Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_mci_sim
Commits
2d749c48
Commit
2d749c48
authored
Apr 14, 2024
by
Yan Zhaojun
Browse files
test
parent
b5eb986d
Pipeline
#4032
failed with stage
in 0 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
csst_mci_sim/csst_mci_sim.py
View file @
2d749c48
...
...
@@ -243,71 +243,71 @@ def ill2flux(E,path):
##############################################################
##########################################################
def
zodiacal
(
ra
,
dec
,
time
):
"""
For given RA, DEC and TIME, return the interpolated zodical spectrum in Leinert-1998.
#
def zodiacal(ra, dec, time):
#
"""
#
For given RA, DEC and TIME, return the interpolated zodical spectrum in Leinert-1998.
:param ra: RA in unit of degree, ICRS frame
:param dec: DEC in unit of degree, ICRS frame
:param time: the specified string that in ISO format i.e., yyyy-mm-dd.
:return:
wave_A: wavelength of the zodical spectrum
spec_mjy: flux of the zodical spectrum, in unit of MJy/sr
spec_erg: flux of the zodical spectrum, in unit of erg/s/cm^2/A/sr
#
:param ra: RA in unit of degree, ICRS frame
#
:param dec: DEC in unit of degree, ICRS frame
#
:param time: the specified string that in ISO format i.e., yyyy-mm-dd.
#
:return:
#
wave_A: wavelength of the zodical spectrum
#
spec_mjy: flux of the zodical spectrum, in unit of MJy/sr
#
spec_erg: flux of the zodical spectrum, in unit of erg/s/cm^2/A/sr
"""
#
"""
# get solar position
dt
=
datetime
.
fromisoformat
(
time
)
#jd = julian.to_jd(dt, fmt='jd')
jd
=
time2jd
(
dt
)
t
=
Time
(
jd
,
format
=
'jd'
,
scale
=
'utc'
)
#
# get solar position
#
dt = datetime.fromisoformat(time)
#
#jd = julian.to_jd(dt, fmt='jd')
#
jd = time2jd(dt)
#
t = Time(jd, format='jd', scale='utc')
astro_sun
=
get_sun
(
t
)
ra_sun
,
dec_sun
=
astro_sun
.
gcrs
.
ra
.
deg
,
astro_sun
.
gcrs
.
dec
.
deg
#
astro_sun = get_sun(t)
#
ra_sun, dec_sun = astro_sun.gcrs.ra.deg, astro_sun.gcrs.dec.deg
radec_sun
=
SkyCoord
(
ra
=
ra_sun
*
u
.
degree
,
dec
=
dec_sun
*
u
.
degree
,
frame
=
'gcrs'
)
lb_sun
=
radec_sun
.
transform_to
(
'geocentrictrueecliptic'
)
#
radec_sun = SkyCoord(ra=ra_sun*u.degree, dec=dec_sun*u.degree, frame='gcrs')
#
lb_sun = radec_sun.transform_to('geocentrictrueecliptic')
# get offsets between the target and sun.
radec_obj
=
SkyCoord
(
ra
=
ra
*
u
.
degree
,
dec
=
dec
*
u
.
degree
,
frame
=
'icrs'
)
lb_obj
=
radec_obj
.
transform_to
(
'geocentrictrueecliptic'
)
#
# get offsets between the target and sun.
#
radec_obj = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs')
#
lb_obj = radec_obj.transform_to('geocentrictrueecliptic')
beta
=
abs
(
lb_obj
.
lat
.
degree
)
lamda
=
abs
(
lb_obj
.
lon
.
degree
-
lb_sun
.
lon
.
degree
)
#
beta = abs(lb_obj.lat.degree)
#
lamda = abs(lb_obj.lon.degree - lb_sun.lon.degree)
# interpolated zodical surface brightness at 0.5 um
zodi
=
pd
.
read_csv
(
self
.
information
[
'dir_path'
]
+
'MCI_inputData/refs/zodi_map.dat'
,
sep
=
'\s+'
,
header
=
None
,
comment
=
'#'
)
beta_angle
=
np
.
array
([
0
,
5
,
10
,
15
,
20
,
25
,
30
,
45
,
60
,
75
])
lamda_angle
=
np
.
array
([
0
,
5
,
10
,
15
,
20
,
25
,
30
,
35
,
40
,
45
,
60
,
75
,
90
,
105
,
120
,
135
,
150
,
165
,
180
])
xx
,
yy
=
np
.
meshgrid
(
beta_angle
,
lamda_angle
)
#xx, yy = np.meshgrid(beta_angle, lamda_angle,indexing='ij', sparse=True)
#
# interpolated zodical surface brightness at 0.5 um
#
zodi = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/zodi_map.dat', sep='\s+', header=None, comment='#')
#
beta_angle = np.array([0, 5, 10, 15, 20, 25, 30, 45, 60, 75])
#
lamda_angle = np.array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
#
60, 75, 90, 105, 120, 135, 150, 165, 180])
#
xx, yy = np.meshgrid(beta_angle, lamda_angle)
#
#xx, yy = np.meshgrid(beta_angle, lamda_angle,indexing='ij', sparse=True)
f
=
interpolate
.
interp2d
(
xx
,
yy
,
zodi
,
kind
=
'linear'
)
#f = interpolate.RegularGridInterpolator((xx, yy), zodi, method='linear')
#
f = interpolate.interp2d(xx, yy, zodi, kind='linear')
#
#f = interpolate.RegularGridInterpolator((xx, yy), zodi, method='linear')
zodi_obj
=
f
(
beta
,
lamda
)
#
#
zodi_obj = f(beta, lamda) #
# read the zodical spectrum in the ecliptic
cat_spec
=
pd
.
read_csv
(
self
.
information
[
'dir_path'
]
+
'MCI_inputData/refs/solar_spec.dat'
,
sep
=
'\s+'
,
header
=
None
,
comment
=
'#'
)
wave
=
cat_spec
[
0
].
values
# A
spec0
=
cat_spec
[
1
].
values
#
zodi_norm
=
252
#
#
# read the zodical spectrum in the ecliptic
#
cat_spec = pd.read_csv(self.information['dir_path']+'MCI_inputData/refs/solar_spec.dat', sep='\s+', header=None, comment='#')
#
wave = cat_spec[0].values # A
#
spec0 = cat_spec[1].values #
#
zodi_norm = 252 #
spec
=
spec0
*
(
zodi_obj
/
zodi_norm
)
*
1e-8
#
#
spec = spec0 * (zodi_obj / zodi_norm) * 1e-8 #
# convert to the commonly used unit of MJy/sr, erg/s/cm^2/A/sr
wave_A
=
wave
# A
#spec_mjy = spec * 0.1 * wave_A**2 / 3e18 * 1e23 * 1e-6 # MJy/sr
spec_erg
=
spec
*
0.1
# erg/s/cm^2/A/sr
spec_erg2
=
spec_erg
/
4.25452e10
# erg/s/cm^2/A/arcsec^2
#
# convert to the commonly used unit of MJy/sr, erg/s/cm^2/A/sr
#
wave_A = wave # A
#
#spec_mjy = spec * 0.1 * wave_A**2 / 3e18 * 1e23 * 1e-6 # MJy/sr
#
spec_erg = spec * 0.1 # erg/s/cm^2/A/sr
#
spec_erg2 = spec_erg / 4.25452e10 # erg/s/cm^2/A/arcsec^2
# self.zodiacal_wave=wave_A # in A
#
# self.zodiacal_wave=wave_A # in A
# self.zodiacal_flux=spec_erg2
#
# self.zodiacal_flux=spec_erg2
return
wave_A
,
spec_erg2
#
return wave_A, spec_erg2
###################################################################################
...
...
@@ -1980,15 +1980,6 @@ class MCIsimulator():
nlayccd
=
0
############################################
#### calculate sky noise , old code #####
# self.earthshine(self.earthshine_theta)
# self.zodiacal(self.information['ra_obj'], self.information['dec_obj'], self.dt.strftime("%Y-%m-%d"))
############### calculate the earthshine and zodiacal noise ,new code 2023.11.1 ############
###############
# self.earthshine(self.earthshine_theta)
# self.zodiacal(self.information['ra_obj'], self.information['dec_obj'], self.zodiacal_time)
ra
=
self
.
information
[
'ra_pnt0'
]
dec
=
self
.
information
[
'dec_pnt0'
]
...
...
@@ -1999,7 +1990,7 @@ class MCIsimulator():
y_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
2
])
z_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
3
])
wave0
,
zodi0
=
zodiacal
(
ra
,
dec
,
self
.
TianCe_day
)
# erg/s/cm^2/A/arcsec^2
wave0
,
zodi0
=
self
.
zodiacal
(
ra
,
dec
,
self
.
TianCe_day
)
# erg/s/cm^2/A/arcsec^2
# EarthShine from straylight
sl
=
StrayLight
(
jtime
=
time_jd
,
sat
=
np
.
array
([
x_sat
,
y_sat
,
z_sat
]),
...
...
@@ -2572,7 +2563,7 @@ class MCIsimulator():
y_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
2
])
z_sat
=
float
(
self
.
orbit_pars
[
self
.
orbit_exp_num
,
3
])
wave0
,
zodi0
=
zodiacal
(
ra
,
dec
,
self
.
TianCe_day
)
# erg/s/cm^2/A/arcsec^2
wave0
,
zodi0
=
self
.
zodiacal
(
ra
,
dec
,
self
.
TianCe_day
)
# erg/s/cm^2/A/arcsec^2
# EarthShine from straylight
sl
=
StrayLight
(
jtime
=
time_jd
,
sat
=
np
.
array
([
x_sat
,
y_sat
,
z_sat
]),
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment