Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_ifs_sim
Commits
a5489f19
Commit
a5489f19
authored
May 11, 2024
by
Yan Zhaojun
Browse files
debug
parent
25bdb62f
Pipeline
#4469
passed with stage
in 0 seconds
Changes
4
Pipelines
2
Show whitespace changes
Inline
Side-by-side
csst_ifs_sim/support/IFSinstrumentModel.py
deleted
100644 → 0
View file @
25bdb62f
"""
VIS Instrument Model
====================
The file provides a function that returns VIS related information such as pixel
size, dark current, gain, zeropoint, and sky background.
:requires: NumPy
:requires: numexpr
:version: 0.7
"""
# import datetime, math
# import numpy as np
# import numexpr as ne
def
IFSinformation
():
"""
Returns a dictionary describing VIS. The following information is provided (id: value - reference)::
:return: instrument model parameters
:rtype: dict
"""
#########################################################################################################
#out = dict(readnoise=4, pixel_size=0.1, dark=0.0008333, fullwellcapacity=90000, bluesize=4000, redsize=6000, readtime=300.)
out
=
dict
()
out
.
update
({
'dob'
:
0
,
'rdose'
:
8.0e9
,
'parallelTrapfile'
:
'cdm_euclid_parallel.dat'
,
'serialTrapfile'
:
'cdm_euclid_serial.dat'
,
'beta_s'
:
0.6
,
'beta_p'
:
0.6
,
'fwc'
:
90000
,
'vth'
:
1.168e7
,
't'
:
20.48e-3
,
'vg'
:
6.e-11
,
'st'
:
5.0e-6
,
'sfwc'
:
730000.
,
'svg'
:
1.0e-10
})
return
out
def
CCDnonLinearityModel
(
data
,
beta
=
6e-7
):
"""
The non-linearity is modelled based on the results presented.
:param data: data to which the non-linearity model is being applied to
:type data: ndarray
:return: input data after conversion with the non-linearity model
:rtype: float or ndarray
"""
out
=
data
-
beta
*
data
**
2
return
out
# if __name__ == '__main__':
# print('IFSinstrument')
csst_ifs_sim/support/__init__.py
deleted
100644 → 0
View file @
25bdb62f
csst_ifs_sim/support/cosmicrays.py
deleted
100644 → 0
View file @
25bdb62f
"""
Cosmic Rays
===========
This simple class can be used to include cosmic ray events to an image.
By default the cosmic ray events are drawn from distributions describing
the length and energy of the events. Such distributions can be generated
for example using Stardust code (http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04636917).
The energy of the cosmic ray events can also be set to constant for
testing purposes. The class can be used to draw a single cosmic ray
event or up to a covering fraction.
:requires: NumPy
:requires: SciPy
:version: 0.2
"""
import
numpy
as
np
from
scipy.interpolate
import
InterpolatedUnivariateSpline
class
cosmicrays
():
"""
Cosmic ray generation class. Can either draw events from distributions or
set the energy of the events to a constant.
:param log: logger instance
:param image: image to which cosmic rays are added to (a copy is made not to change the original numpy array)
:param crInfo: column information (cosmic ray file)
:param information: cosmic ray track information (file containing track length and energy information) and
exposure time.
"""
def
__init__
(
self
,
log
,
image
,
crInfo
=
None
,
information
=
None
):
"""
Cosmic ray generation class. Can either draw events from distributions or
set the energy of the events to a constant.
:param log: logger instance
:param image: image to which cosmic rays are added to (a copy is made not to change the original numpy array)
:param crInfo: column information (cosmic ray file)
:param information: cosmic ray track information (file containing track length and energy information) and
exposure time.
"""
#setup logger
self
.
log
=
log
#image and size
self
.
image
=
image
.
copy
()
self
.
ysize
,
self
.
xsize
=
self
.
image
.
shape
#set up the information dictionary, first with defaults and then overwrite with inputs if given
self
.
information
=
(
dict
(
cosmicraylengths
=
'/home/yan/csst-master/data/cdf_cr_length.dat'
,
cosmicraydistance
=
'/home/yan/csst-master/data/cdf_cr_total.dat'
,
exptime
=
565
))
if
information
is
not
None
:
self
.
information
.
update
(
information
)
if
crInfo
is
not
None
:
self
.
cr
=
crInfo
else
:
self
.
_readCosmicrayInformation
()
# def _readCosmicrayInformation(self):
# self.log.info('Reading in cosmic ray information from %s and %s' % (self.information['cosmicraylengths'],
# self.information['cosmicraydistance']))
# #read in the information from the files
# crLengths = np.loadtxt(self.information['cosmicraylengths'])
# crDists = np.loadtxt(self.information['cosmicraydistance'])
# #set up the cosmic ray information dictionary
# self.cr = dict(cr_u=crLengths[:, 0], cr_cdf=crLengths[:, 1], cr_cdfn=np.shape(crLengths)[0],
# cr_v=crDists[:, 0], cr_cde=crDists[:, 1], cr_cden=np.shape(crDists)[0])
# return self.cr
def
_cosmicRayIntercepts
(
self
,
lum
,
x0
,
y0
,
l
,
phi
):
"""
Derive cosmic ray streak intercept points.
:param lum: luminosities of the cosmic ray tracks
:param x0: central positions of the cosmic ray tracks in x-direction
:param y0: central positions of the cosmic ray tracks in y-direction
:param l: lengths of the cosmic ray tracks
:param phi: orientation angles of the cosmic ray tracks
:return: cosmic ray map (image)
:rtype: nd-array
"""
#create empty array
crImage
=
np
.
zeros
((
self
.
ysize
,
self
.
xsize
),
dtype
=
np
.
float64
)
#x and y shifts
dx
=
l
*
np
.
cos
(
phi
)
/
2.
dy
=
l
*
np
.
sin
(
phi
)
/
2.
mskdx
=
np
.
abs
(
dx
)
<
1e-8
mskdy
=
np
.
abs
(
dy
)
<
1e-8
dx
[
mskdx
]
=
0.
dy
[
mskdy
]
=
0.
#pixels in x-direction
ilo
=
np
.
round
(
x0
.
copy
()
-
dx
)
msk
=
ilo
<
0.
ilo
[
msk
]
=
0
ilo
=
ilo
.
astype
(
int
)
ihi
=
1
+
np
.
round
(
x0
.
copy
()
+
dx
)
msk
=
ihi
>
self
.
xsize
ihi
[
msk
]
=
self
.
xsize
ihi
=
ihi
.
astype
(
int
)
#pixels in y-directions
jlo
=
np
.
round
(
y0
.
copy
()
-
dy
)
msk
=
jlo
<
0.
jlo
[
msk
]
=
0
jlo
=
jlo
.
astype
(
int
)
jhi
=
1
+
np
.
round
(
y0
.
copy
()
+
dy
)
msk
=
jhi
>
self
.
ysize
jhi
[
msk
]
=
self
.
ysize
jhi
=
jhi
.
astype
(
int
)
#loop over the individual events
for
i
,
luminosity
in
enumerate
(
lum
):
n
=
0
# count the intercepts
u
=
[]
x
=
[]
y
=
[]
#Compute X intercepts on the pixel grid
if
ilo
[
i
]
<
ihi
[
i
]:
for
xcoord
in
range
(
ilo
[
i
],
ihi
[
i
]):
ok
=
(
xcoord
-
x0
[
i
])
/
dx
[
i
]
if
np
.
abs
(
ok
)
<=
0.5
:
n
+=
1
u
.
append
(
ok
)
x
.
append
(
xcoord
)
y
.
append
(
y0
[
i
]
+
ok
*
dy
[
i
])
else
:
for
xcoord
in
range
(
ihi
[
i
],
ilo
[
i
]):
ok
=
(
xcoord
-
x0
[
i
])
/
dx
[
i
]
if
np
.
abs
(
ok
)
<=
0.5
:
n
+=
1
u
.
append
(
ok
)
x
.
append
(
xcoord
)
y
.
append
(
y0
[
i
]
+
ok
*
dy
[
i
])
#Compute Y intercepts on the pixel grid
if
jlo
[
i
]
<
jhi
[
i
]:
for
ycoord
in
range
(
jlo
[
i
],
jhi
[
i
]):
ok
=
(
ycoord
-
y0
[
i
])
/
dy
[
i
]
if
np
.
abs
(
ok
)
<=
0.5
:
n
+=
1
u
.
append
(
ok
)
x
.
append
(
x0
[
i
]
+
ok
*
dx
[
i
])
y
.
append
(
ycoord
)
else
:
for
ycoord
in
range
(
jhi
[
i
],
jlo
[
i
]):
ok
=
(
ycoord
-
y0
[
i
])
/
dy
[
i
]
if
np
.
abs
(
ok
)
<=
0.5
:
n
+=
1
u
.
append
(
ok
)
x
.
append
(
x0
[
i
]
+
ok
*
dx
[
i
])
y
.
append
(
ycoord
)
#check if no intercepts were found
if
n
<
1
:
xc
=
int
(
np
.
floor
(
x0
[
i
]))
yc
=
int
(
np
.
floor
(
y0
[
i
]))
crImage
[
yc
,
xc
]
+=
luminosity
#Find the arguments that sort the intersections along the track
u
=
np
.
asarray
(
u
)
x
=
np
.
asarray
(
x
)
y
=
np
.
asarray
(
y
)
args
=
np
.
argsort
(
u
)
u
=
u
[
args
]
x
=
x
[
args
]
y
=
y
[
args
]
#Decide which cell each interval traverses, and the path length
for
i
in
range
(
1
,
n
-
1
):
w
=
u
[
i
+
1
]
-
u
[
i
]
cx
=
int
(
1
+
np
.
floor
((
x
[
i
+
1
]
+
x
[
i
])
/
2.
))
cy
=
int
(
1
+
np
.
floor
((
y
[
i
+
1
]
+
y
[
i
])
/
2.
))
if
0
<=
cx
<
self
.
xsize
and
0
<=
cy
<
self
.
ysize
:
crImage
[
cy
,
cx
]
+=
(
w
*
luminosity
)
return
crImage
# def _drawCosmicRays(self, limit=None):
# """
# Add cosmic rays to the arrays based on a power-law intensity distribution for tracks.
# Cosmic ray properties (such as location and angle) are chosen from random Uniform distribution.
# """
# #estimate the number of cosmics
# cr_n = self.xsize * self.ysize * 0.014 / 43.263316 * 2.
# #scale with exposure time, the above numbers are for the nominal 565s exposure
# cr_n *= (self.information['exptime'] / 565.0)
# #assume a power-law intensity distribution for tracks
# fit = dict(cr_lo=1.0e3, cr_hi=1.0e5, cr_q=2.0e0)
# fit['q1'] = 1.0e0 - fit['cr_q']
# fit['en1'] = fit['cr_lo'] ** fit['q1']
# fit['en2'] = fit['cr_hi'] ** fit['q1']
# #pseudo-random numbers taken from a uniform distribution between 0 and 1
# np.random.seed()
# luck = np.random.rand(int(np.floor(cr_n)))
# #draw the length of the tracks
# if self.cr['cr_cdfn'] > 1:
# ius = InterpolatedUnivariateSpline(self.cr['cr_cdf'], self.cr['cr_u'])
# self.cr['cr_l'] = ius(luck)
# else:
# self.cr['cr_l'] = np.sqrt(1.0 - luck ** 2) / luck
# #draw the energy of the tracks
# if self.cr['cr_cden'] > 1:
# ius = InterpolatedUnivariateSpline(self.cr['cr_cde'], self.cr['cr_v'])
# self.cr['cr_e'] = ius(luck)
# else:
# np.random.seed()
# self.cr['cr_e'] = (fit['en1'] + (fit['en2'] - fit['en1']) *
# np.random.rand(int(np.floor(cr_n)))) ** (1.0 / fit['q1'])
# #Choose the properties such as positions and an angle from a random Uniform dist
# np.random.seed()
# cr_x = self.xsize * np.random.rand(int(np.floor(cr_n)))
# np.random.seed()
# cr_y = self.ysize * np.random.rand(int(np.floor(cr_n)))
# np.random.seed()
# cr_phi = np.pi * np.random.rand(int(np.floor(cr_n)))
# #find the intercepts
# if limit is None:
# self.cosmicrayMap = self._cosmicRayIntercepts(self.cr['cr_e'], cr_x, cr_y, self.cr['cr_l'], cr_phi)
# print ('Number of cosmic ray events:', len(self.cr['cr_e']))
# else:
# #limit to electron levels < limit
# msk = self.cr['cr_e'] < limit
# print ('Number of cosmic ray events: %i / %i' % (len(self.cr['cr_e'][msk]), int(np.floor(cr_n))))
# self.cosmicrayMap = self._cosmicRayIntercepts(self.cr['cr_e'][msk], cr_x[msk], cr_y[msk],
# self.cr['cr_l'][msk], cr_phi[msk])
# #count the covering factor
# area_cr = np.count_nonzero(self.cosmicrayMap)
# text = 'The cosmic ray covering factor is %i pixels i.e. %.3f per cent' \
# % (area_cr, 100.*area_cr / (self.xsize*self.ysize))
# self.log.info(text)
# print (text)
# def _drawSingleEvent(self, limit=1000, cr_n=1):
# """
# Generate a single cosmic ray event and include it to a cosmic ray map (self.cosmicrayMap).
# :param limit: limiting energy for the cosmic ray event
# :type limit: float
# :param cr_n: number of cosmic ray events to include
# :type cr_n: int
# :return: None
# """
# #pseudo-random numbers taken from a uniform distribution between 0 and 1
# np.random.seed()
# luck = np.random.rand(cr_n)
# #draw the length of the tracks
# ius = InterpolatedUnivariateSpline(self.cr['cr_cdf'], self.cr['cr_u'])
# self.cr['cr_l'] = ius(luck)
# #set the energy directly to the limit
# self.cr['cr_e'] = np.asarray([limit, ]*cr_n)
# #Choose the properties such as positions and an angle from a random Uniform dist
# np.random.seed()
# cr_x = self.xsize * np.random.rand(int(np.floor(cr_n)))
# np.random.seed()
# cr_y = self.ysize * np.random.rand(int(np.floor(cr_n)))
# np.random.seed()
# cr_phi = np.pi * np.random.rand(int(np.floor(cr_n)))
# #find the intercepts
# self.cosmicrayMap = self._cosmicRayIntercepts(self.cr['cr_e'], cr_x, cr_y, self.cr['cr_l'], cr_phi)
# #count the covering factor
# area_cr = np.count_nonzero(self.cosmicrayMap)
# text = 'The cosmic ray covering factor is %i pixels i.e. %.3f per cent' \
# % (area_cr, 100.*area_cr / (self.xsize*self.ysize))
# self.log.info(text)
# print( text)
def
_drawEventsToCoveringFactor
(
self
,
coveringFraction
=
3.0
,
limit
=
1000
,
verbose
=
False
):
"""
Generate cosmic ray events up to a covering fraction and include it to a cosmic ray map (self.cosmicrayMap).
:param coveringFraction: covering fraction of cosmic rya events in per cent of total number of pixels
:type coveringFraction: float
:param limit: limiting energy for the cosmic ray event [None = draw from distribution]
:type limit: None or float
:param verbose: print out information to stdout
:type verbose: bool
:return: None
"""
self
.
cosmicrayMap
=
np
.
zeros
((
self
.
ysize
,
self
.
xsize
))
#how many events to draw at once, too large number leads to exceeding the covering fraction
cr_n
=
int
(
295
*
self
.
information
[
'exptime'
]
/
565.
*
coveringFraction
/
1.4
)
covering
=
0.0
while
covering
<
coveringFraction
:
#pseudo-random numbers taken from a uniform distribution between 0 and 1
np
.
random
.
seed
()
luck
=
np
.
random
.
rand
(
cr_n
)
#draw the length of the tracks
ius
=
InterpolatedUnivariateSpline
(
self
.
cr
[
'cr_cdf'
],
self
.
cr
[
'cr_u'
])
self
.
cr
[
'cr_l'
]
=
ius
(
luck
)
if
limit
is
None
:
ius
=
InterpolatedUnivariateSpline
(
self
.
cr
[
'cr_cde'
],
self
.
cr
[
'cr_v'
])
self
.
cr
[
'cr_e'
]
=
ius
(
luck
)
else
:
#set the energy directly to the limit
self
.
cr
[
'cr_e'
]
=
np
.
asarray
([
limit
,])
#Choose the properties such as positions and an angle from a random Uniform dist
np
.
random
.
seed
()
cr_x
=
self
.
xsize
*
np
.
random
.
rand
(
int
(
np
.
floor
(
cr_n
)))
np
.
random
.
seed
()
cr_y
=
self
.
ysize
*
np
.
random
.
rand
(
int
(
np
.
floor
(
cr_n
)))
np
.
random
.
seed
()
cr_phi
=
np
.
pi
*
np
.
random
.
rand
(
int
(
np
.
floor
(
cr_n
)))
#find the intercepts
self
.
cosmicrayMap
+=
self
.
_cosmicRayIntercepts
(
self
.
cr
[
'cr_e'
],
cr_x
,
cr_y
,
self
.
cr
[
'cr_l'
],
cr_phi
)
#count the covering factor
area_cr
=
np
.
count_nonzero
(
self
.
cosmicrayMap
)
covering
=
100.
*
area_cr
/
(
self
.
xsize
*
self
.
ysize
)
# text = 'The cosmic ray covering factor is %i pixels i.e. %.3f per cent' % (area_cr, covering)
# self.log.info(text)
# if verbose:
# print( text)
# def addCosmicRays(self, limit=None):
# """
# Include cosmic rays to the image given.
# :return: image with cosmic rays
# :rtype: ndarray
# """
# self._drawCosmicRays(limit=limit)
# #paste cosmic rays
# self.image += self.cosmicrayMap
# return self.image
# def addSingleEvent(self, limit=None):
# """
# Include a single cosmic ray event to the image given.
# :return: image with cosmic rays
# :rtype: ndarray
# """
# self._drawSingleEvent(limit=limit)
# #paste cosmic rays
# self.image += self.cosmicrayMap
# return self.image
def
addUpToFraction
(
self
,
coveringFraction
,
limit
=
None
,
verbose
=
False
):
"""
Add cosmic ray events up to the covering Fraction.
:param coveringFraction: covering fraction of cosmic rya events in per cent of total number of pixels
:type coveringFraction: float
:param limit: limiting energy for the cosmic ray event [None = draw from distribution]
:type limit: None or float
:param verbose: print out information to stdout
:type verbose: bool
:return: image with cosmic rays
:rtype: ndarray
"""
self
.
_drawEventsToCoveringFactor
(
coveringFraction
,
limit
=
limit
,
verbose
=
verbose
)
#paste cosmic rays
self
.
image
+=
self
.
cosmicrayMap
return
self
.
image
# if __name__ == "__main__":
# print()
csst_ifs_sim/support/logger.py
deleted
100644 → 0
View file @
25bdb62f
"""
These functions can be used for logging information.
.. Warning:: logger is not multiprocessing safe.
:version: 0.3
"""
import
logging
import
logging.handlers
def
setUpLogger
(
log_filename
,
loggername
=
'logger'
):
"""
Sets up a logger.
:param: log_filename: name of the file to save the log.
:param: loggername: name of the logger
:return: logger instance
"""
# create logger
logger
=
logging
.
getLogger
(
loggername
)
logger
.
setLevel
(
logging
.
DEBUG
)
# Add the log message handler to the logger
handler
=
logging
.
handlers
.
RotatingFileHandler
(
log_filename
)
#maxBytes=20, backupCount=5)
# create formatter
formatter
=
logging
.
Formatter
(
'%(asctime)s - %(module)s - %(funcName)s - %(levelname)s - %(message)s'
)
# add formatter to ch
handler
.
setFormatter
(
formatter
)
# add handler to logger
if
(
logger
.
hasHandlers
()):
logger
.
handlers
.
clear
()
logger
.
addHandler
(
handler
)
return
logger
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment