PSFInterpSLS.py 21.5 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
'''
PSF interpolation for CSST-Sim

NOTE: [iccd, iwave, ipsf] are counted from 1 to n, but [tccd, twave, tpsf] are counted from 0 to n-1
'''

import yaml
import sys
import time
import copy
import numpy as np
import scipy.spatial as spatial
import galsim
import h5py

from observation_sim.instruments import Filter, FilterParam, Chip
from observation_sim.PSF.PSFModel import PSFModel
from observation_sim.instruments.chip import chip_utils
import os
from astropy.io import fits

from astropy.modeling.models import Gaussian2D
from scipy import signal


LOG_DEBUG = False  # ***#
NPSF = 900  # ***# 30*30
PIX_SIZE_MICRON = 5.  # ***# in microns


### find neighbors-KDtree###
# def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
#     """
#     find nearest neighbors by 2D-KDTree
#
#     Parameters:
#         tx, ty (float, float): a given position
#         px, py (numpy.array, numpy.array): position data for tree
#         dr (float-optional): distance
#         dn (int-optional): nearest-N
#         OnlyDistance (bool-optional): only use distance to find neighbors. Default: True
#
#     Returns:
#         dataq (numpy.array): index
#     """
#     datax = px
#     datay = py
#     tree = spatial.KDTree(list(zip(datax.ravel(), datay.ravel())))
#
#     dataq=[]
#     rr = dr
#     if OnlyDistance == True:
#         dataq = tree.query_ball_point([tx, ty], rr)
#     if OnlyDistance == False:
#         while len(dataq) < dn:
#             dataq = tree.query_ball_point([tx, ty], rr)
#             rr += dr
#         dd = np.hypot(datax[dataq]-tx, datay[dataq]-ty)
#         ddSortindx = np.argsort(dd)
#         dataq = np.array(dataq)[ddSortindx[0:dn]]
#     return dataq
#
# ###find neighbors-hoclist###
# def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
#     if np.max(partx) > nhocx*dhocx:
#         print('ERROR')
#         sys.exit()
#     if np.max(party) > nhocy*dhocy:
#         print('ERROR')
#         sys.exit()
#
#     npart  = partx.size
#     hoclist= np.zeros(npart, dtype=np.int32)-1
#     hoc = np.zeros([nhocy, nhocx], dtype=np.int32)-1
#     for ipart in range(npart):
#         ix = int(partx[ipart]/dhocx)
#         iy = int(party[ipart]/dhocy)
#         hoclist[ipart] = hoc[iy, ix]
#         hoc[iy, ix] = ipart
#     return hoc, hoclist
#
# def hocFind(px, py, dhocx, dhocy, hoc, hoclist):
#     ix = int(px/dhocx)
#     iy = int(py/dhocy)
#
#     neigh=[]
#     it = hoc[iy, ix]
#     while it != -1:
#         neigh.append(it)
#         it = hoclist[it]
#     return neigh
#
# def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None):
#     nhocy = nhocx = 20
#
#     pxMin = np.min(px)
#     pxMax = np.max(px)
#     pyMin = np.min(py)
#     pyMax = np.max(py)
#
#     dhocx = (pxMax - pxMin)/(nhocx-1)
#     dhocy = (pyMax - pyMin)/(nhocy-1)
#     partx = px - pxMin +dhocx/2
#     party = py - pyMin +dhocy/2
#
#     if hoc is None:
#         hoc, hoclist = hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy)
#         return hoc, hoclist
#
#     if hoc is not None:
#         tx = tx - pxMin +dhocx/2
#         ty = ty - pyMin +dhocy/2
#         itx = int(tx/dhocx)
#         ity = int(ty/dhocy)
#
#         ps = [-1, 0, 1]
#         neigh=[]
#         for ii in range(3):
#             for jj in range(3):
#                 ix = itx + ps[ii]
#                 iy = ity + ps[jj]
#                 if ix < 0:
#                     continue
#                 if iy < 0:
#                     continue
#                 if ix > nhocx-1:
#                     continue
#                 if iy > nhocy-1:
#                     continue
#
#                 #neightt = myUtil.hocFind(ppx, ppy, dhocx, dhocy, hoc, hoclist)
#                 it = hoc[iy, ix]
#                 while it != -1:
#                     neigh.append(it)
#                     it = hoclist[it]
#                 #neigh.append(neightt)
#         #ll = [i for k in neigh for i in k]
#         if dn != -1:
#             ptx = np.array(partx[neigh])
#             pty = np.array(party[neigh])
#             dd  = np.hypot(ptx-tx, pty-ty)
#             idx = np.argsort(dd)
#             neigh= np.array(neigh)[idx[0:dn]]
#         return neigh
#
#
# ###PSF-IDW###
# def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=None, hoclist=None, PSFCentroidWgt=False):
#     """
#     psf interpolation by IDW
#
#     Parameters:
#         px, py (float, float): position of the target
#         PSFMat (numpy.array): image
#         cen_col, cen_row (numpy.array, numpy.array): potions of the psf centers
#         IDWindex (int-optional): the power index of IDW
#         OnlyNeighbors (bool-optional): only neighbors are used for psf interpolation
#
#     Returns:
#         psfMaker (numpy.array)
#     """
#
#     minimum_psf_weight = 1e-8
#     ref_col = px
#     ref_row = py
#
#     ngy, ngx = PSFMat[0, :, :].shape
#     npsf = PSFMat[:, :, :].shape[0]
#     psfWeight = np.zeros([npsf])
#
#     if OnlyNeighbors == True:
#         if hoc is None:
#             neigh = findNeighbors(px, py, cen_col, cen_row, dr=5., dn=4, OnlyDistance=False)
#         if hoc is not None:
#             neigh = findNeighbors_hoclist(cen_col, cen_row, tx=px,ty=py, dn=4, hoc=hoc, hoclist=hoclist)
#
#         neighFlag = np.zeros(npsf)
#         neighFlag[neigh] = 1
#
#     for ipsf in range(npsf):
#         if OnlyNeighbors == True:
#             if neighFlag[ipsf] != 1:
#                 continue
#
#         dist = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
#         if IDWindex == 1:
#             psfWeight[ipsf] = dist
#         if IDWindex == 2:
#             psfWeight[ipsf] = dist**2
#         if IDWindex == 3:
#             psfWeight[ipsf] = dist**3
#         if IDWindex == 4:
#             psfWeight[ipsf] = dist**4
#         psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
#         psfWeight[ipsf] = 1./psfWeight[ipsf]
#     psfWeight /= np.sum(psfWeight)
#
#     psfMaker  = np.zeros([ngy, ngx], dtype=np.float32)
#     for ipsf in range(npsf):
#         if OnlyNeighbors == True:
#             if neighFlag[ipsf] != 1:
#                 continue
#
#         iPSFMat = PSFMat[ipsf, :, :].copy()
#         ipsfWeight = psfWeight[ipsf]
#
#         psfMaker += iPSFMat * ipsfWeight
#     psfMaker /= np.nansum(psfMaker)
#
#     return psfMaker


### define PSFInterp###
class PSFInterpSLS(PSFModel):
    def __init__(self, chip, filt, PSF_data_prefix="", sigSpin=0, psfRa=0.15, pix_size=0.005):
        if LOG_DEBUG:
            print('===================================================')
            print('DEBUG: psf module for csstSim '
                  + time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
            print('===================================================')

        self.sigSpin = sigSpin
        self.sigGauss = psfRa
        self.grating_ids = chip_utils.getChipSLSGratingID(chip.chipID)
        _, self.grating_type = chip.getChipFilter(chipID=chip.chipID)
        self.data_folder = PSF_data_prefix
        self.getPSFDataFromFile(filt)
        self.pixsize = pix_size  # um

    def getPSFDataFromFile(self, filt):
        gratingInwavelist = {'GU': 0, 'GV': 1, 'GI': 2}
        grating_orders = ['0', '1']
        waveListFn = self.data_folder + '/wavelist.dat'
        wavelists = np.loadtxt(waveListFn)
        self.waveList = wavelists[:, gratingInwavelist[self.grating_type]]
        bandranges = np.zeros([4, 2])
        midBand = (self.waveList[0:3] + self.waveList[1:4])/2.*10000.
        bandranges[0, 0] = filt.blue_limit
        bandranges[1:4, 0] = midBand
        bandranges[0:3, 1] = midBand
        bandranges[3, 1] = filt.red_limit

        self.bandranges = bandranges

        self.grating1_data = {}
        g_folder = self.data_folder + '/' + self.grating_ids[0] + '/'
        for g_order in grating_orders:
            g_folder_order = g_folder + 'PSF_Order_' + g_order + '/'
            grating_order_data = {}
            for bandi in [1, 2, 3, 4]:
                subBand_data = {}
                subBand_data['bandrange'] = bandranges[bandi-1]
                final_folder = g_folder_order + str(bandi) + '/'
                print(final_folder)
                pca_fs = os.listdir(final_folder)
                for fname in pca_fs:
                    if ('_PCs.fits' in fname) and (fname[0] != '.'):
                        fname_ = final_folder + fname
                        hdu = fits.open(fname_)
                        subBand_data['band_data'] = hdu
                grating_order_data['band'+str(bandi)] = subBand_data
            self.grating1_data['order'+g_order] = grating_order_data

        self.grating2_data = {}
        g_folder = self.data_folder + '/' + self.grating_ids[1] + '/'
        for g_order in grating_orders:
            g_folder_order = g_folder + 'PSF_Order_' + g_order + '/'
            grating_order_data = {}
            for bandi in [1, 2, 3, 4]:
                subBand_data = {}
                subBand_data['bandrange'] = bandranges[bandi - 1]
                final_folder = g_folder_order + str(bandi) + '/'
                print(final_folder)
                pca_fs = os.listdir(final_folder)
                for fname in pca_fs:
                    if ('_PCs.fits' in fname) and (fname[0] != '.'):
                        fname_ = final_folder + fname
                        hdu = fits.open(fname_)
                        subBand_data['band_data'] = hdu
                grating_order_data['band' + str(bandi)] = subBand_data
            self.grating2_data['order' + g_order] = grating_order_data

    #
    #
    #
    # def _getPSFwave(self, iccd, PSF_data_file, PSF_data_prefix):
    #     # fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_ccd{:}.h5'.format(iccd), 'r')
    #     fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_{:}.h5'.format(iccd), 'r')
    #     nwave = len(fq.keys())
    #     fq.close()
    #     return nwave
    #
    #
    # def _loadPSF(self, iccd, PSF_data_file, PSF_data_prefix):
    #     psfSet = []
    #     # fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_ccd{:}.h5'.format(iccd), 'r')
    #     fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_{:}.h5'.format(iccd), 'r')
    #     for ii in range(self.nwave):
    #         iwave = ii+1
    #         psfWave = []
    #
    #         fq_iwave = fq['w_{:}'.format(iwave)]
    #         for jj in range(self.npsf):
    #             ipsf = jj+1
    #             psfInfo = {}
    #             psfInfo['wavelength']= fq_iwave['wavelength'][()]
    #
    #             fq_iwave_ipsf = fq_iwave['psf_{:}'.format(ipsf)]
    #             psfInfo['pixsize']   = PIX_SIZE_MICRON
    #             psfInfo['field_x']   = fq_iwave_ipsf['field_x'][()]
    #             psfInfo['field_y']   = fq_iwave_ipsf['field_y'][()]
    #             psfInfo['image_x']   = fq_iwave_ipsf['image_x'][()]
    #             psfInfo['image_y']   = fq_iwave_ipsf['image_y'][()]
    #             psfInfo['centroid_x']= fq_iwave_ipsf['cx'][()]
    #             psfInfo['centroid_y']= fq_iwave_ipsf['cy'][()]
    #             psfInfo['psfMat']    = fq_iwave_ipsf['psfMat'][()]
    #
    #             psfWave.append(psfInfo)
    #         psfSet.append(psfWave)
    #     fq.close()
    #
    #     if LOG_DEBUG:
    #         print('psfSet has been loaded:', flush=True)
    #         print('psfSet[iwave][ipsf][keys]:', psfSet[0][0].keys(), flush=True)
    #     return psfSet
    #
    #
    # def _findWave(self, bandpass):
    #     if isinstance(bandpass,int):
    #         twave = bandpass
    #         return twave
    #
    #     for twave in range(self.nwave):
    #         bandwave = self.PSF_data[twave][0]['wavelength']
    #         if bandpass.blue_limit < bandwave and bandwave < bandpass.red_limit:
    #             return twave
    #     return -1
    #
    #

    def convolveWithGauss(self, img=None, sigma=1):

        offset = int(np.ceil(sigma * 3))
        g_size = 2 * offset + 1
        m_cen = int(g_size / 2)
        print('-----', g_size)
        g_PSF_ = Gaussian2D(1, m_cen, m_cen, sigma, sigma)
        yp, xp = np.mgrid[0:g_size, 0:g_size]
        g_PSF = g_PSF_(xp, yp)
        psf = g_PSF / g_PSF.sum()
        convImg = signal.fftconvolve(img, psf, mode='full', axes=None)
        convImg = convImg/np.sum(convImg)
        return convImg

    def get_PSF(self, chip, pos_img_local=[1000, 1000], bandNo=1, galsimGSObject=True, folding_threshold=5.e-3, g_order='A', grating_split_pos=3685):
        """
        Get the PSF at a given image position

        Parameters:
            chip: A 'Chip' object representing the chip we want to extract PSF from.
            pos_img: A 'galsim.Position' object representing the image position.
            bandpass: A 'galsim.Bandpass' object representing the wavelength range.
            pixSize: The pixels size of psf matrix
            findNeighMode: 'treeFind' or 'hoclistFind'
        Returns:
            PSF: A 'galsim.GSObject'.
        """
        order_IDs = {'A': '1', 'B': '0', 'C': '0', 'D': '0', 'E': '0'}
        contam_order_sigma = {'C': 0.28032344707964174,
                              'D': 0.39900182912061344, 'E': 1.1988309797685412}  # arcsec
        x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
        y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
        # print(pos_img.x - x_start)
        pos_img_x = pos_img_local[0] + x_start
        pos_img_y = pos_img_local[1] + y_start
        pos_img = galsim.PositionD(pos_img_x, pos_img_y)
        if pos_img_local[0] < grating_split_pos:
            psf_data = self.grating1_data
        else:
            psf_data = self.grating2_data

        grating_order = order_IDs[g_order]
        # if grating_order in ['-2','-1','2']:
        #     grating_order = '1'

        # if grating_order in ['0', '1']:
        psf_order = psf_data['order'+grating_order]
        psf_order_b = psf_order['band'+str(bandNo)]
        psf_b_dat = psf_order_b['band_data']
        pos_p = psf_b_dat[1].data
        pc_coeff = psf_b_dat[2].data
        pcs = psf_b_dat[0].data
        # print(max(pos_p[:,0]), min(pos_p[:,0]),max(pos_p[:,1]), min(pos_p[:,1]))
        # print(chip.x_cen, chip.y_cen)
        # print(pos_p)
        px = pos_img.x*chip.pix_size
        py = pos_img.y*chip.pix_size

        dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + \
            (pos_p[:, 0] - py)*(pos_p[:, 0] - py)
        temp_sort_dist = np.zeros([dist2.shape[0], 2])
        temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
        temp_sort_dist[:, 1] = dist2
        # print(temp_sort_dist)
        dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
        # print(dits2_sortlist)
        nearest4p = np.zeros([4, 2])
        pc_coeff_4p = np.zeros([pc_coeff.data.shape[0], 4])

        for i in np.arange(4):
            smaller_ids = int(dits2_sortlist[i][0])
            nearest4p[i, 0] = pos_p[smaller_ids, 1]
            nearest4p[i, 1] = pos_p[smaller_ids, 0]
            pc_coeff_4p[:, i] = pc_coeff[:, smaller_ids]
        idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
            py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))

        coeff_int = np.zeros(pc_coeff.data.shape[0])
        for i in np.arange(4):
            coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
        coeff_int = coeff_int / np.sum(coeff_int)

        npc = 10
        m_size = int(pcs.shape[0]**0.5)
        PSF_int = np.dot(pcs[:, 0:npc], coeff_int[0:npc]
                         ).reshape(m_size, m_size)

        # PSF_int = PSF_int/np.sum(PSF_int)
        PSF_int_trans = np.flipud(np.fliplr(PSF_int))
        PSF_int_trans = np.fliplr(PSF_int_trans.T)
        # PSF_int_trans = np.abs(PSF_int_trans)
        # ids_szero = PSF_int_trans<0
        # PSF_int_trans[ids_szero] = 0
        # print(PSF_int_trans[ids_szero].shape[0],PSF_int_trans.shape)
        PSF_int_trans = PSF_int_trans/np.sum(PSF_int_trans)

        # from astropy.io import fits
        # fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)

        # if g_order in ['C','D','E']:
        #     g_simgma = contam_order_sigma[g_order]/pixel_size_arc
        #     PSF_int_trans = self.convolveWithGauss(PSF_int_trans,g_simgma)
        # n_m_size = int(m_size/2)
        #
        # n_PSF_int = np.zeros([n_m_size, n_m_size])
        #
        # for i in np.arange(n_m_size):
        #     for j in np.arange(n_m_size):
        #         n_PSF_int[i,j] = np.sum(PSF_int[2*i:2*i+2, 2*j:2*j+2])
        #
        # n_PSF_int = n_PSF_int/np.sum(n_PSF_int)

        # chip.img = galsim.ImageF(chip.npix_x, chip.npix_y)
        # chip.img.wcs = galsim.wcs.AffineTransform
        if galsimGSObject:

            # imPSFt = np.zeros([257,257])
            # imPSFt[0:256, 0:256] = imPSF
            # # imPSFt[120:130, 0:256] = 1.

            pixel_size_arc = np.rad2deg(self.pixsize * 1e-3 / 28) * 3600
            img = galsim.ImageF(PSF_int_trans, scale=pixel_size_arc)
            gsp = galsim.GSParams(folding_threshold=folding_threshold)
            # TEST: START
            # Use sheared PSF to test the PSF orientation
            # self.psf = galsim.InterpolatedImage(img, gsparams=gsp).shear(g1=0.8, g2=0.)
            # TEST: END
            self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
            # if g_order in ['C','D','E']:
            #     add_psf  = galsim.Gaussian(sigma=contam_order_sigma[g_order], flux=1.0)
            #     self.psf = galsim.Convolve(self.psf, add_psf)
            wcs = chip.img.wcs.local(pos_img)
            scale = galsim.PixelScale(0.074)
            self.psf = wcs.toWorld(scale.toImage(
                self.psf), image_pos=(pos_img))

            # return self.PSFspin(x=px/0.01, y=py/0.01)
            return self.psf, galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)

        return PSF_int_trans, PSF_int

        # pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600  #set psf pixsize
        #
        # # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
        # twave = self._findWave(bandpass)
        # if twave == -1:
        #     print("!!!PSF bandpass does not match.")
        #     exit()
        # PSFMat = self.psfMat[twave]
        # cen_col= self.cen_col[twave]
        # cen_row= self.cen_row[twave]
        #
        # px = (pos_img.x - chip.cen_pix_x)*0.01
        # py = (pos_img.y - chip.cen_pix_y)*0.01
        # if findNeighMode == 'treeFind':
        #     imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, PSFCentroidWgt=True)
        # if findNeighMode == 'hoclistFind':
        #     assert(self.hoc != 0), 'hoclist should be built correctly!'
        #     imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)
        #
        # ############TEST: START
        # TestGaussian = False
        # if TestGaussian:
        #     gsx  = galsim.Gaussian(sigma=0.04)
        #     #pointing_pa = -23.433333
        #     imPSF= gsx.shear(g1=0.8, g2=0.).rotate(0.*galsim.degrees).drawImage(nx = 256, ny=256, scale=pixSize).array
        # ############TEST: END
        #
        # if galsimGSObject:
        #     imPSFt = np.zeros([257,257])
        #     imPSFt[0:256, 0:256] = imPSF
        #     # imPSFt[120:130, 0:256] = 1.
        #
        #     img = galsim.ImageF(imPSFt, scale=pixSize)
        #     gsp = galsim.GSParams(folding_threshold=folding_threshold)
        #     ############TEST: START
        #     # Use sheared PSF to test the PSF orientation
        #     # self.psf = galsim.InterpolatedImage(img, gsparams=gsp).shear(g1=0.8, g2=0.)
        #     ############TEST: END
        #     self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
        #     wcs = chip.img.wcs.local(pos_img)
        #     scale = galsim.PixelScale(0.074)
        #     self.psf = wcs.toWorld(scale.toImage(self.psf), image_pos=(pos_img))
        #
        #     # return self.PSFspin(x=px/0.01, y=py/0.01)
        #     return self.psf, galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)
        # return imPSF
    #
    # def PSFspin(self, x, y):
    #     """
    #     The PSF profile at a given image position relative to the axis center
    #
    #     Parameters:
    #     theta : spin angles in a given exposure in unit of [arcsecond]
    #     dx, dy: relative position to the axis center in unit of [pixels]
    #
    #     Return:
    #     Spinned PSF: g1, g2 and axis ratio 'a/b'
    #     """
    #     a2Rad = np.pi/(60.0*60.0*180.0)
    #
    #     ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
    #     rc = np.sqrt(x*x + y*y)
    #     cpix = rc*(self.sigSpin*a2Rad)
    #
    #     beta = (np.arctan2(y,x) + np.pi/2)
    #     ell = cpix**2/(2.0*ff**2+cpix**2)
    #     qr = np.sqrt((1.0+ell)/(1.0-ell))
    #     PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
    #     return self.psf.shear(PSFshear), PSFshear


if __name__ == '__main__':
    configfn = '/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_new_sim/csst-simulation/config/config_C6_dev.yaml'
    with open(configfn, "r") as stream:
        try:
            config = yaml.safe_load(stream)
            for key, value in config.items():
                print(key + " : " + str(value))
        except yaml.YAMLError as exc:
            print(exc)
    chip = Chip(chipID=1, config=config)
    filter_id, filter_type = chip.getChipFilter()
    filt = Filter(filter_id=filter_id,
                  filter_type=filter_type,
                  filter_param=FilterParam())

    psf_i = PSFInterpSLS(
        chip, filt, PSF_data_prefix="/Volumes/EAGET/CSST_PSF_data/SLS_PSF_PCA_fp/")
    pos_img = galsim.PositionD(x=25155, y=-22060)
    psf_im = psf_i.get_PSF(chip, pos_img=pos_img, g_order='1')