lam_range[1], 0.1) self.wave = np.arange(lam_range[0], lam_range[1], 0.1)
self.FWHM_inst = config.inst_fwhm self.FWHM_inst = config.inst_fwhm
self.model = model self.model = model
# HII region model of fsps-cloudy # HII region model of fsps-cloudy
if model == 'hii': if model == 'hii':
# Loading emission line flux table # Loading emission line flux table
flux_table_file = data_path + '/data/fsps.nebular.fits' flux_table_file = data_path + '/data/fsps.nebular.fits'
line_table = fits.open(flux_table_file) line_table = fits.open(flux_table_file)
...@@ -317,18 +316,18 @@ class EmissionLineTemplate(): ...@@ -317,18 +316,18 @@ class EmissionLineTemplate():
line_list = line_table[1].data line_list = line_table[1].data
line_wave = line_list['Wave'] line_wave = line_list['Wave']
line_names = line_list['Name'] line_names = line_list['Name']
w = (line_wave > lam_range[0]) & (line_wave < lam_range[1]) w = (line_wave > lam_range[0]) & (line_wave < lam_range[1])
self.line_names = line_names[w] self.line_names = line_names[w]
self.line_wave = line_wave[w] self.line_wave = line_wave[w]
# Make parameter grid # Make parameter grid
grid = line_table[2].data grid = line_table[2].data
self.logz_grid = grid['logZ'] self.logz_grid = grid['logZ']
# Narrow line region model of # Narrow line region model of
if model == 'nlr': if model == 'nlr':
# Loading emission line flux table # Loading emission line flux table
flux_table_file = data_path + '/data/AGN.NLR.fits' flux_table_file = data_path + '/data/AGN.NLR.fits'
line_table = fits.open(flux_table_file) line_table = fits.open(flux_table_file)
...@@ -337,19 +336,19 @@ class EmissionLineTemplate(): ...@@ -337,19 +336,19 @@ class EmissionLineTemplate():
line_list = line_table[1].data line_list = line_table[1].data
line_wave = line_list['Wave'] line_wave = line_list['Wave']
line_names = line_list['Name'] line_names = line_list['Name']
w = (line_wave > lam_range[0]) & (line_wave < lam_range[1]) w = (line_wave > lam_range[0]) & (line_wave < lam_range[1])
self.line_names = line_names[w] self.line_names = line_names[w]
self.line_wave = line_wave[w] self.line_wave = line_wave[w]
# Make parameter grid # Make parameter grid
grid = line_table[2].data grid = line_table[2].data
self.logz_grid = grid['logZ'] self.logz_grid = grid['logZ']
# Flux ratio # Flux ratio
flux_ratio = line_table[3].data flux_ratio = line_table[3].data
self.flux_ratio = flux_ratio self.flux_ratio = flux_ratio
# Make emission line # Make emission line
nline = len(line_wave) nline = len(line_wave)
for i in range(nline): for i in range(nline):
...@@ -389,9 +388,9 @@ class HII_Region(): ...@@ -389,9 +388,9 @@ class HII_Region():
ValueError ValueError
The value of logZ should be between -2 and 0.5. The value of logZ should be between -2 and 0.5.
""" """
def __init__(self, config, temp, halpha=100.0, logz=0.0, vel=100.0, vdisp=120.0, ebv=0.1): def __init__(self, config, temp, halpha=100.0, logz=0.0, vel=100.0, vdisp=120.0, ebv=0.1):
# Check Input Parameters # Check Input Parameters
# if (halpha < 0): # if (halpha < 0):
# print("Notice: Your input Halpha flux (halpha) is < 0 erg/s/A/cm^2. ") # print("Notice: Your input Halpha flux (halpha) is < 0 erg/s/A/cm^2. ")
...@@ -403,25 +402,25 @@ class HII_Region(): ...@@ -403,25 +402,25 @@ class HII_Region():
# if (ebv < 0): # if (ebv < 0):
# ebv = 0 # ebv = 0
# print('Notice: Your input dust extinction (ebv) is < 0 mag, which will be automatically adjusted to 0 mag. ') # print('Notice: Your input dust extinction (ebv) is < 0 mag, which will be automatically adjusted to 0 mag. ')
# Make emission line spectra through adding emission lines # Make emission line spectra through adding emission lines
emlines = temp.emission_lines * flux_ratio emlines = temp.emission_lines * flux_ratio
flux_combine = np.sum(emlines, axis=1) flux_combine = np.sum(emlines, axis=1)
flux_calibrate = flux_combine * halpha # Units: erg/s/A/cm^2 flux_calibrate = flux_combine * halpha # Units: erg/s/A/cm^2
# Dust attenuation # Dust attenuation
if np.isscalar(ebv): if np.isscalar(ebv):
flux_dust = reddening(temp.wave, flux_calibrate, ebv=ebv) flux_dust = reddening(temp.wave, flux_calibrate, ebv=ebv)
# Broadening caused by Velocity Dispersion # Broadening caused by Velocity Dispersion
velscale = 10 velscale = 10
lam_range = [np.min(temp.wave), np.max(temp.wave)] lam_range = [np.min(temp.wave), np.max(temp.wave)]
flux_logwave, logLam = log_rebin(lam_range, flux_dust, velscale=velscale)[:2] flux_logwave, logLam = log_rebin(lam_range, flux_dust, velscale=velscale)[:2]
sigma_gas = vdisp / velscale # in pixel sigma_gas = vdisp / velscale # in pixel
sigma_LSF = temp.FWHM_inst / (np.exp(logLam)) * 3e5 / velscale # in pixel sigma_LSF = temp.FWHM_inst / (np.exp(logLam)) * 3e5 / velscale # in pixel
if sigma_gas > 0: if sigma_gas > 0:
sigma_dif = np.zeros(len(flux_logwave)) sigma_dif = np.zeros(len(flux_logwave))
idx = (sigma_gas > sigma_LSF) idx = (sigma_gas > sigma_LSF)
sigma_dif[idx] = np.sqrt(sigma_gas ** 2. - sigma_LSF[idx] ** 2.) sigma_dif[idx] = np.sqrt(sigma_gas ** 2. - sigma_LSF[idx] ** 2.)
...@@ -431,12 +430,12 @@ class HII_Region(): ...@@ -431,12 +430,12 @@ class HII_Region():
else: else:
print('Notice: Your input velocity dispersion (vdisp) is <= 0 km/s. The nagtive value will be automatically adjusted to 0 km/s. ') print('Notice: Your input velocity dispersion (vdisp) is <= 0 km/s. The nagtive value will be automatically adjusted to 0 km/s. ')
flux_broad = flux_logwave flux_broad = flux_logwave
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = np.exp(logLam) * (1 + redshift) wave_r = np.exp(logLam) * (1 + redshift)
flux_red = np.interp(config.wave, wave_r, flux_broad) flux_red = np.interp(config.wave, wave_r, flux_broad)
self.wave = config.wave self.wave = config.wave
self.flux = flux_red self.flux = flux_red
...@@ -472,45 +471,45 @@ class AGN_NLR(): ...@@ -472,45 +471,45 @@ class AGN_NLR():
ValueError ValueError
The value of logZ should be between -2 and 0.5. The value of logZ should be between -2 and 0.5.
""" """
def __init__(self, config, temp, halpha=100.0, logz=0.0, vel=100.0, vdisp=120.0, ebv=0.1): def __init__(self, config, temp, halpha=100.0, logz=0.0, vel=100.0, vdisp=120.0, ebv=0.1):
if (logz >= -2.3) & (logz <= 0.54): if (logz >= -2.3) & (logz <= 0.54):
indz = np.argmin(np.abs(logz - temp.logz_grid)) indz = np.argmin(np.abs(logz - temp.logz_grid))
flux_ratio = temp.flux_ratio[indz, :] flux_ratio = temp.flux_ratio[indz, :]
else: else:
raise ValueError('The value of logZ is not in the range of [-2.3, 0.54]') raise ValueError('The value of logZ is not in the range of [-2.3, 0.54]')
# Make emission line spectra through adding emission lines # Make emission line spectra through adding emission lines
emlines = temp.emission_lines * (flux_ratio / flux_ratio[6]) emlines = temp.emission_lines * (flux_ratio / flux_ratio[6])
flux_combine = np.sum(emlines, axis=1) flux_combine = np.sum(emlines, axis=1)
flux_calibrate = flux_combine * halpha # Units: 1e-17 erg/s/A/cm^2 flux_calibrate = flux_combine * halpha # Units: 1e-17 erg/s/A/cm^2
# Dust attenuation # Dust attenuation
if np.isscalar(ebv): if np.isscalar(ebv):
flux_dust = reddening(temp.wave, flux_calibrate, ebv=ebv) flux_dust = reddening(temp.wave, flux_calibrate, ebv=ebv)
# Broadening caused by Velocity Dispersion # Broadening caused by Velocity Dispersion
velscale = 10 velscale = 10
lam_range = [np.min(temp.wave), np.max(temp.wave)] lam_range = [np.min(temp.wave), np.max(temp.wave)]
flux_logwave, logLam = log_rebin(lam_range, flux_dust, velscale=velscale)[:2] flux_logwave, logLam = log_rebin(lam_range, flux_dust, velscale=velscale)[:2]
sigma_gas = vdisp / velscale # in pixel sigma_gas = vdisp / velscale # in pixel
sigma_LSF = temp.FWHM_inst / (np.exp(logLam)) * 3e5 / velscale # in pixel sigma_LSF = temp.FWHM_inst / (np.exp(logLam)) * 3e5 / velscale # in pixel
if sigma_gas > 0: if sigma_gas > 0:
sigma_dif = np.zeros(len(flux_logwave)) sigma_dif = np.zeros(len(flux_logwave))
idx = (sigma_gas > sigma_LSF) idx = (sigma_gas > sigma_LSF)
sigma_dif[idx] = np.sqrt(sigma_gas ** 2. - sigma_LSF[idx] ** 2.) sigma_dif[idx] = np.sqrt(sigma_gas ** 2. - sigma_LSF[idx] ** 2.)
idx = (sigma_gas <= sigma_LSF) idx = (sigma_gas <= sigma_LSF)
sigma_dif[idx] = 0.1 sigma_dif[idx] = 0.1
flux_broad = gaussian_filter1d(flux_logwave, sigma_dif) flux_broad = gaussian_filter1d(flux_logwave, sigma_dif)
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = np.exp(logLam) * (1 + redshift) wave_r = np.exp(logLam) * (1 + redshift)
flux_red = np.interp(config.wave, wave_r, flux_broad) flux_red = np.interp(config.wave, wave_r, flux_broad)
self.wave = config.wave self.wave = config.wave
self.flux = flux_red self.flux = flux_red
...@@ -536,42 +535,42 @@ class AGN_BLR(): ...@@ -536,42 +535,42 @@ class AGN_BLR():
Wavelength range, by default [500, 15000] Wavelength range, by default [500, 15000]
""" """
def __init__(self, config, hbeta_flux=100.0, hbeta_fwhm=2000.0, ebv=0.1, def __init__(self, config, hbeta_flux=100.0, hbeta_fwhm=2000.0, ebv=0.1,
vel=0., lam_range=[500, 15000]): vel=0., lam_range=[500, 15000]):
wave_rest = np.arange(lam_range[0], lam_range[1], 0.1) wave_rest = np.arange(lam_range[0], lam_range[1], 0.1)
line_names = ['Hepsilon', 'Hdelta', 'Hgamma', 'Hbeta', 'Halpha'] line_names = ['Hepsilon', 'Hdelta', 'Hgamma', 'Hbeta', 'Halpha']
line_waves = [3970.079, 4101.742, 4340.471, 4861.333, 6562.819] line_waves = [3970.079, 4101.742, 4340.471, 4861.333, 6562.819]
line_ratio = [0.101, 0.208, 0.405, 1.000, 2.579] # From Ilic et al. (2006) line_ratio = [0.101, 0.208, 0.405, 1.000, 2.579] # From Ilic et al. (2006)
# Make emission lines # Make emission lines
for i in range(len(line_names)): for i in range(len(line_names)):
if i == 0: if i == 0:
emission_line = SingleEmissinoLine(wave_rest, line_waves[i], emission_line = SingleEmissinoLine(wave_rest, line_waves[i],
hbeta_fwhm / 3e5 * line_waves[i]) hbeta_fwhm / 3e5 * line_waves[i])
emission_lines = emission_line emission_lines = emission_line
else: else:
emission_line = SingleEmissinoLine(wave_rest, line_waves[i], emission_line = SingleEmissinoLine(wave_rest, line_waves[i],
hbeta_fwhm / 3e5 * line_waves[i]) hbeta_fwhm / 3e5 * line_waves[i])
emission_lines = np.vstack((emission_lines, emission_line)) emission_lines = np.vstack((emission_lines, emission_line))
emlines = emission_lines.T * line_ratio emlines = emission_lines.T * line_ratio
flux_combine = np.sum(emlines, axis=1) flux_combine = np.sum(emlines, axis=1)
# Flux callibration # Flux callibration
flux_calibrate = flux_combine * hbeta_flux # Units: 1e-17 erg/s/A/cm^2 flux_calibrate = flux_combine * hbeta_flux # Units: 1e-17 erg/s/A/cm^2
# Dust attenuation # Dust attenuation
if np.isscalar(ebv): if np.isscalar(ebv):
flux_dust = reddening(wave_rest, flux_calibrate, ebv=ebv) flux_dust = reddening(wave_rest, flux_calibrate, ebv=ebv)
else: else:
flux_dust = flux_calibrate flux_dust = flux_calibrate
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = wave_rest * (1 + redshift) wave_r = wave_rest * (1 + redshift)
flux_red = np.interp(config.wave, wave_r, flux_dust) flux_red = np.interp(config.wave, wave_r, flux_dust)
self.wave = config.wave self.wave = config.wave
self.flux = flux_red self.flux = flux_red
...@@ -593,39 +592,39 @@ class AGN_FeII(): ...@@ -593,39 +592,39 @@ class AGN_FeII():
ebv : float, optional ebv : float, optional
Dust extinction, by default 0.1 Dust extinction, by default 0.1
""" """
def __init__(self, config, hbeta_broad=100.0, r4570=0.4, ebv=0.1, vel=100.0): def __init__(self, config, hbeta_broad=100.0, r4570=0.4, ebv=0.1, vel=100.0):
filename = data_path + '/data/FeII.AGN.fits' filename = data_path + '/data/FeII.AGN.fits'
# Loading FeII template # Loading FeII template
hdulist = fits.open(filename) hdulist = fits.open(filename)
data = hdulist[1].data data = hdulist[1].data
wave_rest = data['WAVE'] wave_rest = data['WAVE']
flux_model = data['FLUX'] flux_model = data['FLUX']
# Determine the flux of FeII # Determine the flux of FeII
Fe4570_temp = 100 Fe4570_temp = 100
Fe4570_model = hbeta_broad * r4570 Fe4570_model = hbeta_broad * r4570
Ratio_Fe4570 = Fe4570_model / Fe4570_temp Ratio_Fe4570 = Fe4570_model / Fe4570_temp
# Flux calibration # Flux calibration
flux_calibrate = flux_model * Ratio_Fe4570 flux_calibrate = flux_model * Ratio_Fe4570
# Dust attenuation # Dust attenuation
if np.isscalar(ebv): if np.isscalar(ebv):
flux_dust = reddening(wave_rest, flux_calibrate, ebv=ebv) flux_dust = reddening(wave_rest, flux_calibrate, ebv=ebv)
else: else:
flux_dust = flux_calibrate flux_dust = flux_calibrate
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = wave_rest * (1 + redshift) wave_r = wave_rest * (1 + redshift)
flux_red = np.interp(config.wave, wave_r, flux_dust) flux_red = np.interp(config.wave, wave_r, flux_dust)
self.wave = config.wave self.wave = config.wave
self.flux = flux_red self.flux = flux_red
class AGN_Powerlaw(): class AGN_Powerlaw():
...@@ -645,29 +644,29 @@ class AGN_Powerlaw(): ...@@ -645,29 +644,29 @@ class AGN_Powerlaw():
Ebv : float, optional Ebv : float, optional
Dust extinction, by default 0.1 Dust extinction, by default 0.1
""" """
def __init__(self, config, m5100=1000.0, alpha=-1.5, vel=100.0, ebv=0.1): def __init__(self, config, m5100=1000.0, alpha=-1.5, vel=100.0, ebv=0.1):
wave_rest = np.linspace(1000, 20000, 10000) wave_rest = np.linspace(1000, 20000, 10000)
flux = wave_rest ** alpha flux = wave_rest ** alpha
# Flux calibration # Flux calibration
flux_calibrate = calibrate(wave_rest, flux, m5100, filtername='5100') flux_calibrate = calibrate(wave_rest, flux, m5100, filtername='5100')
# Dust attenuation # Dust attenuation
if np.isscalar(ebv): if np.isscalar(ebv):
flux_dust = reddening(wave_rest, flux_calibrate, ebv=ebv) flux_dust = reddening(wave_rest, flux_calibrate, ebv=ebv)
else: else:
flux_dust = flux_calibrate flux_dust = flux_calibrate
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = wave_rest * (1 + redshift) wave_r = wave_rest * (1 + redshift)
flux_red = np.interp(config.wave, wave_r, flux_dust) flux_red = np.interp(config.wave, wave_r, flux_dust)
self.wave = config.wave self.wave = config.wave
self.flux = flux_red self.flux = flux_red
class AGN(): class AGN():
...@@ -681,7 +680,7 @@ class AGN(): ...@@ -681,7 +680,7 @@ class AGN():
nlr_template : class nlr_template : class
Class of emission line template Class of emission line template
bhmass : float, optional bhmass : float, optional
Black hole mass used for calculating the luminosity of power law spectrum at 5100A, Black hole mass used for calculating the luminosity of power law spectrum at 5100A,
by default 1e6 solar mass by default 1e6 solar mass
edd_ratio : float, optional edd_ratio : float, optional
Eddinton ratio used for calculating the luminosity of power law spectrum at 5100A, by default 0.05 Eddinton ratio used for calculating the luminosity of power law spectrum at 5100A, by default 0.05
...@@ -702,10 +701,10 @@ class AGN(): ...@@ -702,10 +701,10 @@ class AGN():
dist : float, optional dist : float, optional
Luminosity distance of AGN, by default 20.0Mpc Luminosity distance of AGN, by default 20.0Mpc
""" """
def __init__(self, config, nlr_template, bhmass=1e6, edd_ratio=0.05, def __init__(self, config, nlr_template, bhmass=1e6, edd_ratio=0.05,
halpha_broad=100.0, halpha_narrow=100.0, vdisp_broad=5000.0, vdisp_narrow=500.0, halpha_broad=100.0, halpha_narrow=100.0, vdisp_broad=5000.0, vdisp_narrow=500.0,
vel=1000.0, logz=0.0, ebv=0.1, dist=20.0): vel=1000.0, logz=0.0, ebv=0.1, dist=20.0):
# Check Input Parameters # Check Input Parameters
if (bhmass < 0): if (bhmass < 0):
raise Exception("Input black hole mass (bhmass) should be >= 0 solarmass.") raise Exception("Input black hole mass (bhmass) should be >= 0 solarmass.")
...@@ -724,17 +723,17 @@ class AGN(): ...@@ -724,17 +723,17 @@ class AGN():
raise Exception('Input metallicity of narrow lines (logz) should be < -2.3') raise Exception('Input metallicity of narrow lines (logz) should be < -2.3')
if (dist <= 0): if (dist <= 0):
raise Exception('Input luminosity distance (dist) should be > 0 Mpc') raise Exception('Input luminosity distance (dist) should be > 0 Mpc')
self.wave = config.wave self.wave = config.wave
self.flux = self.wave * 0 self.flux = self.wave * 0
if (vdisp_narrow > 0) & (halpha_narrow > 0): if (vdisp_narrow > 0) & (halpha_narrow > 0):
NLR = AGN_NLR(config, nlr_template, halpha=halpha_narrow, logz=logz, NLR = AGN_NLR(config, nlr_template, halpha=halpha_narrow, logz=logz,
vel=vel, vdisp=vdisp_narrow, ebv=ebv) vel=vel, vdisp=vdisp_narrow, ebv=ebv)
self.flux = self.flux + NLR.flux self.flux = self.flux + NLR.flux
if (halpha_broad > 0) & (vdisp_broad > 0): if (halpha_broad > 0) & (vdisp_broad > 0):
BLR = AGN_BLR(config, hbeta_flux=halpha_broad / 2.579, BLR = AGN_BLR(config, hbeta_flux=halpha_broad / 2.579,
hbeta_fwhm=vdisp_broad / 2.355, ebv=ebv, vel=vel) hbeta_fwhm=vdisp_broad / 2.355, ebv=ebv, vel=vel)
self.flux = self.flux + BLR.flux self.flux = self.flux + BLR.flux
...@@ -743,7 +742,7 @@ class AGN(): ...@@ -743,7 +742,7 @@ class AGN():
PL = AGN_Powerlaw(config, m5100=m5100, ebv=ebv, vel=vel) PL = AGN_Powerlaw(config, m5100=m5100, ebv=ebv, vel=vel)
Fe = AGN_FeII(config, hbeta_broad=halpha_broad / 2.579, ebv=ebv, vel=vel) Fe = AGN_FeII(config, hbeta_broad=halpha_broad / 2.579, ebv=ebv, vel=vel)
self.flux = self.flux + PL.flux + Fe.flux self.flux = self.flux + PL.flux + Fe.flux
def BHmass_to_M5100(bhmass, edd_ratio=0.05, dist=21.0): def BHmass_to_M5100(bhmass, edd_ratio=0.05, dist=21.0):
""" """
...@@ -763,7 +762,7 @@ def BHmass_to_M5100(bhmass, edd_ratio=0.05, dist=21.0): ...@@ -763,7 +762,7 @@ def BHmass_to_M5100(bhmass, edd_ratio=0.05, dist=21.0):
float float
Magnitude at 5100A Magnitude at 5100A
""" """
# Calculate bolometric luminosity # Calculate bolometric luminosity
Ledd = 3e4 * bhmass Ledd = 3e4 * bhmass
Lbol = Ledd * edd_ratio Lbol = Ledd * edd_ratio
...@@ -817,7 +816,7 @@ def age_metal(filename): ...@@ -817,7 +816,7 @@ def age_metal(filename):
class StellarContinuumTemplate(object): class StellarContinuumTemplate(object):
""" """
Class of single stellar population template. Class of single stellar population template.
Parameters Parameters
---------- ----------
...@@ -826,17 +825,17 @@ class StellarContinuumTemplate(object): ...@@ -826,17 +825,17 @@ class StellarContinuumTemplate(object):
velscale : array velscale : array
velocity scale in km/s per pixels, by default 50.0km/s velocity scale in km/s per pixels, by default 50.0km/s
pathname : string, optional pathname : string, optional
path with wildcards returning the list files to use, path with wildcards returning the list files to use,
by default data_path+'/data/EMILES/Ech*_baseFe.fits' by default data_path+'/data/EMILES/Ech*_baseFe.fits'
normalize : bool, optional normalize : bool, optional
Set to True to normalize each template to mean=1, by default False Set to True to normalize each template to mean=1, by default False
""" """
def __init__(self, config, velscale=50, def __init__(self, config, velscale=50,
pathname=data_path + '/data/EMILES/Ech*_baseFe.fits', pathname=data_path + '/data/EMILES/Ech*_baseFe.fits',
normalize=False): normalize=False):
FWHM_inst = config.inst_fwhm FWHM_inst = config.inst_fwhm
files = glob.glob(pathname) files = glob.glob(pathname)
assert len(files) > 0, "Files not found %s" % pathname assert len(files) > 0, "Files not found %s" % pathname
...@@ -857,7 +856,7 @@ class StellarContinuumTemplate(object): ...@@ -857,7 +856,7 @@ class StellarContinuumTemplate(object):
lam_range_temp = h2['CRVAL1'] + np.array([0, h2['CDELT1'] * (h2['NAXIS1'] - 1)]) lam_range_temp = h2['CRVAL1'] + np.array([0, h2['CDELT1'] * (h2['NAXIS1'] - 1)])
sspNew, log_lam_temp = log_rebin(lam_range_temp, ssp, velscale=velscale)[:2] sspNew, log_lam_temp = log_rebin(lam_range_temp, ssp, velscale=velscale)[:2]
# wave=((np.arange(hdr['NAXIS1'])+1.0)-hdr['CRPIX1'])*hdr['CDELT1']+hdr['CRVAL1'] # wave=((np.arange(hdr['NAXIS1'])+1.0)-hdr['CRPIX1'])*hdr['CDELT1']+hdr['CRVAL1']
templates = np.empty((sspNew.size, n_ages, n_metal)) templates = np.empty((sspNew.size, n_ages, n_metal))
age_grid = np.empty((n_ages, n_metal)) age_grid = np.empty((n_ages, n_metal))
metal_grid = np.empty((n_ages, n_metal)) metal_grid = np.empty((n_ages, n_metal))
...@@ -870,7 +869,7 @@ class StellarContinuumTemplate(object): ...@@ -870,7 +869,7 @@ class StellarContinuumTemplate(object):
# Quadratic sigma difference in pixels Vazdekis --> galaxy # Quadratic sigma difference in pixels Vazdekis --> galaxy
# The formula below is rigorously valid if the shapes of the # The formula below is rigorously valid if the shapes of the
# instrumental spectral profiles are well approximated by Gaussians. # instrumental spectral profiles are well approximated by Gaussians.
# FWHM of Emiles templates # FWHM of Emiles templates
Emile_wave = np.exp(log_lam_temp) Emile_wave = np.exp(log_lam_temp)
Emile_FWHM = np.zeros(h2['NAXIS1']) Emile_FWHM = np.zeros(h2['NAXIS1'])
...@@ -879,9 +878,9 @@ class StellarContinuumTemplate(object): ...@@ -879,9 +878,9 @@ class StellarContinuumTemplate(object):
Emile_FWHM[np.where((Emile_wave >= 3540) & (Emile_wave < 8950))] = 2.5 Emile_FWHM[np.where((Emile_wave >= 3540) & (Emile_wave < 8950))] = 2.5
Lwave = Emile_wave[np.where(Emile_wave >= 8950)] Lwave = Emile_wave[np.where(Emile_wave >= 8950)]
Emile_FWHM[np.where(Emile_wave >= 8950)] = 60 * 2.35 / 3.e5 * Lwave # sigma=60km/s at lambda > 8950 Emile_FWHM[np.where(Emile_wave >= 8950)] = 60 * 2.35 / 3.e5 * Lwave # sigma=60km/s at lambda > 8950
LSF = Emile_FWHM LSF = Emile_FWHM
FWHM_eff = Emile_FWHM.copy() # combined FWHM from stellar library and instrument(input) FWHM_eff = Emile_FWHM.copy() # combined FWHM from stellar library and instrument(input)
if np.isscalar(FWHM_inst): if np.isscalar(FWHM_inst):
FWHM_eff[Emile_FWHM < FWHM_inst] = FWHM_inst FWHM_eff[Emile_FWHM < FWHM_inst] = FWHM_inst
...@@ -918,8 +917,8 @@ class StellarContinuumTemplate(object): ...@@ -918,8 +917,8 @@ class StellarContinuumTemplate(object):
self.n_metal = n_metal self.n_metal = n_metal
self.LSF = log_rebin(lam_range_temp, LSF, velscale=velscale)[0] self.LSF = log_rebin(lam_range_temp, LSF, velscale=velscale)[0]
self.velscale = velscale self.velscale = velscale
def fmass_ssp(self): def fmass_ssp(self):
isedpath = data_path + '/data/EMILES/model/' isedpath = data_path + '/data/EMILES/model/'
massfile = isedpath + 'out_mass_CH_PADOVA00' massfile = isedpath + 'out_mass_CH_PADOVA00'
...@@ -928,7 +927,7 @@ class StellarContinuumTemplate(object): ...@@ -928,7 +927,7 @@ class StellarContinuumTemplate(object):
# fage = self.age_grid[:,0] # fage = self.age_grid[:,0]
fMs = np.zeros((n_ages, n_metal)) fMs = np.zeros((n_ages, n_metal))
Metal, Age, Ms = readcol(massfile, usecols=(2, 3, 6)) Metal, Age, Ms = readcol(massfile, usecols=(2, 3, 6))
for i in range(n_metal): for i in range(n_metal):
for j in range(self.n_ages): for j in range(self.n_ages):
...@@ -936,12 +935,12 @@ class StellarContinuumTemplate(object): ...@@ -936,12 +935,12 @@ class StellarContinuumTemplate(object):
fMs[j, i] = Ms[locmin] fMs[j, i] = Ms[locmin]
return fMs return fMs
class StellarContinuum(): class StellarContinuum():
""" """
The class of stellar continuum The class of stellar continuum
Parameters Parameters
---------- ----------
config : class config : class
...@@ -961,9 +960,9 @@ class StellarContinuum(): ...@@ -961,9 +960,9 @@ class StellarContinuum():
ebv : float, optional ebv : float, optional
Dust extinction, by default 0.1 Dust extinction, by default 0.1
""" """
def __init__(self, config, template, mag=15.0, age=1.0, feh=0.0, def __init__(self, config, template, mag=15.0, age=1.0, feh=0.0,
vel=100.0, vdisp=100.0, ebv=0.1): vel=100.0, vdisp=100.0, ebv=0.1):
# Check Input Parameters # Check Input Parameters
if (mag > 26) or (mag < 8): if (mag > 26) or (mag < 8):
print("Notice: Your input magnitude (mag) is > 26 mag or < 8 mag.") print("Notice: Your input magnitude (mag) is > 26 mag or < 8 mag.")
...@@ -986,19 +985,19 @@ class StellarContinuum(): ...@@ -986,19 +985,19 @@ class StellarContinuum():
minloc = np.argmin(abs(feh - metals)) minloc = np.argmin(abs(feh - metals))
tpls = SSP_temp[:, :, minloc] tpls = SSP_temp[:, :, minloc]
# fmass = template.fmass_ssp()[:, minloc] # fmass = template.fmass_ssp()[:, minloc]
# Select age bins # Select age bins
Ages = template.age_grid[:, 0] Ages = template.age_grid[:, 0]
minloc = np.argmin(abs(age - Ages)) minloc = np.argmin(abs(age - Ages))
Stellar = tpls[:, minloc] Stellar = tpls[:, minloc]
wave = np.exp(template.log_lam_temp) wave = np.exp(template.log_lam_temp)
# Broadening caused by Velocity Dispersion # Broadening caused by Velocity Dispersion
sigma_gal = vdisp / template.velscale # in pixel sigma_gal = vdisp / template.velscale # in pixel
sigma_LSF = template.LSF / template.velscale # in pixel sigma_LSF = template.LSF / template.velscale # in pixel
if sigma_gal > 0: if sigma_gal > 0:
sigma_dif = np.zeros(len(Stellar)) sigma_dif = np.zeros(len(Stellar))
idx = (sigma_gal > sigma_LSF) idx = (sigma_gal > sigma_LSF)
sigma_dif[idx] = np.sqrt(sigma_gal ** 2. - sigma_LSF[idx] ** 2.) sigma_dif[idx] = np.sqrt(sigma_gal ** 2. - sigma_LSF[idx] ** 2.)
...@@ -1013,21 +1012,21 @@ class StellarContinuum(): ...@@ -1013,21 +1012,21 @@ class StellarContinuum():
# Dust Reddening # Dust Reddening
if np.isscalar(ebv): if np.isscalar(ebv):
flux0 = reddening(wave, flux0, ebv=ebv) flux0 = reddening(wave, flux0, ebv=ebv)
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = wave * (1 + redshift) wave_r = wave * (1 + redshift)
flux = np.interp(config.wave, wave_r, flux0) flux = np.interp(config.wave, wave_r, flux0)
# Calibration # Calibration
if np.isscalar(mag): if np.isscalar(mag):
flux = calibrate(config.wave, flux, mag, filtername='SLOAN_SDSS.r') flux = calibrate(config.wave, flux, mag, filtername='SLOAN_SDSS.r')
# Convert to input wavelength # Convert to input wavelength
self.wave = config.wave self.wave = config.wave
self.flux = flux self.flux = flux
##################### #####################
# Single Star Spectra # Single Star Spectra
##################### #####################
...@@ -1048,15 +1047,15 @@ class SingleStarTemplate(): ...@@ -1048,15 +1047,15 @@ class SingleStarTemplate():
FWHM_inst = config.inst_fwhm FWHM_inst = config.inst_fwhm
filename = data_path + '/data/Starlib.XSL.fits' filename = data_path + '/data/Starlib.XSL.fits'
hdulist = fits.open(filename) hdulist = fits.open(filename)
lam = hdulist[1].data['Wave'] lam = hdulist[1].data['Wave']
flux = hdulist[2].data flux = hdulist[2].data
par = hdulist[3].data par = hdulist[3].data
lam_range_temp = np.array([3500, 12000]) lam_range_temp = np.array([3500, 12000])
TemNew, log_lam_temp = log_rebin(lam_range_temp, flux[1, :], velscale=velscale)[:2] TemNew, log_lam_temp = log_rebin(lam_range_temp, flux[1, :], velscale=velscale)[:2]
# FWHM of XLS templates # FWHM of XLS templates
Temp_wave = np.exp(log_lam_temp) Temp_wave = np.exp(log_lam_temp)
Temp_FWHM = np.zeros(len(log_lam_temp)) Temp_FWHM = np.zeros(len(log_lam_temp))
...@@ -1064,9 +1063,9 @@ class SingleStarTemplate(): ...@@ -1064,9 +1063,9 @@ class SingleStarTemplate():
Temp_FWHM[(Temp_wave >= 5330) & (Temp_wave < 9440)] = 11 * 2.35 / 3e5 * Temp_wave[(Temp_wave >= 5330) & (Temp_wave < 9440)] Temp_FWHM[(Temp_wave >= 5330) & (Temp_wave < 9440)] = 11 * 2.35 / 3e5 * Temp_wave[(Temp_wave >= 5330) & (Temp_wave < 9440)]
# sigma = 13km/s at 5330 < lambda < 9440 # sigma = 13km/s at 5330 < lambda < 9440
Temp_FWHM[(Temp_wave >= 9440)] = 16 * 2.35 / 3e5 * Temp_wave[(Temp_wave >= 9440)] # sigma=16km/s at lambda > 9440 Temp_FWHM[(Temp_wave >= 9440)] = 16 * 2.35 / 3e5 * Temp_wave[(Temp_wave >= 9440)] # sigma=16km/s at lambda > 9440
LSF = Temp_FWHM LSF = Temp_FWHM
FWHM_eff = Temp_FWHM.copy() # combined FWHM from stellar library and instrument(input) FWHM_eff = Temp_FWHM.copy() # combined FWHM from stellar library and instrument(input)
if np.isscalar(FWHM_inst): if np.isscalar(FWHM_inst):
FWHM_eff[Temp_FWHM < FWHM_inst] = FWHM_inst FWHM_eff[Temp_FWHM < FWHM_inst] = FWHM_inst
...@@ -1094,7 +1093,7 @@ class SingleStarTemplate(): ...@@ -1094,7 +1093,7 @@ class SingleStarTemplate():
self.logg_grid = par['logg'] self.logg_grid = par['logg']
self.LSF = Temp_FWHM self.LSF = Temp_FWHM
self.velscale = velscale self.velscale = velscale
class SingleStar(): class SingleStar():
...@@ -1135,34 +1134,34 @@ class SingleStar(): ...@@ -1135,34 +1134,34 @@ class SingleStar():
feh = 0.81 feh = 0.81
if (feh < -2.69): if (feh < -2.69):
raise Exception('Your input metallicity (feh) is beyond the range of stellar template [-2.69, 0.81]') raise Exception('Your input metallicity (feh) is beyond the range of stellar template [-2.69, 0.81]')
StarTemp = template.templates StarTemp = template.templates
# Select metal bins # Select metal bins
idx_FeH = (np.abs(template.feh_grid - feh) < 0.5) idx_FeH = (np.abs(template.feh_grid - feh) < 0.5)
tpls = StarTemp[:, idx_FeH] tpls = StarTemp[:, idx_FeH]
# Select Teff bins # Select Teff bins
Teff_FeH = template.teff_grid[idx_FeH] Teff_FeH = template.teff_grid[idx_FeH]
minloc = np.argmin(abs(teff - Teff_FeH)) minloc = np.argmin(abs(teff - Teff_FeH))
starspec = tpls[:, minloc] starspec = tpls[:, minloc]
wave = np.exp(template.log_lam_temp) wave = np.exp(template.log_lam_temp)
# Dust Reddening # Dust Reddening
if np.isscalar(ebv): if np.isscalar(ebv):
starspec = reddening(wave, starspec, ebv=ebv) starspec = reddening(wave, starspec, ebv=ebv)
# Redshift # Redshift
redshift = vel / 3e5 redshift = vel / 3e5
wave_r = wave * (1 + redshift) wave_r = wave * (1 + redshift)
flux = np.interp(config.wave, wave_r, starspec) flux = np.interp(config.wave, wave_r, starspec)
# Calibration # Calibration
if np.isscalar(mag): if np.isscalar(mag):
flux = calibrate(config.wave, flux, mag, filtername='SLOAN_SDSS.r') flux = calibrate(config.wave, flux, mag, filtername='SLOAN_SDSS.r')
# Convert to input wavelength # Convert to input wavelength
self.wave = config.wave self.wave = config.wave
self.flux = flux self.flux = flux
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment