add_objects.py 13.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
import os
import gc
import psutil
import traceback
import numpy as np
import galsim
from observation_sim._util import get_shear_field
Fang Yuedong's avatar
Fang Yuedong committed
8
from observation_sim.psf import PSFGauss, FieldDistortion, PSFInterp, PSFInterpSLS
Fang Yuedong's avatar
Fang Yuedong committed
9
10
11
12

from astropy.time import Time
from datetime import datetime, timezone

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def _is_obj_valid(self, obj):
    if obj.param['star'] == 4:
        # Currently there's no parameter checks for 'calib' type
        return True
    pos_keys = ['ra', 'dec']
    shape_keys = ['hlr_bulge', 'hlr_disk', 'e1_disk', 'e2_disk', 'e1_bulge', 'e2_bulge']
    if any(obj.param[key] == -999. for key in pos_keys):
        msg = 'One or more positional information (ra, dec) is missing'
        self.chip_output.Log_error(msg)
        return False
    if obj.param['star'] == 0 and any(obj.param[key] == -999. for key in shape_keys):
        msg = 'One or more shape information (hlr_bulge, hlr_disk, e1_disk, e2_disk, e1_bulge, e2_bulge) is missing'
        self.chip_output.Log_error(msg)
        return False
    return True

Fang Yuedong's avatar
Fang Yuedong committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):

    # Get exposure time
    if (obs_param) and ("exptime" in obs_param) and (obs_param["exptime"] is not None):
        exptime = obs_param["exptime"]
    else:
        exptime = pointing.exp_time

    # Load catalogues
    if catalog is None:
        self.chip_output.Log_error(
            "Catalog interface class must be specified for SCIE-OBS")
        raise ValueError(
            "Catalog interface class must be specified for SCIE-OBS")
    cat = catalog(config=self.overall_config, chip=chip,
                  pointing=pointing, chip_output=self.chip_output, filt=filt)

    # Prepare output file(s) for this chip
    # [NOTE] Headers of output .cat file may be updated by Catalog instance
    # this should be called after the creation of Catalog instance
    self.chip_output.create_output_file()

    # Prepare the PSF model
    if self.overall_config["psf_setting"]["psf_model"] == "Gauss":
        psf_model = PSFGauss(
            chip=chip, psfRa=self.overall_config["psf_setting"]["psf_rcont"])
    elif self.overall_config["psf_setting"]["psf_model"] == "Interp":
        if chip.survey_type == "spectroscopic":
            psf_model = PSFInterpSLS(
                chip, filt, PSF_data_prefix=self.overall_config["psf_setting"]["psf_sls_dir"])
        else:
            psf_model = PSFInterp(chip=chip, npsf=chip.n_psf_samples,
                                  PSF_data_file=self.overall_config["psf_setting"]["psf_pho_dir"])
    else:
        self.chip_output.Log_error("unrecognized PSF model type!!", flush=True)

    # Apply field distortion model
Wei Chengliang's avatar
Wei Chengliang committed
68
    if obs_param["field_dist"] is True:
Fang Yuedong's avatar
Fang Yuedong committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        fd_model = FieldDistortion(chip=chip, img_rot=pointing.img_pa.deg)
    else:
        fd_model = None

    # Update limiting magnitudes for all filters based on the exposure time
    # Get the filter which will be used for magnitude cut
    for ifilt in range(len(self.all_filters)):
        temp_filter = self.all_filters[ifilt]
        temp_filter.update_limit_saturation_mags(
            exptime=pointing.get_full_depth_exptime(temp_filter.filter_type), chip=chip)
        if temp_filter.filter_type.lower() == self.overall_config["obs_setting"]["cut_in_band"].lower():
            cut_filter = temp_filter

    # Read in shear values from configuration file if the constant shear type is used
    if self.overall_config["shear_setting"]["shear_type"] == "constant":
        g1_field, g2_field, _ = get_shear_field(config=self.overall_config)
        self.chip_output.Log_info(
            "Use constant shear: g1=%.5f, g2=%.5f" % (g1_field, g2_field))

    # Get chip WCS
    if not hasattr(self, 'h_ext'):
        _, _ = self.prepare_headers(chip=chip, pointing=pointing)

    chip_wcs = galsim.FitsWCS(header=self.h_ext)

    # Loop over objects
    nobj = len(cat.objs)
    missed_obj = 0
    bright_obj = 0
    dim_obj = 0
    for j in range(nobj):
        # # [DEBUG] [TODO]
        # if j >= 10:
        #     break
        obj = cat.objs[j]

105
106
107
        if not self._is_obj_valid(obj):
            continue

Fang Yuedong's avatar
Fang Yuedong committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        # load and convert SED; also caculate object's magnitude in all CSST bands
        try:
            sed_data = cat.load_sed(obj)
            norm_filt = cat.load_norm_filt(obj)
            obj.sed, obj.param["mag_%s" % filt.filter_type.lower()], obj.param["flux_%s" % filt.filter_type.lower()] = cat.convert_sed(
                mag=obj.param["mag_use_normal"],
                sed=sed_data,
                target_filt=filt,
                norm_filt=norm_filt,
                mu=obj.mu
            )
            _, obj.param["mag_%s" % cut_filter.filter_type.lower()], obj.param["flux_%s" % cut_filter.filter_type.lower()] = cat.convert_sed(
                mag=obj.param["mag_use_normal"],
                sed=sed_data,
                target_filt=cut_filter,
                norm_filt=norm_filt,
                mu=obj.mu
            )
        except Exception as e:
            traceback.print_exc()
            self.chip_output.Log_error(e)
            continue

        # [TODO] Testing
        # self.chip_output.Log_info("mag_%s = %.3f"%(filt.filter_type.lower(), obj.param["mag_%s"%filt.filter_type.lower()]))

        # Exclude very bright/dim objects (for now)
        if cut_filter.is_too_bright(
                mag=obj.param["mag_%s" %
                              self.overall_config["obs_setting"]["cut_in_band"].lower()],
                margin=self.overall_config["obs_setting"]["mag_sat_margin"]):
            self.chip_output.Log_info("obj %s too birght!! mag_%s = %.3f" % (
                obj.id, cut_filter.filter_type, obj.param["mag_%s" % self.overall_config["obs_setting"]["cut_in_band"].lower()]))
            bright_obj += 1
            obj.unload_SED()
            continue
        if filt.is_too_dim(
                mag=obj.getMagFilter(filt),
                margin=self.overall_config["obs_setting"]["mag_lim_margin"]):
            self.chip_output.Log_info("obj %s too dim!! mag_%s = %.3f" % (
                obj.id, filt.filter_type, obj.getMagFilter(filt)))
            dim_obj += 1
            obj.unload_SED()
            continue

        # Get corresponding shear values
        if self.overall_config["shear_setting"]["shear_type"] == "constant":
            if obj.type == 'star':
                obj.g1, obj.g2 = 0., 0.
            else:
                # Figure out shear fields from overall configuration shear setting
                obj.g1, obj.g2 = g1_field, g2_field
        elif self.overall_config["shear_setting"]["shear_type"] == "catalog":
            pass
        else:
            self.chip_output.Log_error("Unknown shear input")
            raise ValueError("Unknown shear input")

        # Get position of object on the focal plane
        pos_img, _, _, _, fd_shear = obj.getPosImg_Offset_WCS(
168
            img=chip.img, fdmodel=fd_model, chip=chip, verbose=False, chip_wcs=chip_wcs, img_header=self.h_ext, ra_offset=self.ra_offset, dec_offset=self.dec_offset)
Fang Yuedong's avatar
Fang Yuedong committed
169
170
171
172
173
174
175

        # [TODO] For now, only consider objects which their centers (after field distortion) are projected within the focal plane
        # Otherwise they will be considered missed objects
        # if pos_img.x == -1 or pos_img.y == -1 or (not chip.isContainObj(x_image=pos_img.x, y_image=pos_img.y, margin=0.)):
        if pos_img.x == -1 or pos_img.y == -1:
            self.chip_output.Log_info('obj_ra = %.6f, obj_dec = %.6f, obj_ra_orig = %.6f, obj_dec_orig = %.6f' % (
                obj.ra, obj.dec, obj.ra_orig, obj.dec_orig))
176
            self.chip_output.Log_error("Object missed: %s" % (obj.id))
Fang Yuedong's avatar
Fang Yuedong committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            missed_obj += 1
            obj.unload_SED()
            continue

        # Draw object & update output catalog
        try:
            if self.overall_config["run_option"]["out_cat_only"]:
                isUpdated = True
                obj.real_pos = obj.getRealPos(
                    chip.img, global_x=obj.posImg.x, global_y=obj.posImg.y, img_real_wcs=obj.chip_wcs)
                pos_shear = 0.
            elif chip.survey_type == "photometric" and not self.overall_config["run_option"]["out_cat_only"]:
                isUpdated, pos_shear = obj.drawObj_multiband(
                    tel=tel,
                    pos_img=pos_img,
                    psf_model=psf_model,
                    bandpass_list=filt.bandpass_sub_list,
                    filt=filt,
                    chip=chip,
                    g1=obj.g1,
                    g2=obj.g2,
                    exptime=exptime,
                    fd_shear=fd_shear)

            elif chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"]:
                isUpdated, pos_shear = obj.drawObj_slitless(
                    tel=tel,
                    pos_img=pos_img,
                    psf_model=psf_model,
                    bandpass_list=filt.bandpass_sub_list,
                    filt=filt,
                    chip=chip,
                    g1=obj.g1,
                    g2=obj.g2,
                    exptime=exptime,
                    normFilter=norm_filt,
                    fd_shear=fd_shear)

            if isUpdated == 1:
                # TODO: add up stats
217
218
                self.chip_output.cat_add_obj(
                    obj, pos_img, pos_shear, ra_offset=self.ra_offset, dec_offset=self.dec_offset)
Fang Yuedong's avatar
Fang Yuedong committed
219
220
221
                pass
            elif isUpdated == 0:
                missed_obj += 1
222
                self.chip_output.Log_error("Object missed: %s" % (obj.id))
Fang Yuedong's avatar
Fang Yuedong committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            else:
                self.chip_output.Log_error(
                    "Draw error, object omitted: %s" % (obj.id))
                continue
        except Exception as e:
            traceback.print_exc()
            self.chip_output.Log_error(e)
            self.chip_output.Log_error(
                "pointing: #%d, chipID: %d" % (pointing.id, chip.chipID))
            if obj.type == "galaxy":
                self.chip_output.Log_error("obj id: %s" % (obj.param['id']))
                self.chip_output.Log_error("    e1: %.5f\n    e2: %.5f\n    size: %f\n    bfrac: %f\n    detA: %f\n    g1: %.5f\n    g2: %.5f\n" % (
                    obj.param['e1'], obj.param['e2'], obj.param['size'], obj.param['bfrac'], obj.param['detA'], obj.param['g1'], obj.param['g2']))

        # Unload SED:
        obj.unload_SED()
        del obj
Wei Chengliang's avatar
Wei Chengliang committed
240
        # gc.collect()
Zhang Xin's avatar
Zhang Xin committed
241

Zhang Xin's avatar
Zhang Xin committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    if chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"] and chip.slsPSFOptim:
        # from observation_sim.instruments.chip import chip_utils as chip_utils
        # gn = chip_utils.getChipSLSGratingID(chip.chipID)[0]
        # img1 = np.zeros([2,chip.img.array.shape[0],chip.img.array.shape[1]])

        # for id1 in np.arange(2):
        #     gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
        #     img_i = 0
        #     for id2 in ['0','1']:
        #         o_n = "order"+id2
        #         for id3 in ['1','2','3','4']:
        #             w_n = "w"+id3
        #             img1[img_i] = img1[img_i] + chip.img_stack[gn][o_n][w_n].array
        #         img_i = img_i + 1
        # from astropy.io import fits
        # fits.writeto('order0.fits',img1[0],overwrite=True)
        # fits.writeto('order1.fits',img1[1],overwrite=True)

260
        psf_model.convolveFullImgWithPCAPSF(chip)
Fang Yuedong's avatar
Fang Yuedong committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    del psf_model
    gc.collect()

    self.chip_output.Log_info("Running checkpoint #1 (Object rendering finished): pointing-%d chip-%d pid-%d memory-%6.2fGB" %
                              (pointing.id, chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024)))

    self.chip_output.Log_info(
        "# objects that are too bright %d out of %d" % (bright_obj, nobj))
    self.chip_output.Log_info(
        "# objects that are too dim %d out of %d" % (dim_obj, nobj))
    self.chip_output.Log_info(
        "# objects that are missed %d out of %d" % (missed_obj, nobj))

    # Apply flat fielding (with shutter effects)
    flat_normal = np.ones_like(chip.img.array)
Wei Chengliang's avatar
Wei Chengliang committed
276
    if obs_param["flat_fielding"] is True:
Fang Yuedong's avatar
Fang Yuedong committed
277
278
        flat_normal = flat_normal * chip.flat_img.array / \
            np.mean(chip.flat_img.array)
Wei Chengliang's avatar
Wei Chengliang committed
279
    if obs_param["shutter_effect"] is True:
Fang Yuedong's avatar
Fang Yuedong committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        flat_normal = flat_normal * chip.shutter_img
        flat_normal = np.array(flat_normal, dtype='float32')
        self.updateHeaderInfo(header_flag='ext', keys=[
                              'SHTSTAT'], values=[True])
    else:
        self.updateHeaderInfo(header_flag='ext', keys=['SHTSTAT', 'SHTOPEN1', 'SHTCLOS0'], values=[
                              True, self.h_ext['SHTCLOS1'], self.h_ext['SHTOPEN0']])
    chip.img *= flat_normal
    del flat_normal

    # renew header info
    datetime_obs = datetime.utcfromtimestamp(pointing.timestamp)
    datetime_obs = datetime_obs.replace(tzinfo=timezone.utc)
    t_obs = Time(datetime_obs)

    # ccd刷新2s,等待0.s,开始曝光
    t_obs_renew = Time(t_obs.mjd - (2.+0.) / 86400., format="mjd")

    t_obs_utc = datetime.utcfromtimestamp(np.round(datetime.utcfromtimestamp(
        t_obs_renew.unix).replace(tzinfo=timezone.utc).timestamp(), 1))
    self.updateHeaderInfo(header_flag='prim', keys=[
                          'DATE-OBS'], values=[t_obs_utc.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-5]])

    # dark time : 曝光时间+刷新后等带时间0.s+关快门后读出前等待0.s
    self.updateHeaderInfo(header_flag='ext', keys=[
                          'DARKTIME'], values=[0.+0.+pointing.exp_time])

    return chip, filt, tel, pointing