Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_mci_sim
Commits
7446de7f
Commit
7446de7f
authored
Oct 25, 2024
by
Yan Zhaojun
Browse files
Upload New File
parent
c93617b5
Pipeline
#7072
failed with stage
in 0 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
csst_mci_sim/support/MCIinstrumentModel.py
0 → 100644
View file @
7446de7f
"""
VIS Instrument Model
====================
The file provides a function that returns VIS related information such as pixel
size, dark current, gain, zeropoint, and sky background.
:requires: NumPy
:requires: numexpr
:version: 0.7
"""
# import matplotlib
# import matplotlib.pyplot as plt
# import datetime, math
# import numpy as np
# import numexpr as ne
def
MCIinformation
():
"""
Returns a dictionary describing MCI CCD. The following information is provided (id: value - reference)::
dob: 0 - CDM03 (Short et al. 2010)
fwc: 90000 - CCD spec EUCL-EST-RS-6-002 (for CDM03)
rdose: 30000000000.0 - derived (above the PLM requirement)
sfwc: 730000.0 - CDM03 (Short et al. 2010), see also the CCD spec EUCL-EST-RS-6-002
st: 5e-06 - CDM03 (Short et al. 2010)
svg: 1e-10 - CDM03 (Short et al. 2010)
t: 0.01024 - CDM03 (Short et al. 2010)
trapfile: cdm_euclid.dat - CDM03 (derived, refitted to CCD204 data)
vg: 6e-11 - CDM03 (Short et al. 2010)
vth: 11680000.0 - CDM03 (Short et al. 2010)
:return: instrument model parameters
:rtype: dict
"""
#########################################################################################################
out
=
dict
()
out
.
update
({
'dob'
:
0
,
'rdose'
:
8.0e9
,
'parallelTrapfile'
:
'cdm_euclid_parallel.dat'
,
'serialTrapfile'
:
'cdm_euclid_serial.dat'
,
'beta_s'
:
0.6
,
'beta_p'
:
0.6
,
'fwc'
:
90000
,
'vth'
:
1.168e7
,
't'
:
20.48e-3
,
'vg'
:
6.e-11
,
'st'
:
5.0e-6
,
'sfwc'
:
730000.
,
'svg'
:
1.0e-10
})
return
out
# def CCDnonLinearityModel(data, beta=6e-7):
# """
# The non-linearity is modelled based on the results presented.
# :param data: data to which the non-linearity model is being applied to
# :type data: ndarray
# :return: input data after conversion with the non-linearity model
# :rtype: float or ndarray
# """
# out = data-beta*data**2
# return out
###################################################################
# if __name__ == '__main__':
# print()
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment