Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_mci_sim
Commits
062a11cf
Commit
062a11cf
authored
May 15, 2024
by
Yan Zhaojun
Browse files
test
parent
1a8c7eff
Pipeline
#4589
failed with stage
in 0 seconds
Changes
2
Pipelines
1
Show whitespace changes
Inline
Side-by-side
csst_mci_sim/CTI/CTI.py
View file @
062a11cf
...
...
@@ -159,6 +159,8 @@ class CDM03bidir():
# from ifs_so.cdm03.cpython-38-x86_64-linux-gnu import cdm03bidir
# import cdm03bidir
from
.mci_so
import
cdm03bidir
CTIed
=
cdm03bidir
.
cdm03
(
np
.
asfortranarray
(
data
),
jflip
,
iflip
,
self
.
values
[
'dob'
],
self
.
values
[
'rdose'
],
...
...
csst_mci_sim/csst_mci_sim.py
View file @
062a11cf
...
...
@@ -71,7 +71,7 @@ from scipy import ndimage
#sys.path.append('./csst_mci_sim')
from
.CTI
import
CTI
#
from .CTI import CTI
from
.support
import
logger
as
lg
from
.support
import
cosmicrays
from
.support
import
shao
...
...
@@ -80,7 +80,6 @@ from .support import MCIinstrumentModel
from
.mci_so
import
cdm03bidir
from
joblib
import
Parallel
,
delayed
from
astropy.coordinates
import
SkyCoord
from
scipy
import
interpolate
...
...
@@ -91,6 +90,180 @@ import astropy.coordinates as coord
from
scipy.interpolate
import
interp1d
########################### functions #########################
"""
Charge Transfer Inefficiency
============================
This file contains a simple class to run a CDM03 CTI model developed by Alex Short (ESA).
This now contains both the official CDM03 and a new version that allows different trap
parameters in parallel and serial direction.
:requires: NumPy
:requires: CDM03 (FORTRAN code, f2py -c -m cdm03bidir cdm03bidir.f90)
:version: 0.35
"""
import
numpy
as
np
#CDM03bidir
class
CDM03bidir
():
"""
Class to run CDM03 CTI model, class Fortran routine to perform the actual CDM03 calculations.
:param settings: input parameters
:type settings: dict
:param data: input data to be radiated
:type data: ndarray
:param log: instance to Python logging
:type log: logging instance
"""
def
__init__
(
self
,
settings
,
data
,
log
=
None
):
"""
Class constructor.
:param settings: input parameters
:type settings: dict
:param data: input data to be radiated
:type data: ndarray
:param log: instance to Python logging
:type log: logging instance
"""
self
.
data
=
data
self
.
values
=
dict
(
quads
=
(
0
,
1
,
2
,
3
),
xsize
=
2048
,
ysize
=
2066
,
dob
=
0.0
,
rdose
=
8.0e9
)
self
.
values
.
update
(
settings
)
self
.
log
=
log
self
.
_setupLogger
()
#default CDM03 settings
self
.
params
=
dict
(
beta_p
=
0.6
,
beta_s
=
0.6
,
fwc
=
200000.
,
vth
=
1.168e7
,
vg
=
6.e-11
,
t
=
20.48e-3
,
sfwc
=
730000.
,
svg
=
1.0e-10
,
st
=
5.0e-6
,
parallel
=
1.
,
serial
=
0.0
)
#update with inputs
self
.
params
.
update
(
self
.
values
)
#read in trap information
trapdata
=
np
.
loadtxt
(
self
.
values
[
'dir_path'
]
+
self
.
values
[
'paralleltrapfile'
])
if
trapdata
.
ndim
>
1
:
self
.
nt_p
=
trapdata
[:,
0
]
self
.
sigma_p
=
trapdata
[:,
1
]
self
.
taur_p
=
trapdata
[:,
2
]
else
:
#only one trap species
self
.
nt_p
=
[
trapdata
[
0
],]
self
.
sigma_p
=
[
trapdata
[
1
],]
self
.
taur_p
=
[
trapdata
[
2
],]
trapdata
=
np
.
loadtxt
(
self
.
values
[
'dir_path'
]
+
self
.
values
[
'serialtrapfile'
])
if
trapdata
.
ndim
>
1
:
self
.
nt_s
=
trapdata
[:,
0
]
self
.
sigma_s
=
trapdata
[:,
1
]
self
.
taur_s
=
trapdata
[:,
2
]
else
:
#only one trap species
self
.
nt_s
=
[
trapdata
[
0
],]
self
.
sigma_s
=
[
trapdata
[
1
],]
self
.
taur_s
=
[
trapdata
[
2
],]
#scale thibaut's values
if
'thibaut'
in
self
.
values
[
'parallelTrapfile'
]:
self
.
nt_p
/=
0.576
#thibaut's values traps / pixel
self
.
sigma_p
*=
1.e4
#thibaut's values in m**2
if
'thibaut'
in
self
.
values
[
'serialTrapfile'
]:
self
.
nt_s
*=
0.576
#thibaut's values traps / pixel #should be division?
self
.
sigma_s
*=
1.e4
#thibaut's values in m**2
def
_setupLogger
(
self
):
"""
Set up the logger.
"""
self
.
logger
=
True
# if self.log is None:
# self.logger = False
def
applyRadiationDamage
(
self
,
data
,
iquadrant
=
0
):
"""
Apply radian damage based on FORTRAN CDM03 model. The method assumes that
input data covers only a single quadrant defined by the iquadrant integer.
:param data: imaging data to which the CDM03 model will be applied to.
:type data: ndarray
:param iquandrant: number of the quadrant to process
:type iquandrant: int
cdm03 - Function signature::
sout = cdm03(sinp,iflip,jflip,dob,rdose,in_nt,in_sigma,in_tr,[xdim,ydim,zdim])
Required arguments:
sinp : input rank-2 array('d') with bounds (xdim,ydim)
iflip : input int
jflip : input int
dob : input float
rdose : input float
in_nt : input rank-1 array('d') with bounds (zdim)
in_sigma : input rank-1 array('d') with bounds (zdim)
in_tr : input rank-1 array('d') with bounds (zdim)
Optional arguments:
xdim := shape(sinp,0) input int
ydim := shape(sinp,1) input int
zdim := len(in_nt) input int
Return objects:
sout : rank-2 array('d') with bounds (xdim,ydim)
.. Note:: Because Python/NumPy arrays are different row/column based, one needs
to be extra careful here. NumPy.asfortranarray will be called to get
an array laid out in Fortran order in memory. Before returning the
array will be laid out in memory in C-style (row-major order).
:return: image that has been run through the CDM03 model
:rtype: ndarray
"""""
#return data
iflip
=
iquadrant
/
2
jflip
=
iquadrant
%
2
params
=
[
self
.
params
[
'beta_p'
],
self
.
params
[
'beta_s'
],
self
.
params
[
'fwc'
],
self
.
params
[
'vth'
],
self
.
params
[
'vg'
],
self
.
params
[
't'
],
self
.
params
[
'sfwc'
],
self
.
params
[
'svg'
],
self
.
params
[
'st'
],
self
.
params
[
'parallel'
],
self
.
params
[
'serial'
]]
if
self
.
logger
:
self
.
log
.
info
(
'nt_p='
+
str
(
self
.
nt_p
))
self
.
log
.
info
(
'nt_s='
+
str
(
self
.
nt_s
))
self
.
log
.
info
(
'sigma_p= '
+
str
(
self
.
sigma_p
))
self
.
log
.
info
(
'sigma_s= '
+
str
(
self
.
sigma_s
))
self
.
log
.
info
(
'taur_p= '
+
str
(
self
.
taur_p
))
self
.
log
.
info
(
'taur_s= '
+
str
(
self
.
taur_s
))
self
.
log
.
info
(
'dob=%f'
%
self
.
values
[
'dob'
])
self
.
log
.
info
(
'rdose=%e'
%
self
.
values
[
'rdose'
])
self
.
log
.
info
(
'xsize=%i'
%
data
.
shape
[
1
])
self
.
log
.
info
(
'ysize=%i'
%
data
.
shape
[
0
])
self
.
log
.
info
(
'quadrant=%i'
%
iquadrant
)
self
.
log
.
info
(
'iflip=%i'
%
iflip
)
self
.
log
.
info
(
'jflip=%i'
%
jflip
)
#################################################################################
CTIed
=
cdm03bidir
.
cdm03
(
np
.
asfortranarray
(
data
),
jflip
,
iflip
,
self
.
values
[
'dob'
],
self
.
values
[
'rdose'
],
self
.
nt_p
,
self
.
sigma_p
,
self
.
taur_p
,
self
.
nt_s
,
self
.
sigma_s
,
self
.
taur_s
,
params
,
[
data
.
shape
[
0
],
data
.
shape
[
1
],
len
(
self
.
nt_p
),
len
(
self
.
nt_s
),
len
(
self
.
params
)])
return
np
.
asanyarray
(
CTIed
)
#################################################################################################################
#################################################################################################################
def
transRaDec2D
(
ra
,
dec
):
# radec转为竞天程序里的ob, 赤道坐标系下的笛卡尔三维坐标xyz.
x1
=
np
.
cos
(
dec
/
57.2957795
)
*
np
.
cos
(
ra
/
57.2957795
)
...
...
@@ -2599,7 +2772,7 @@ class MCIsimulator():
self
.
log
.
debug
(
'Starting to apply radiation damage model...'
)
#at this point we can give fake data...
cti
=
CTI
.
CDM03bidir
(
self
.
information
,
[],
log
=
self
.
log
)
cti
=
CDM03bidir
(
self
.
information
,
[],
log
=
self
.
log
)
#here we need the right input data
self
.
image_g
=
cti
.
applyRadiationDamage
(
self
.
image_g
.
copy
().
transpose
(),
iquadrant
=
self
.
information
[
'quadrant'
]).
transpose
()
self
.
log
.
info
(
'Radiation damage added.'
)
...
...
@@ -2611,7 +2784,7 @@ class MCIsimulator():
self
.
log
.
debug
(
'Starting to apply radiation damage model...'
)
#at this point we can give fake data...
cti
=
CTI
.
CDM03bidir
(
self
.
information
,
[],
log
=
self
.
log
)
cti
=
CDM03bidir
(
self
.
information
,
[],
log
=
self
.
log
)
#here we need the right input data
self
.
image_r
=
cti
.
applyRadiationDamage
(
self
.
image_r
.
copy
().
transpose
(),
iquadrant
=
self
.
information
[
'quadrant'
]).
transpose
()
self
.
log
.
info
(
'Radiation damage added.'
)
...
...
@@ -2622,7 +2795,7 @@ class MCIsimulator():
self
.
log
.
debug
(
'Starting to apply radiation damage model...'
)
#at this point we can give fake data...
cti
=
CTI
.
CDM03bidir
(
self
.
information
,
[],
log
=
self
.
log
)
cti
=
CDM03bidir
(
self
.
information
,
[],
log
=
self
.
log
)
#here we need the right input data
self
.
image_i
=
cti
.
applyRadiationDamage
(
self
.
image_i
.
copy
().
transpose
(),
iquadrant
=
self
.
information
[
'quadrant'
]).
transpose
()
self
.
log
.
info
(
'Radiation damage added.'
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment