Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_ifs_sim
Commits
8165a134
Commit
8165a134
authored
Oct 25, 2024
by
Yan Zhaojun
Browse files
update
parent
07fc48c3
Pipeline
#7092
failed with stage
in 0 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
csst_ifs_sim/csst_ifs_sim.py
View file @
8165a134
...
...
@@ -28,7 +28,6 @@ import astropy.coordinates as coord
import
ctypes
import
sys
##sys.path.append('./csst_ifs_sim')
conf
.
auto_max_age
=
None
...
...
@@ -1149,6 +1148,25 @@ def beta_angle(x_sat, y_sat, z_sat, vx_sat, vy_sat, vz_sat, ra_obj, dec_obj):
return
angle
###############################################################################
def
find_min
(
arr
):
min_val
=
arr
[
0
]
min_index
=
0
for
i
in
range
(
1
,
len
(
arr
)):
if
arr
[
i
]
<
min_val
:
min_val
=
arr
[
i
]
min_index
=
i
return
min_val
,
min_index
#################################
def
find_max
(
arr
):
max_val
=
arr
[
0
]
max_index
=
0
for
i
in
range
(
1
,
len
(
arr
)):
if
arr
[
i
]
>
max_val
:
max_val
=
arr
[
i
]
max_index
=
i
return
max_val
,
max_index
##########################################################
...
...
@@ -1534,12 +1552,16 @@ def get_dx_dy_blue(wave):
"""
# wave is the wavelength in nm;
# dx is in dispersion direction, dy is in vertical direction;
dydl
=
np
.
array
([
-
423.256
,
0.001
,
0.00075
,
0.0000078
,
-
0.0000000000007
,
0.0
,
0.0
])
# 色散方向
dxdl
=
0.2
*
np
.
array
([
-
9.1519
,
-
1.00000000e-06
,
3.50000000e-08
,
-
5.00000000e-09
,
-
1.70000000e-11
,
4.00949787e-12
,
-
6.16873452e-15
])
# 垂直方向
# dydl = np.array([-423.256, 0.001, 0.00075,
# 0.0000078, -0.0000000000007, 0.0, 0.0])
# # 色散方向
# dxdl = 0.2*np.array([-9.1519, -1.00000000e-06, 3.50000000e-08, -5.00000000e-09,
# -1.70000000e-11, 4.00949787e-12, -6.16873452e-15])
##### update @2024.10.16
dydl
=
np
.
array
([
2447.9
,
-
1
/
0.141
,
0.0000075
,
0.00000078
,
-
0.000000000007
]
)
;
#色散方向
dxdl
=
np
.
array
([
5.46
,
-
1.5e-02
,
3.5e-08
,
-
5.0e-09
])
#垂直方向
dx
=
0.0
dy
=
0.0
for
i
in
range
(
len
(
dxdl
)):
...
...
@@ -1567,10 +1589,13 @@ def get_dx_dy_red(wave):
"""
# wave is the wavelength in nm;
dydl
=
np
.
array
([
-
640.0239901372472
,
0.0018
,
0.00048
,
0.0000028
,
-
0.0000000000007
,
0.0
,
0.0
])
# 色散方向
dxdl
=
0.00325
*
np
.
array
([
-
1638.8
,
4.0e-2
,
5.500e-3
,
-
5.2e-10
,
1.7000e-10
,
7.1e-13
,
-
5.16e-15
])
# 垂直方向
# dydl = np.array([-640.0239901372472, 0.0018, 0.00048,
# 0.0000028, -0.0000000000007, 0.0, 0.0]) # 色散方向
# dxdl = 0.00325*np.array([-1638.8, 4.0e-2, 5.500e-3, -
# 5.2e-10, 1.7000e-10, 7.1e-13, -5.16e-15]) # 垂直方向
## update @2014.10.17
dydl
=
np
.
array
([
3519.78622
,
-
1
/
0.1555
,
0.0000048
,
0.00000028
,
-
0.0000000000007
]
)
#色散方向
dxdl
=
np
.
array
([
-
5.6305
,
1.0e-2
,
5.500e-7
,
-
5.2e-10
])
#垂直方向
dx
=
0.0
dy
=
0.0
...
...
@@ -1754,6 +1779,9 @@ class IFSsimulator():
self
.
readoutNoise
=
self
.
config
.
getboolean
(
self
.
section
,
'readoutnoise'
)
self
.
appbianpai
=
self
.
config
.
getboolean
(
self
.
section
,
'appbianpai'
)
self
.
intscale
=
True
######################################################################
...
...
@@ -1769,7 +1797,8 @@ class IFSsimulator():
bleeding
=
self
.
bleeding
,
sky_noise
=
self
.
sky_noise
,
intscale
=
self
.
intscale
,
save_cosmicrays
=
self
.
save_cosmicrays
)
save_cosmicrays
=
self
.
save_cosmicrays
,
appbianpai
=
self
.
appbianpai
)
############################################################################
...
...
@@ -2134,9 +2163,14 @@ class IFSsimulator():
slice_red
[
'py'
][
i
]
=
50
+
250
+
randRedpos
[
i
]
*
4
slice_red
[
'px'
][
i
]
=
3.55
/
0.015
*
(
i
-
16
)
+
1190.0
+
118
#######
###### flip the fringe up to down,down to up@2024.10.16
self
.
slice_blue
=
dict
()
self
.
slice_red
=
dict
()
self
.
slice_blue
[
'py'
]
=
2000
-
slice_blue
[
'py'
]
self
.
slice_blue
[
'px'
]
=
slice_blue
[
'px'
]
self
.
slice_
blue
=
slice_blue
self
.
slice_red
=
slice_red
self
.
slice_
red
[
'py'
]
=
3000
-
slice_red
[
'py'
]
self
.
slice_red
[
'px'
]
=
slice_red
[
'px'
]
#######################################################################
maskSlice
=
dict
()
...
...
@@ -2439,35 +2473,35 @@ class IFSsimulator():
# blue zone 4
self
.
image_b
[
0
:
1024
,
0
:
2048
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
4
_b'
]
self
.
information
[
'dark
2
_b'
]
########## zone 1 #################
self
.
image_b
[
1024
:
2048
,
0
:
2048
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
1
_b'
]
self
.
information
[
'dark
3
_b'
]
########## zone 3 ###################
self
.
image_b
[
0
:
1024
,
2048
:
4096
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
3
_b'
]
self
.
information
[
'dark
1
_b'
]
# zone 2
self
.
image_b
[
1024
:
2048
,
2048
:
4096
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
2
_b'
]
self
.
information
[
'dark
4
_b'
]
# red zone 4
self
.
image_r
[
0
:
1536
,
0
:
3072
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
4
_r'
]
self
.
information
[
'dark
2
_r'
]
########## zone 1 #################
self
.
image_r
[
1536
:
3712
,
0
:
3072
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
1
_r'
]
self
.
information
[
'dark
3
_r'
]
########## zone 3 ###################
self
.
image_r
[
0
:
1536
,
3072
:
6144
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
3
_r'
]
self
.
information
[
'dark
1
_r'
]
# zone 2
self
.
image_r
[
1536
:
3072
,
3072
:
6144
]
+=
self
.
information
[
'exptime'
]
*
\
self
.
information
[
'dark
2
_r'
]
self
.
information
[
'dark
4
_r'
]
##############################################################################
...
...
@@ -2715,44 +2749,44 @@ class IFSsimulator():
overscan
=
320
# zone 4 , OSH #### 1024, 2048
self
.
image_b
[
0
:
1024
+
overscan
,
0
:
2048
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
4
_b'
],
size
=
(
1344
,
2418
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
2
_b'
],
size
=
(
1344
,
2418
))
########## zone 3, OSG #################
np
.
random
.
seed
()
self
.
image_b
[
0
:
1024
+
overscan
,
2418
:
2418
+
2048
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
3
_b'
],
size
=
(
1344
,
2418
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
1
_b'
],
size
=
(
1344
,
2418
))
########## zone 1, OSE ###################
np
.
random
.
seed
()
self
.
image_b
[
0
:
1024
+
overscan
,
2418
*
2
:
2418
*
2
+
2048
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
1
_b'
],
size
=
(
1344
,
2418
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
3
_b'
],
size
=
(
1344
,
2418
))
########## zone 2, OSF ###############
np
.
random
.
seed
()
self
.
image_b
[
0
:
1024
+
overscan
,
2418
*
3
:
2418
*
3
+
2048
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
2
_b'
],
size
=
(
1344
,
2418
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
4
_b'
],
size
=
(
1344
,
2418
))
self
.
log
.
info
(
'readnoise added in blue channel'
)
# red zone 4 , OSH### 1536* 3072
np
.
random
.
seed
()
self
.
image_r
[
0
:
1536
+
overscan
,
0
:
3072
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
4
_r'
],
size
=
(
1856
,
3442
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
2
_r'
],
size
=
(
1856
,
3442
))
########## zone 3 ,OSG #################
np
.
random
.
seed
()
self
.
image_r
[
0
:
1536
+
overscan
,
3442
:
3442
+
3072
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
3
_r'
],
size
=
(
1856
,
3442
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
1
_r'
],
size
=
(
1856
,
3442
))
########## zone 1 ,OSE ###################
np
.
random
.
seed
()
self
.
image_r
[
0
:
1536
+
overscan
,
3442
*
2
:
3442
*
2
+
3072
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
1
_r'
],
size
=
(
1856
,
3442
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
3
_r'
],
size
=
(
1856
,
3442
))
########## zone 2,OSF ###########
np
.
random
.
seed
()
self
.
image_r
[
0
:
1536
+
overscan
,
3442
*
3
:
3442
*
3
+
3072
+
prescan
+
overscan
]
+=
np
.
random
.
normal
(
loc
=
0.0
,
scale
=
self
.
information
[
'rn
2
_r'
],
size
=
(
1856
,
3442
))
loc
=
0.0
,
scale
=
self
.
information
[
'rn
4
_r'
],
size
=
(
1856
,
3442
))
##########################################################################################
...
...
@@ -2880,31 +2914,44 @@ class IFSsimulator():
self
.
log
.
info
(
'Converting from electrons to ADUs using a factor of gain'
)
# blue zone 4
self
.
image_b
[
0
:
1344
,
0
:
2418
]
/=
self
.
information
[
'gain4_b'
]
#
#
blue zone 4
#
self.image_b[0:1344, 0:2418] /= self.information['gain4_b']
########## zone 3 #################
self
.
image_b
[
0
:
1344
,
2418
:
2418
*
2
]
/=
self
.
information
[
'gain3_b'
]
#
########## zone 3 #################
#
self.image_b[0:1344, 2418:2418*2] /= self.information['gain3_b']
########## zone 1 ###################
self
.
image_b
[
0
:
1344
,
2418
*
2
:
2418
*
3
]
/=
self
.
information
[
'gain1_b'
]
#
########## zone 1 ###################
#
self.image_b[0:1344, 2418*2:2418*3] /= self.information['gain1_b']
# zone 2
self
.
image_b
[
0
:
1344
,
2418
*
3
:
2418
*
4
]
/=
self
.
information
[
'gain2_b'
]
# # zone 2
# self.image_b[0:1344, 2418*3:2418*4] /= self.information['gain2_b']
################# update @2024.10.18 ###
# first part, menas old blue zone 4
self
.
image_b
[
0
:
1344
,
0
:
2418
]
/=
self
.
information
[
'gain1_b'
]
##########second part, means old zone 3 #################
self
.
image_b
[
0
:
1344
,
2418
:
2418
*
2
]
/=
self
.
information
[
'gain2_b'
]
##########third part, means old zone 1 ###################
self
.
image_b
[
0
:
1344
,
2418
*
2
:
2418
*
3
]
/=
self
.
information
[
'gain3_b'
]
#### fourth part, means old zone 2
self
.
image_b
[
0
:
1344
,
2418
*
3
:
2418
*
4
]
/=
self
.
information
[
'gain4_b'
]
############################################################################
##########################
# red zone 4
self
.
image_r
[
0
:
1856
,
0
:
3442
]
/=
self
.
information
[
'gain
4
_r'
]
self
.
image_r
[
0
:
1856
,
0
:
3442
]
/=
self
.
information
[
'gain
1
_r'
]
########## zone 3 #################
self
.
image_r
[
0
:
1856
,
3442
:
3442
*
2
]
/=
self
.
information
[
'gain
3
_r'
]
self
.
image_r
[
0
:
1856
,
3442
:
3442
*
2
]
/=
self
.
information
[
'gain
2
_r'
]
########## zone 1 ###################
self
.
image_r
[
0
:
1856
,
3442
*
2
:
3442
*
3
]
/=
self
.
information
[
'gain
1
_r'
]
self
.
image_r
[
0
:
1856
,
3442
*
2
:
3442
*
3
]
/=
self
.
information
[
'gain
3
_r'
]
# zone 2
self
.
image_r
[
0
:
1856
,
3442
*
3
:
3442
*
4
]
/=
self
.
information
[
'gain
2
_r'
]
self
.
image_r
[
0
:
1856
,
3442
*
3
:
3442
*
4
]
/=
self
.
information
[
'gain
4
_r'
]
# 3
...
...
@@ -2979,16 +3026,16 @@ class IFSsimulator():
########################################################################
# blue zone 4
self
.
image_b
[
0
:
1344
,
0
:
2418
]
+=
self
.
information
[
'bias
4
_b'
]
self
.
image_b
[
0
:
1344
,
0
:
2418
]
+=
self
.
information
[
'bias
2
_b'
]
########## zone 3 #################
self
.
image_b
[
0
:
1344
,
2418
:
2418
*
2
]
+=
self
.
information
[
'bias
3
_b'
]
self
.
image_b
[
0
:
1344
,
2418
:
2418
*
2
]
+=
self
.
information
[
'bias
1
_b'
]
########## zone 1 ###################
self
.
image_b
[
0
:
1344
,
2418
*
2
:
2418
*
3
]
+=
self
.
information
[
'bias
1
_b'
]
self
.
image_b
[
0
:
1344
,
2418
*
2
:
2418
*
3
]
+=
self
.
information
[
'bias
3
_b'
]
# zone 2
self
.
image_b
[
0
:
1344
,
2418
*
3
:
2418
*
4
]
+=
self
.
information
[
'bias
2
_b'
]
self
.
image_b
[
0
:
1344
,
2418
*
3
:
2418
*
4
]
+=
self
.
information
[
'bias
4
_b'
]
############################################################################
...
...
@@ -2997,16 +3044,16 @@ class IFSsimulator():
#######################################################################
# red zone 4
self
.
image_r
[
0
:
1856
,
0
:
3442
]
+=
self
.
information
[
'bias
4
_r'
]
self
.
image_r
[
0
:
1856
,
0
:
3442
]
+=
self
.
information
[
'bias
2
_r'
]
########## zone 3 #################
self
.
image_r
[
0
:
1856
,
3442
:
3442
*
2
]
+=
self
.
information
[
'bias
3
_r'
]
self
.
image_r
[
0
:
1856
,
3442
:
3442
*
2
]
+=
self
.
information
[
'bias
1
_r'
]
########## zone 1 ###################
self
.
image_r
[
0
:
1856
,
3442
*
2
:
3442
*
3
]
+=
self
.
information
[
'bias
1
_r'
]
self
.
image_r
[
0
:
1856
,
3442
*
2
:
3442
*
3
]
+=
self
.
information
[
'bias
3
_r'
]
# zone 2
self
.
image_r
[
0
:
1856
,
3442
*
3
:
3442
*
4
]
+=
self
.
information
[
'bias
2
_r'
]
self
.
image_r
[
0
:
1856
,
3442
*
3
:
3442
*
4
]
+=
self
.
information
[
'bias
4
_r'
]
#######################################################################
...
...
@@ -3290,14 +3337,46 @@ class IFSsimulator():
overscan
=
int
(
self
.
information
[
'overscan'
])
temp
=
np
.
zeros
((
1344
,
9672
))
# zone 4, OSH ######0:1024, 50:2048+50
# # zone 4, OSH ######0:1024, 50:2048+50
# x1 = 0
# x2 = x1+1024
# y1 = 0+prescan
# y2 = y1+2048
# temp[x1:x2, y1:y2] = imgb[0:1024, 0:2048]
# # zone 3, OSG , left to right #################
# # np.fliplr(b2) ## left to right
# # np.flipud(b3) ## down to up
# x1 = 0
# x2 = x1+1024
# y1 = 2418+prescan
# y2 = y1+2048
# temp[x1:x2, y1:y2] = np.fliplr(imgb[0:1024, 2048:4096])
# # zone 1, OSE,down to up ###################
# x1 = 0
# x2 = x1+1024
# y1 = 2418*2+prescan
# y2 = y1+2048
# temp[x1:x2, y1:y2] = np.flipud(imgb[1024:2048, 0:2048])
# ########## zone 2, OSF down to yp ,left to right #######
# x1 = 0
# x2 = x1+1024
# y1 = 2418*3+prescan
# y2 = y1+2048
# temp[x1:x2, y1:y2] = np.flipud(np.fliplr(imgb[1024:2048, 2048:4096]))
### update 2024.10.18
# first part, old OSG part ,## shift: left to right
x1
=
0
x2
=
x1
+
1024
y1
=
0
+
prescan
y2
=
y1
+
2048
temp
[
x1
:
x2
,
y1
:
y2
]
=
imgb
[
0
:
1024
,
0
:
2048
]
#
zone 3, OSG , left to righ
t #################
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
fliplr
(
imgb
[
0
:
1024
,
2048
:
4096
])
#
second part, old OSH, no shif
t #################
# np.fliplr(b2) ## left to right
# np.flipud(b3) ## down to up
x1
=
0
...
...
@@ -3305,15 +3384,15 @@ class IFSsimulator():
y1
=
2418
+
prescan
y2
=
y1
+
2048
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
fliplr
(
imgb
[
0
:
1024
,
2048
:
4096
])
#
zone 1,
OSE,down to up ###################
temp
[
x1
:
x2
,
y1
:
y2
]
=
imgb
[
0
:
1024
,
0
:
2048
]
#
## third part, old
OSE,
down to up ###################
x1
=
0
x2
=
x1
+
1024
y1
=
2418
*
2
+
prescan
y2
=
y1
+
2048
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
flipud
(
imgb
[
1024
:
2048
,
0
:
2048
])
##########
zone 2, OSF
down to yp ,left to right #######
##########
fourth part, old OSF part;
down to yp ,left to right #######
x1
=
0
x2
=
x1
+
1024
...
...
@@ -3321,20 +3400,53 @@ class IFSsimulator():
y2
=
y1
+
2048
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
flipud
(
np
.
fliplr
(
imgb
[
1024
:
2048
,
2048
:
4096
]))
self
.
image_b
=
temp
#######################################################################
imgr
=
self
.
image_r
.
copy
()
temp
=
np
.
zeros
((
1856
,
13768
))
# zone 4, OSH ######0:1024, 50:2048+50
# # zone 4, OSH ######0:1024, 50:2048+50
# x1 = 0
# x2 = x1+1536
# y1 = 0+prescan
# y2 = y1+3072
# temp[x1:x2, y1:y2] = imgr[0:1536, 0:3072]
# ########## zone 3, OSG , left to right #################
# # np.fliplr(b2) ## left to right
# # np.flipud(b3) ## down to up
# x1 = 0
# x2 = x1+1536
# y1 = 3442+prescan
# y2 = y1+3072
# temp[x1:x2, y1:y2] = np.fliplr(imgr[0:1536, 3072:6144])
# ########## zone 1, OSE,down to up ############################
# x1 = 0
# x2 = x1+1536
# y1 = 3442*2+prescan
# y2 = y1+3072
# temp[x1:x2, y1:y2] = np.flipud(imgr[1536:3072, 0:3072])
# ########## zone 2, OSF down to yp ,left to right ################
# x1 = 0
# x2 = x1+1536
# y1 = 3442*3+prescan
# y2 = y1+3072
# temp[x1:x2, y1:y2] = np.flipud(np.fliplr(imgr[1536:3072, 3072:6144]))
###### update @2024.10.18
# readout image ,first part, old OSG, shift: left to right
x1
=
0
x2
=
x1
+
1536
y1
=
0
+
prescan
y2
=
y1
+
3072
temp
[
x1
:
x2
,
y1
:
y2
]
=
imgr
[
0
:
1536
,
0
:
3072
]
##########
zone 3, OSG , left to right
#################
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
fliplr
(
imgr
[
0
:
1536
,
3072
:
6144
])
##########
second part, old OSH ,no change;
#################
# np.fliplr(b2) ## left to right
# np.flipud(b3) ## down to up
x1
=
0
...
...
@@ -3342,15 +3454,15 @@ class IFSsimulator():
y1
=
3442
+
prescan
y2
=
y1
+
3072
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
fliplr
(
imgr
[
0
:
1536
,
3072
:
6144
])
##########
zone 1, OSE,
down to up ############################
temp
[
x1
:
x2
,
y1
:
y2
]
=
imgr
[
0
:
1536
,
0
:
3072
]
##########
third part , old OSE ,
down to up ############################
x1
=
0
x2
=
x1
+
1536
y1
=
3442
*
2
+
prescan
y2
=
y1
+
3072
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
flipud
(
imgr
[
1536
:
3072
,
0
:
3072
])
##########
zone 2,
OSF down to
y
p ,left to right ################
##########
fourth part, old
OSF
,
down to
u
p ,left to right ################
x1
=
0
x2
=
x1
+
1536
...
...
@@ -3358,6 +3470,7 @@ class IFSsimulator():
y2
=
y1
+
3072
temp
[
x1
:
x2
,
y1
:
y2
]
=
np
.
flipud
(
np
.
fliplr
(
imgr
[
1536
:
3072
,
3072
:
6144
]))
self
.
image_r
=
temp
return
...
...
@@ -3383,6 +3496,18 @@ class IFSsimulator():
Updates header with the input values and flags used during simulation.
"""
######
###### add random pointing error to telescope, the telescope poingt parameter in
###### fits header have random pointing error
ud_ra
=
np
.
random
.
random
()
# Choose a random shift in arcsec
self
.
information
[
'ra_pnt0'
]
=
self
.
information
[
'dec_pnt0'
]
+
0.01
*
ud_ra
ud_dec
=
np
.
random
.
random
()
self
.
information
[
'dec_pnt0'
]
=
self
.
information
[
'dec_pnt0'
]
+
0.01
*
ud_dec
HeaderTest
=
'no'
sim_ver
=
str
(
self
.
information
[
'sim_ver'
])
...
...
@@ -4765,16 +4890,30 @@ class IFSsimulator():
# RA_PNT0 =OBJ_RA + DIS_RA/cos(OBJ_DEC), DEC_PNT0= OBJ_DEC DIS_DEC
self
.
information
[
'ra_pnt0'
]
=
a
[
0
].
header
[
'RA'
]
+
\
disRa
/
np
.
cos
(
a
[
0
].
header
[
'DEC'
]
/
180.0
*
np
.
pi
)
self
.
information
[
'dec_pnt0'
]
=
a
[
0
].
header
[
'DEC'
]
+
disDec
############### calculate the earthshine and zodiacal noise ,new code 2023.11.1 ############
###############
self
.
log
.
info
(
'Real telescope pointing in Ra = %f, Dec = %f'
%
(
self
.
information
[
'ra_pnt0'
],
self
.
information
[
'dec_pnt0'
]))
ra
=
self
.
information
[
'ra_pnt0'
]
dec
=
self
.
information
[
'dec_pnt0'
]
time_jd
=
time2jd
(
self
.
dt
)
if
self
.
appbianpai
:
sn
=
self
.
simnumber
-
1
;
x_sat
=
float
(
self
.
bianpai_data
[
'x_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
y_sat
=
float
(
self
.
bianpai_data
[
'y_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
z_sat
=
float
(
self
.
bianpai_data
[
'z_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
###
else
:
x_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
1
])
y_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
2
])
z_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
3
])
...
...
@@ -4856,6 +4995,18 @@ class IFSsimulator():
width_blue
=
0
################################
############## doppler effect to photons.wavelength #############
if
self
.
appbianpai
:
sn
=
self
.
simnumber
-
1
;
x_sat
=
float
(
self
.
bianpai_data
[
'x_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
y_sat
=
float
(
self
.
bianpai_data
[
'y_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
z_sat
=
float
(
self
.
bianpai_data
[
'z_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
vx_sat
=
float
(
self
.
bianpai_data
[
'vx_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
vy_sat
=
float
(
self
.
bianpai_data
[
'vy_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
vz_sat
=
float
(
self
.
bianpai_data
[
'vz_sat'
][
sn
*
5
+
self
.
exptime_start_index
])
else
:
# self.orbit_pars
x_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
1
])
...
...
@@ -4881,6 +5032,19 @@ class IFSsimulator():
self
.
information
[
'ra_obj'
],
self
.
information
[
'dec_obj'
],
v1
,
self
.
TianCe_day
)
#################################################
if
self
.
appbianpai
:
sn
=
self
.
simnumber
-
1
;
p1x
=
float
(
self
.
bianpai_data
[
'x_sat'
][
sn
*
5
+
self
.
exptime_end_index
])
p1y
=
float
(
self
.
bianpai_data
[
'y_sat'
][
sn
*
5
+
self
.
exptime_end_index
])
p1z
=
float
(
self
.
bianpai_data
[
'z_sat'
][
sn
*
5
+
self
.
exptime_end_index
])
p1vx
=
float
(
self
.
bianpai_data
[
'vx_sat'
][
sn
*
5
+
self
.
exptime_end_index
])
p1vy
=
float
(
self
.
bianpai_data
[
'vy_sat'
][
sn
*
5
+
self
.
exptime_end_index
])
p1vz
=
float
(
self
.
bianpai_data
[
'vz_sat'
][
sn
*
5
+
self
.
exptime_end_index
])
else
:
# exposure end time is t2 ;
t2
=
self
.
dt
+
timedelta
(
seconds
=
self
.
information
[
'exptime'
])
### data read time is the exposure end time plus readouttime ###
...
...
@@ -4911,9 +5075,9 @@ class IFSsimulator():
p1vx
=
self
.
orbit_pars
[
k
,
4
]
-
(
self
.
orbit_pars
[
k
+
1
,
4
]
-
self
.
orbit_pars
[
k
,
4
])
*
deltaT
.
seconds
/
120
p1v
x
=
self
.
orbit_pars
[
k
,
5
]
-
(
self
.
orbit_pars
[
k
+
1
,
5
]
-
p1v
y
=
self
.
orbit_pars
[
k
,
5
]
-
(
self
.
orbit_pars
[
k
+
1
,
5
]
-
self
.
orbit_pars
[
k
,
5
])
*
deltaT
.
seconds
/
120
p1v
x
=
self
.
orbit_pars
[
k
,
6
]
-
(
self
.
orbit_pars
[
k
+
1
,
6
]
-
p1v
z
=
self
.
orbit_pars
[
k
,
6
]
-
(
self
.
orbit_pars
[
k
+
1
,
6
]
-
self
.
orbit_pars
[
k
,
6
])
*
deltaT
.
seconds
/
120
else
:
...
...
@@ -4961,7 +5125,7 @@ class IFSsimulator():
ilam
=
klam
*
alfa
if
ilam
>=
6
000
:
if
ilam
>=
4
000
:
break
# print(ilam)
...
...
@@ -5692,7 +5856,7 @@ class IFSsimulator():
self
.
debug
=
self
.
information
[
'debug'
]
self
.
dt
=
datetime
.
utcnow
()
if
self
.
information
[
'exptime'
]
>
2000
or
self
.
information
[
'exptime'
]
<
0
:
...
...
@@ -5719,17 +5883,42 @@ class IFSsimulator():
print
(
'self.skyfilepath = '
,
self
.
skyfilepath
)
# self.earthshine_theta=30.0 # in degree
###################################################################
if
self
.
appbianpai
:
### load yunxingbianpai csv file
############ load star data catlog #####################
starcat
=
self
.
information
[
'bianpai_file'
]
##starcat='selection_20230517_concat.fits'
###################################################
self
.
log
.
info
(
'Stat catlog file name is %s'
%
(
starcat
))
##########################################
df
=
pd
.
read_csv
(
self
.
information
[
'dir_path'
]
+
'IFS_inputdata/TianCe/'
+
starcat
)
###################################################################
sn
=
self
.
simnumber
-
1
;
arr
=
np
.
array
(
df
[
'time'
][
sn
*
5
:
sn
*
5
+
5
]);
self
.
exptime_start_jd
,
self
.
exptime_start_index
=
find_min
(
arr
);
self
.
exptime_end_jd
,
self
.
exptime_end_index
=
find_max
(
arr
);
###self.earthshine_theta=df['earth_angle'][sn*5+index] # in degree
self
.
dt
=
jd2time
(
self
.
exptime_start_jd
);
self
.
bianpai_data
=
df
;
##################################################################
else
:
#### load orbit parameters #####
flag
=
0
self
.
dt
=
datetime
.
utcnow
()
self
.
dt_num
=
int
(
self
.
simnumber
*
(
self
.
information
[
'exptime'
]
+
self
.
information
[
'readouttime'
]
+
125
)
/
120
)
now_dt
=
datetime
.
utcnow
()
now_jd
=
time2jd
(
now_dt
)
for
k
in
range
(
1
,
50
,
1
):
# fn=father_path+'/IFS_inputdata/TianCe/orbit20160925/'+str(k)+'.txt';
...
...
@@ -5745,7 +5934,7 @@ class IFSsimulator():
if
flag
==
1
:
break
################################
##################################
################################
if
kk
+
self
.
dt_num
<
len
(
d
[:,
0
]):
...
...
@@ -5764,19 +5953,18 @@ class IFSsimulator():
self
.
orbit_pars
=
d
self
.
orbit_file_num
=
k
+
1
self
.
orbit_exp_num
=
self
.
dt_num
##########################################
########################################################################
#self.dt=julian.from_jd(exptime_start_jd, fmt='jd')
self
.
dt
=
jd2time
(
exptime_start_jd
)
##################################################################
##################################################################
# str(self.dt.year)+'-'+str(self.dt.month)+'-'+str(self.dt.day)
self
.
TianCe_day
=
self
.
dt
.
strftime
(
"%Y-%m-%d"
)
self
.
TianCe_exp_start
=
dt2hmd
(
self
.
dt
)
self
.
zodiacal_time
=
self
.
TianCe_day
###################################################################
skyRa
=
0
skyDec
=
0
...
...
@@ -5787,6 +5975,7 @@ class IFSsimulator():
sky_rot
=
2
*
(
ud
-
0.5
)
*
5
dsmax
=
np
.
floor
(
50
*
np
.
cos
(
sky_rot
/
180
*
np
.
pi
))
-
34
np
.
random
.
seed
(
11
*
self
.
simnumber
)
ud
=
np
.
random
.
random
()
# Choose a random shift in arcsec
telRa
=
2
*
(
ud
-
0.5
)
*
dsmax
*
0.1
# in arcsec
...
...
@@ -5813,6 +6002,7 @@ class IFSsimulator():
#######################################################################
elif
self
.
source
==
'FLAT'
:
self
.
dt
=
datetime
.
utcnow
()
self
.
information
[
'exptime'
]
=
200
+
simnumber
*
100
self
.
sim_calibration_img
(
self
.
information
[
'exptime'
],
'FLAT'
)
self
.
information
[
'sky_rot'
]
=
0
...
...
@@ -5820,6 +6010,7 @@ class IFSsimulator():
########
elif
self
.
source
==
'LAMP'
:
self
.
dt
=
datetime
.
utcnow
()
self
.
information
[
'exptime'
]
=
200
+
simnumber
*
100
self
.
information
[
'sky_rot'
]
=
0
...
...
@@ -5831,12 +6022,14 @@ class IFSsimulator():
#########
elif
self
.
source
==
'DARK'
:
self
.
dt
=
datetime
.
utcnow
()
self
.
information
[
'sky_rot'
]
=
0
self
.
information
[
'exptime'
]
=
simnumber
*
3600
*
24
self
.
image_b
=
np
.
zeros
((
2048
,
4096
))
self
.
image_r
=
np
.
zeros
((
3072
,
6144
))
elif
self
.
source
==
'BIAS'
:
self
.
dt
=
datetime
.
utcnow
()
self
.
information
[
'sky_rot'
]
=
0
self
.
information
[
'exptime'
]
=
0
self
.
image_b
=
np
.
zeros
((
2048
,
4096
))
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment