target_location_check.py 8.69 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# NOTE: This is a stand-alone function, meaning that you do not need
#       to install the entire CSST image simulation pipeline.

# For a given object's coordinate (Ra, Dec), the function will predict
# the object's image position and corresponding filter in the focal plane
# under a specified CSST pointing centered at (rap, decp).

import galsim
import numpy as np
import argparse
import matplotlib.pyplot as plt
import os
import sys


def focalPlaneInf(ra_target, dec_target, ra_point, dec_point, image_rot=-113.4333, figout="zTargetOnCCD.pdf"):
    """
    Input parameters:
    ra_target : right ascension of the target/input object;
                float, in unit of degrees;
    dec_target: declination of the target/input object;
                float, in unit of degrees;
    ra_point  : right ascension of telescope pointing center;
                float, in unit of degrees;
    dec_point : declination of telescope pointing center;
                float, in unit of degrees;
    image_rot : orientation of the camera with respect the sky;
                float, in unit of degrees;
                NOTE: image_rot=-113.4333 is the default value 
                      in current CSST image simulation;
    figout    : location of the target object in the focal plane;
                str
    --------------------------------------------------------------
    Usage:
    0) specify the coordinate (ra_target, dec_target) of your target and
       the pointing center (ra_point dec_point) of the telescope
    1) open a terminal
    2) type >> python TargetLocationCheck.py ra_target dec_target ra_point dec_point
    or type >> python TargetLocationCheck.py ra_target dec_target ra_point dec_point -image_rot=floatNum 
    or type >> python TargetLocationCheck.py ra_target dec_target ra_point dec_point -image_rot=floatNum -figout=FigureName
    """
    print("^_^ Input target coordinate: [Ra, Dec] = [%10.6f, %10.6f]" % (
        ra_target, dec_target))
    print("^_^ Input telescope pointing center: [Ra, Dec] = [%10.6f, %10.6f]" % (
        ra_point, dec_point))
    print("^_^ Input camera orientation: %12.6f degree(s)" % image_rot)
    print(" ")
    # load ccd parameters
    xsize, ysize, xchip, ychip, xgap, ygap, xnchip, ynchip = ccdParam()
    print("^_^ Pixel range of focal plane: x = [%5d, %5d], y = [%5d, %5d]" % (
        -xsize/2, xsize/2, -ysize/2, ysize/2))
    # wcs
    wcs = getTanWCS(ra_point, dec_point, image_rot, pix_scale=0.074)
    skyObj = galsim.CelestialCoord(
        ra=ra_target*galsim.degrees, dec=dec_target*galsim.degrees)
    pixObj = wcs.toImage(skyObj)
    xpixObj = pixObj.x
    ypixObj = pixObj.y
    print("^_^ Image position of   target: [xImage, yImage] = [%9.3f, %9.3f]" % (
        xpixObj, ypixObj))

    # first determine if the target is in the focal plane
    xin = (xpixObj+xsize/2)*(xpixObj-xsize/2)
    yin = (ypixObj+ysize/2)*(ypixObj-ysize/2)
    if xin > 0 or yin > 0:
        raise ValueError("!!! Input target is out of the focal plane")

    # second determine the location of the target
    trigger = False
    for i in range(30):
        ichip = i+1
        ischip = str("0%d" % ichip)[-2:]
        fId, fType = getChipFilter(ichip)
        ix0, ix1, iy0, iy1 = getChipLim(ichip)
        ixin = (xpixObj-ix0)*(xpixObj-ix1)
        iyin = (ypixObj-iy0)*(ypixObj-iy1)
        if ixin <= 0 and iyin <= 0:
            trigger = True
            idx = xpixObj - ix0
            idy = ypixObj - iy0
            print("    ---------------------------------------------")
            print("    ** Target locates in CHIP#%s with filter %s **" %
                  (ischip, fType))
            print(
                "    ** Target position in the chip: [x, y] = [%7.2f, %7.2f]" % (idx, idy))
            print("    ---------------------------------------------")
            break
    if not trigger:
        print("^|^ Target locates in CCD gap")

    # show the figure
    print("    Target on CCD layout is saved into %s" % figout)
    ccdLayout(xpixObj, ypixObj, figout=figout)

    return


def ccdParam():
    xt, yt = 59516, 49752
    x0, y0 = 9216, 9232
    xgap, ygap = (534, 1309), 898
    xnchip, ynchip = 6, 5
    ccdSize = xt, yt, x0, y0, xgap, ygap, xnchip, ynchip
    return ccdSize


def getTanWCS(ra, dec, img_rot, pix_scale=0.074):
    """ 
    Get the WCS of the image mosaic using Gnomonic/TAN projection
    Parameter:
        ra, dec:    float
                    (RA, Dec) of pointing of optical axis
        img_rot:    galsim Angle object
                    Rotation of image
        pix_scale:  float
                    Pixel size in unit of as/pix
    Returns:
        WCS of the focal plane
    """
    xcen, ycen = 0, 0
    img_rot = img_rot * galsim.degrees
    dudx = -np.cos(img_rot.rad) * pix_scale
    dudy = -np.sin(img_rot.rad) * pix_scale
    dvdx = -np.sin(img_rot.rad) * pix_scale
    dvdy = +np.cos(img_rot.rad) * pix_scale

    moscen = galsim.PositionD(x=xcen, y=ycen)
    sky_center = galsim.CelestialCoord(
        ra=ra*galsim.degrees, dec=dec*galsim.degrees)
    affine = galsim.AffineTransform(dudx, dudy, dvdx, dvdy, origin=moscen)
    WCS = galsim.TanWCS(affine, sky_center, units=galsim.arcsec)

    return WCS


def getChipFilter(chipID):
    """
    Return the filter index and type for a given chip #(chipID)
    """
    filter_type_list = ["nuv", "u", "g", "r", "i", "z", "y", "GU", "GV", "GI"]
    # TODO: maybe a more elegent way other than hard coded?
    # e.g. use something like a nested dict:
    if chipID in [6, 15, 16, 25]:
        filter_type = "y"
    if chipID in [11, 20]:
        filter_type = "z"
    if chipID in [7, 24]:
        filter_type = "i"
    if chipID in [14, 17]:
        filter_type = "u"
    if chipID in [9, 22]:
        filter_type = "r"
    if chipID in [12, 13, 18, 19]:
        filter_type = "nuv"
    if chipID in [8, 23]:
        filter_type = "g"
    if chipID in [1, 10, 21, 30]:
        filter_type = "GI"
    if chipID in [2, 5, 26, 29]:
        filter_type = "GV"
    if chipID in [3, 4, 27, 28]:
        filter_type = "GU"
    filter_id = filter_type_list.index(filter_type)

    return filter_id, filter_type


def getChipLim(chipID):
    """
    Calculate the edges in pixel for a given CCD chip on the focal plane
    NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
    Parameters:
        chipID: int
                the index of the chip
    Returns:
            A galsim BoundsD object
    """
    xt, yt, x0, y0, gx, gy, xnchip, ynchip = ccdParam()
    gx1, gx2 = gx

    rowID = ((chipID - 1) % 5) + 1
    colID = 6 - ((chipID - 1) // 5)

    # xlim of a given CCD chip
    xrem = 2*(colID - 1) - (xnchip - 1)
    xcen = (x0//2 + gx1//2) * xrem
    if chipID >= 26 or chipID == 21:
        xcen = (x0//2 + gx1//2) * xrem - (gx2-gx1)
    if chipID <= 5 or chipID == 10:
        xcen = (x0//2 + gx1//2) * xrem + (gx2-gx1)
    nx0 = xcen - x0//2 + 1
    nx1 = xcen + x0//2

    # ylim of a given CCD chip
    yrem = (rowID - 1) - ynchip // 2
    ycen = (y0 + gy) * yrem
    ny0 = ycen - y0//2 + 1
    ny1 = ycen + y0//2

    return nx0-1, nx1-1, ny0-1, ny1-1


def ccdLayout(xpixTar, ypixTar, figout="ccdLayout.pdf"):
    fig = plt.figure(figsize=(10.0, 8.0))
    ax = fig.add_axes([0.1, 0.1, 0.80, 0.80])
    # plot the layout of the ccd distribution
    for i in range(30):
        ichip = i+1
        fId, fType = getChipFilter(ichip)
        ischip = str("0%d" % ichip)[-2:]
        ix0, ix1, iy0, iy1 = getChipLim(ichip)
        ax.plot([ix0, ix1], [iy0, iy0], "k-", linewidth=2.5)
        ax.plot([ix0, ix1], [iy1, iy1], "k-", linewidth=2.5)
        ax.plot([ix0, ix0], [iy0, iy1], "k-", linewidth=2.5)
        ax.plot([ix1, ix1], [iy0, iy1], "k-", linewidth=2.5)
        ax.text(ix0+500, iy0+1500, "%s#%s" %
                (fType, ischip), fontsize=12, color="grey")
    ax.plot(xpixTar, ypixTar, "r*", ms=12)
    ax.set_xlabel("$X\,[\mathrm{pixels}]$", fontsize=20)
    ax.set_ylabel("$Y\,[\mathrm{pixels}]$", fontsize=20)
    ax.invert_yaxis()
    ax.axis('off')
    plt.savefig(figout)


def parseArguments():
    # Create argument parser
    parser = argparse.ArgumentParser()

    # Positional arguments
    parser.add_argument("ra_target",    type=float)
    parser.add_argument("dec_target",   type=float)
    parser.add_argument("ra_point",  type=float)
    parser.add_argument("dec_point", type=float)

    # Optional arguments
    parser.add_argument("-image_rot", type=float, default=-113.4333)
    parser.add_argument("-figout",    type=str,   default="zTargetOnCCD.pdf")

    # Parse arguments
    args = parser.parse_args()

    return args


if __name__ == "__main__":
    # Parse the arguments
    args = parseArguments()

    # Run function
    focalPlaneInf(args.ra_target, args.dec_target, args.ra_point,
                  args.dec_point, args.image_rot, args.figout)