Chip.py 34.8 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
import galsim
import os
import numpy as np
import Instrument.Chip.Effects as effects
from Instrument.FocalPlane import FocalPlane
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
8
9
10
from Config.Header import generatePrimaryHeader, generateExtensionHeader
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

class Chip(FocalPlane):
    def __init__(self, chipID, ccdEffCurve_dir, CRdata_dir, normalize_dir=None, sls_dir=None, config=None, treering_func=None):
        # Get focal plane (instance of paraent class) info
        # TODO: use chipID to config individual chip?
        super().__init__()
        # if config is not None:
        #     self.npix_x     = config["npix_x"]
        #     self.npix_y     = config["npix_y"]
        #     self.read_noise = config["read_noise"]
        #     self.dark_noise = config["dark_noise"]
        #     self.pix_scale  = config["pix_scale"]
        #     self.gain       = config["gain"]
        #     self.bias_level = config["bias_level"]
        #     self.overscan   = config["overscan"]
        # else:
        # Default setting
        self.npix_x = 9216
        self.npix_y = 9232
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.pix_scale  = 0.074 # pixel scale
        self.gain = float(config["gain"])
        self.bias_level = float(config["bias_level"])
        self.overscan   = 1000
36
        self.exptime    = float(config["exp_time"])   # second
Fang Yuedong's avatar
Fang Yuedong committed
37
38
        self.dark_exptime = float(config['dark_exptime'])
        self.flat_exptime = float(config['flat_exptime'])
39
        self.readout_time = float(config['readout_time'])
Fang Yuedong's avatar
Fang Yuedong committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

        # A chip ID must be assigned
        self.chipID = int(chipID)
        self._getChipRowCol()

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

        # Get boundary (in pix)
        self.bound = self.getChipLim()
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
        self.normalize_dir = normalize_dir
        self.sls_dir=sls_dir
        # self.sls_conf = os.path.join(self.sls_dir, self.getChipSLSConf())
        slsconfs = self.getChipSLSConf()
        if np.size(slsconfs) == 1:
            self.sls_conf = [os.path.join(self.sls_dir, slsconfs)]
        else:
            self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
        
        if self.normalize_dir is not None:
            self._getNormF()
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

        # Define the sensor
        if config["bright_fatter"].lower() == "y":
            self.sensor = galsim.SiliconSensor(strength=config["df_strength"], treering_func=treering_func)
        else:
            self.sensor = galsim.Sensor()

    # def _getChipRowCol(self):
    #     self.rowID = (self.chipID - 1) // 5 + 1
    #     self.colID = (self.chipID - 1) % 5 + 1
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
        if self.filter_type in ["GI", "GV", "GU"]:
            return "spectroscopic"
        else:
            return "photometric"

    def _getNormF(self):
        self.normF_star = Table.read(os.path.join(self.normalize_dir, 'SLOAN_SDSS.g.fits'))
        self.normF_galaxy = Table.read(os.path.join(self.normalize_dir, 'lsst_throuput_g.fits'))

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
        if filter_type in ['nuv', 'u', 'GU']: filename = 'UV0.txt'
        if filter_type in ['g', 'r', 'GV']: filename = 'Astro_MB.txt'
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
        # Mirror efficiency:
        if filter_type == 'nuv': mirror_eff = 0.54
        if filter_type == 'u': mirror_eff = 0.68
        if filter_type in ['g', 'r', 'i', 'z', 'y']: mirror_eff = 0.8
        if filter_type in ['GU', 'GV', 'GI']: mirror_eff = 1. # Not sure if this is right
        
        path = os.path.join(self.ccdEffCurve_dir, filename)
        table = Table.read(path, format='ascii')
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2']*mirror_eff, interpolant='linear')
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
        path = os.path.join(self.CRdata_dir, 'wfc-cr-attachpixel.dat')
        self.attachedSizes = np.loadtxt(path)

    def getChipFilter(self, chipID=None, filter_layout=None):
        """Return the filter index and type for a given chip #(chipID)
        """
        filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"]
        # TODO: maybe a more elegent way other than hard coded?
        # e.g. use something like a nested dict:
        if filter_layout is not None:
            return filter_layout[chipID][0], filter_layout[chipID][1]
        if chipID == None:
            chipID = self.chipID

        # updated configurations
        # if chipID>30 or chipID<1: raise ValueError("!!! Chip ID: [1,30]")
        # if chipID in [10, 15, 16, 21]: filter_type = 'y'
        # if chipID in [11, 20]:         filter_type = "z"
        # if chipID in [9, 22]:           filter_type = "i"
        # if chipID in [12, 19]:         filter_type = "u"
        # if chipID in [7, 24]:         filter_type = "r"
        # if chipID in [14, 13, 18, 17]:    filter_type = "nuv"
        # if chipID in [8, 23]:         filter_type = "g"
        # if chipID in [6, 5, 25, 26]:    filter_type = "GI"
        # if chipID in [27, 30, 1, 4]:    filter_type = "GV"
        # if chipID in [28, 29, 2, 3]:    filter_type = "GU"
        if chipID in [6, 15, 16, 25]: filter_type = "y"
        if chipID in [11, 20]:         filter_type = "z"
        if chipID in [7, 24]:           filter_type = "i"
        if chipID in [14, 17]:         filter_type = "u"
        if chipID in [9, 22]:         filter_type = "r"
        if chipID in [12, 13, 18, 19]:    filter_type = "nuv"
        if chipID in [8, 23]:         filter_type = "g"
        if chipID in [1, 10, 21, 30]:    filter_type = "GI"
        if chipID in [2, 5, 26, 29]:    filter_type = "GV"
        if chipID in [3, 4, 27, 28]:    filter_type = "GU"
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
        NOTE: There are 5*4 CCD chips in the focus plane for photometric observation.
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
        # if chipID == None:
        #     chipID = self.chipID
        
        # gx = self.npix_gap_x
        # gy1, gy2 = self.npix_gap_y

        # # xlim of a given ccd chip
        # xrem = (chipID-1)%self.nchip_x - self.nchip_x // 2
        # xcen = (self.npix_x + gx) * xrem
        # nx0 = xcen - self.npix_x//2 + 1
        # nx1 = xcen + self.npix_x//2

        # # ylim of a given ccd chip
        # yrem = 2*((chipID-1)//self.nchip_x) - (self.nchip_y-1)
        # ycen = (self.npix_y//2 + gy1//2) * yrem
        # if chipID <= 6: ycen = (self.npix_y//2 + gy1//2) * yrem - (gy2-gy1)
        # if chipID >= 25: ycen = (self.npix_y//2 + gy1//2) * yrem + (gy2-gy1)
        # ny0 = ycen - self.npix_y//2 + 1
        # ny1 = ycen + self.npix_y//2

        if chipID == None:
            chipID = self.chipID
            rowID, colID = self.rowID, self.colID
        else:
            rowID, colID = self.getChipRowCol(chipID)
        gx1, gx2 = self.npix_gap_x
        gy = self.npix_gap_y

        # xlim of a given CCD chip
        xrem = 2*(colID - 1) - (self.nchip_x - 1)
        xcen = (self.npix_x//2 + gx1//2) * xrem
        if chipID >= 26 or chipID == 21:
            xcen = (self.npix_x//2 + gx1//2) * xrem - (gx2-gx1)
        if chipID <= 5 or chipID == 10:
            xcen = (self.npix_x//2 + gx1//2) * xrem + (gx2-gx1)
        nx0 = xcen - self.npix_x//2 + 1
        nx1 = xcen + self.npix_x//2

        # ylim of a given CCD chip
        yrem = (rowID - 1) - self.nchip_y // 2
        ycen = (self.npix_y + gy) * yrem
        ny0 = ycen - self.npix_y//2 + 1
        ny1 = ycen + self.npix_y//2

        return galsim.BoundsD(nx0-1, nx1-1, ny0-1, ny1-1)


    def getSkyCoverage(self, wcs):
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

    def isContainObj(self, ra_obj, dec_obj, wcs=None, margin=1):
        # magin in number of pix
        if wcs is None:
            wcs = self.img.wcs
        pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
        if (pos_obj.x - xmin) * (pos_obj.x - xmax) > 0.0 or (pos_obj.y - ymin) * (pos_obj.y - ymax) > 0.0:
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

    def getChipSLSConf(self):
        confFile = ''
        if self.chipID == 1: confFile = ['CSST_GI2.conf', 'CSST_GI1.conf']
        if self.chipID == 2: confFile = ['CSST_GV4.conf', 'CSST_GV3.conf']
        if self.chipID == 3: confFile = ['CSST_GU2.conf', 'CSST_GU1.conf']
        if self.chipID == 4: confFile = ['CSST_GU4.conf', 'CSST_GU3.conf']
        if self.chipID == 5: confFile = ['CSST_GV2.conf', 'CSST_GV1.conf']
        if self.chipID == 10: confFile = ['CSST_GI4.conf', 'CSST_GI3.conf']
        if self.chipID == 21: confFile = ['CSST_GI6.conf', 'CSST_GI5.conf']
        if self.chipID == 26: confFile = ['CSST_GV8.conf', 'CSST_GV7.conf']
        if self.chipID == 27: confFile = ['CSST_GU6.conf', 'CSST_GU5.conf']
        if self.chipID == 28: confFile = ['CSST_GU8.conf', 'CSST_GU7.conf']
        if self.chipID == 29: confFile = ['CSST_GV6.conf', 'CSST_GV5.conf']
        if self.chipID == 30: confFile = ['CSST_GI8.conf', 'CSST_GI7.conf']
        return confFile

Fang Yuedong's avatar
Fang Yuedong committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def generateHeader(self, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, exptime=150.):
        h_prim = generatePrimaryHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            pointNum = str(pointing_ID),
            ra=ra_cen, 
            dec=dec_cen, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            date=date_obs,
            time_obs=time_obs,
            im_type = im_type,
            exptime=exptime
            )
        h_ext = generateExtensionHeader(
            xlen=self.npix_x, 
            ylen=self.npix_y, 
            ra=ra_cen, 
            dec=dec_cen, 
            pa=img_rot.deg, 
            gain=self.gain, 
            readout=self.read_noise, 
            dark=self.dark_noise, 
            saturation=90000, 
            psize=self.pix_scale, 
            row_num=self.rowID, 
            col_num=self.colID,
            extName='raw')
        return h_prim, h_ext

    def outputCal(self, img, ra_cen, dec_cen, img_rot, im_type, pointing_ID, date_obs, time_obs, output_dir, exptime=150.):
        h_prim, h_ext = self.generateHeader(
            ra_cen=ra_cen,
            dec_cen=dec_cen,
            img_rot=img_rot,
            im_type=im_type,
            pointing_ID=pointing_ID,
            date_obs=date_obs,
            time_obs=time_obs,
            exptime=exptime)
        hdu1 = fits.PrimaryHDU(header=h_prim)
        hdu2 = fits.ImageHDU(img.array, header=h_ext)
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(output_dir, h_prim['FILENAME']+'.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)

297
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='MS', sky_map=None, tel=None):
Fang Yuedong's avatar
Fang Yuedong committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        SeedGainNonuni=int(config["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["seed_biasNonUniform"])
        SeedRnNonuni = int(config["seed_rnNonUniform"])
        SeedBadColumns = int(config["seed_badcolumns"])
        SeedDefective = int(config["seed_defective"])
        SeedCosmicRay = int(config["seed_CR"])
        fullwell = int(config["full_well"])
        if config["add_hotpixels"].lower() == "y":
            BoolHotPix = True
        else:
            BoolHotPix = False
        if config["add_deadpixels"].lower() == "y":
            BoolDeadPix = True
        else:
            BoolDeadPix = False

314
        # Add sky background
Zhang Xin's avatar
Zhang Xin committed
315
        if sky_map is None:
316
317
318
319
320
321
322
323
324
            sky_map = filt.getSkyNoise(exptime=self.exptime)
        elif img.array.shape != sky_map.shape:
            raise ValueError("The shape img and sky_map must be equal.")
        elif tel is not None: # If sky_map is given in flux
            sky_map = sky_map * tel.pupil_area * self.exptime
        if config["add_back"].lower() == "y":
            img += sky_map
        del sky_map

Fang Yuedong's avatar
Fang Yuedong committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        # Apply flat-field large scale structure for one chip
        if config["flat_fielding"].lower() == "y":
            print("  Creating and applying Flat-Fielding", flush=True)
            print(img.bounds, flush=True)
            flat_img = effects.MakeFlatSmooth(
                img.bounds, 
                int(config["seed_flat"]))
            flat_normal = flat_img / np.mean(flat_img.array)
            img *= flat_normal
            del flat_normal
            if config["flat_output"].lower() == "n":
                del flat_img

        # Apply Shutter-effect for one chip
        if config["shutter_effect"].lower() == "y":
            print("  Apply shutter effect", flush=True)
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
            img *= shuttimg
            if config["shutter_output"].lower() == "y":    # output 16-bit shutter effect image with pixel value <=65535
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg

349
350
351
352
353
        # Add Poisson noise
        seed = int(config["seed_poisson"]) + pointing_ID*30 + self.chipID
        rng_poisson = galsim.BaseDeviate(seed)
        poisson_noise = galsim.PoissonNoise(rng_poisson, sky_level=0.)
        img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
354
355

        # Add cosmic-rays
Fang Yuedong's avatar
Fang Yuedong committed
356
        if config["cosmic_ray"].lower() == "y" and pointing_type=='MS':
Fang Yuedong's avatar
Fang Yuedong committed
357
358
359
            print("  Adding Cosmic-Ray", flush=True)
            cr_map = effects.produceCR_Map(
                xLen=self.npix_x, yLen=self.npix_y, 
360
361
                exTime=self.exptime+0.5*self.readout_time, 
                cr_pixelRatio=0.003*(1+0.5*self.readout_time/self.exptime), 
Fang Yuedong's avatar
Fang Yuedong committed
362
363
                gain=self.gain, 
                attachedSizes=self.attachedSizes,
Fang Yuedong's avatar
Fang Yuedong committed
364
                seed=SeedCosmicRay+pointing_ID*30+self.chipID)   # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
365
366
367
368
            img += cr_map
            cr_map[cr_map > 65535] = 65535
            cr_map[cr_map < 0] = 0
            crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
Fang Yuedong's avatar
Fang Yuedong committed
369
            del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
370
            # crmap_gsimg.write("%s/CosmicRay_%s_1.fits" % (chip_output.subdir, self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
            # crmap_gsimg.write("%s/CosmicRay_%s.fits" % (chip_output.subdir, self.chipID))
            datetime_obs = datetime.fromtimestamp(timestamp_obs)
            date_obs = datetime_obs.strftime("%y%m%d")
            time_obs = datetime_obs.strftime("%H%M%S")
            self.outputCal(
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                date_obs=date_obs,
                time_obs=time_obs,
                output_dir=chip_output.subdir,
                exptime=150.)
Fang Yuedong's avatar
Fang Yuedong committed
386
387
            del crmap_gsimg

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
        # Apply PRNU effect and output PRNU flat file:
        if config["prnu_effect"].lower() == "y":
            print("  Applying PRNU effect", flush=True)
            prnu_img = effects.PRNU_Img(
                xsize=self.npix_x, 
                ysize=self.npix_y, 
                sigma=0.01, 
                seed=int(config["seed_prnu"]+self.chipID))
            img *= prnu_img
            if config["prnu_output"].lower() == "y":
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
            if config["flat_output"].lower() == "n":
                del prnu_img

        # Add dark current
        if config["add_dark"].lower() == "y":
            dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(self.exptime+0.5*self.readout_time)))
            img.addNoise(dark_noise)

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
        if config["add_badcolumns"].lower() == "y":
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID)

Fang Yuedong's avatar
Fang Yuedong committed
416
417
418
419
420
421
422
423
        # Add Bias level
        if config["add_bias"].lower() == "y":
            print("  Adding Bias level and 16-channel non-uniformity")
            img = effects.AddBiasNonUniform16(img, 
                bias_level=float(config["bias_level"]), 
                nsecy = 2, nsecx=8, 
                seed=SeedBiasNonuni+self.chipID)

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        # Apply Nonlinearity on the chip image
        if config["non_linear"].lower() == "y":
            print("  Applying Non-Linearity on the chip image", flush=True)
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
        if config["saturbloom"].lower() == "y":
            print("  Applying CCD Saturation & Blooming")
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
        if config["cte_trail"].lower() == "y":
            print("  Apply CTE Effect")
            img = effects.CTE_Effect(GSImage=img, threshold=27)

        # Add Read-out Noise
        if config["add_readout"].lower() == "y":
            seed = int(config["seed_readout"]) + pointing_ID*30 + self.chipID
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)


        # Apply Gain & Quantization
        print("  Applying Gain (and 16 channel non-uniformity) & Quantization", flush=True)
        img = effects.ApplyGainNonUniform16(
            img, gain=self.gain, 
            nsecy = 2, nsecx=8, 
            seed=SeedGainNonuni+self.chipID)
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
460
        # Bias output
Fang Yuedong's avatar
Fang Yuedong committed
461
        if config["bias_output"].lower() == "y" and pointing_type=='CAL':
Fang Yuedong's avatar
Fang Yuedong committed
462
463
464
465
466
467
468
469
            print("  Output N frame Bias files", flush=True)
            NBias = int(config["NBias"])
            for i in range(NBias):
                BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                    self.npix_x, self.npix_y, 
                    bias_level=float(config["bias_level"]), 
                    ncombine=1, read_noise=self.read_noise, gain=1,
                    seed=SeedBiasNonuni+self.chipID)
Fang Yuedong's avatar
Fang Yuedong committed
470
471
472
473
474
                if config["cosmic_ray"].lower() == "y":
                    if config["cray_differ"].lower() == "y":
                        cr_map = effects.produceCR_Map(
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
475
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/(self.exptime+0.5*self.readout_time), 
Fang Yuedong's avatar
Fang Yuedong committed
476
477
478
479
480
481
482
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Fang Yuedong's avatar
Fang Yuedong committed
483
484
485
                # Non-Linearity for Bias
                if config["non_linear"].lower() == "y":
                    print("  Applying Non-Linearity on the Bias image", flush=True)
486
487
488
489
490
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

                # Apply Bad lines 
                if config["add_badcolumns"].lower() == "y":
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(config["bias_level"])+5, seed=SeedBadColumns, chipid=self.chipID) + float(config["bias_level"])-5
Fang Yuedong's avatar
Fang Yuedong committed
491
492
493
494
495
496
497
498
499
500
501

                BiasCombImg = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
                #     overscan=float(config["bias_level"])-2, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
502
503
504
505
                # BiasCombImg.write("%s/BiasImg_%s_%s_%s.fits" % (chip_output.subdir, BiasTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
506
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
507
508
509
510
511
512
513
514
515
516
517
                self.outputCal(
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
                    im_type='CLB',
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=0.0)
Fang Yuedong's avatar
Fang Yuedong committed
518
519
520
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
Fang Yuedong's avatar
Fang Yuedong committed
521
        if config["flat_output"].lower() == "y" and pointing_type=='CAL':
Fang Yuedong's avatar
Fang Yuedong committed
522
523
524
525
526
527
528
529
            print("  Output N frame Flat-Field files", flush=True)
            NFlat = int(config["NFlat"])
            if config["add_bias"].lower() == "y":
                biaslevel = self.bias_level
                overscan = biaslevel-2
            elif config["add_bias"].lower() == "n":
                biaslevel = 0
                overscan = 0
530
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
531
532
533
534
535
536
537
538
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
539
                    biaslevel=0,
Fang Yuedong's avatar
Fang Yuedong committed
540
541
542
                    seed_bias=SeedDefective+self.chipID
                    )
                if config["cosmic_ray"].lower() == "y":
Fang Yuedong's avatar
Fang Yuedong committed
543
544
545
                    if config["cray_differ"].lower() == "y":
                        cr_map = effects.produceCR_Map(
                            xLen=self.npix_x, yLen=self.npix_y, 
546
547
                            exTime=self.flat_exptime+0.5*self.readout_time, 
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/(self.exptime+0.5*self.readout_time), 
Fang Yuedong's avatar
Fang Yuedong committed
548
549
550
551
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
552
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
553
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
554
555
556

                if config["non_linear"].lower() == "y":
                    print("  Applying Non-Linearity on the Flat image", flush=True)
557
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
558
559
560
561

                if config["cte_trail"].lower() == "y":
                    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)

562
563
564
565
566
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
567
568
569
570
                # Apply Bad lines 
                if config["add_badcolumns"].lower() == "y":
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID)

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
                # Add Bias level
                if config["add_bias"].lower() == "y":
                    print("  Adding Bias level and 16-channel non-uniformity")
                    # img += float(config["bias_level"])
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
                        seed=SeedBiasNonuni+self.chipID)
                
                # Add Read-out Noise
                if config["add_readout"].lower() == "y":
                    seed = int(config["seed_readout"]) + pointing_ID*30 + self.chipID
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
586
587
588
589
590
591
592
593

                FlatCombImg = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
594
595
596
597
                # FlatCombImg.write("%s/FlatImg_%s_%s_%s.fits" % (chip_output.subdir, FlatTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
598
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
599
600
601
602
603
604
605
606
607
608
609
610
                self.outputCal(
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
                    im_type='CLF',
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.flat_exptime)

Fang Yuedong's avatar
Fang Yuedong committed
611
612
613
614
615
616
617
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
Fang Yuedong's avatar
Fang Yuedong committed
618
        if config["dark_output"].lower() == "y" and pointing_type=='CAL':
Fang Yuedong's avatar
Fang Yuedong committed
619
620
621
622
623
624
625
626
627
628
629
            print("  Output N frame Dark Current files", flush=True)
            NDark = int(config["NDark"])
            if config["add_bias"].lower() == "y":
                biaslevel = self.bias_level
                overscan = biaslevel-2
            elif config["add_bias"].lower() == "n":
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
630
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
631
632
633
                    ncombine=1, read_noise=self.read_noise, 
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID)
                if config["cosmic_ray"].lower() == "y":
Fang Yuedong's avatar
Fang Yuedong committed
634
635
636
                    if config["cray_differ"].lower() == "y":
                        cr_map = effects.produceCR_Map(
                            xLen=self.npix_x, yLen=self.npix_y, 
637
638
                            exTime=self.dark_exptime+0.5*self.readout_time, 
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/(self.exptime+0.5*self.readout_time), 
Fang Yuedong's avatar
Fang Yuedong committed
639
640
641
642
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
643
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
                    datetime_obs = datetime.fromtimestamp(timestamp_obs)
                    date_obs = datetime_obs.strftime("%y%m%d")
                    time_obs = datetime_obs.strftime("%H%M%S")
                    self.outputCal(
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        date_obs=date_obs,
                        time_obs=time_obs,
                        output_dir=chip_output.subdir,
                        exptime=self.dark_exptime)
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
663
664
665
666

                # Non-Linearity for Dark
                if config["non_linear"].lower() == "y":
                    print("  Applying Non-Linearity on the Dark image", flush=True)
667
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
668
669
670
671

                if config["cte_trail"].lower() == "y":
                    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)

672
673
674
675
676
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

Fang Yuedong's avatar
Fang Yuedong committed
677
678
679
680
                # Apply Bad lines 
                if config["add_badcolumns"].lower() == "y":
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID)

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
                # Add Bias level
                if config["add_bias"].lower() == "y":
                    print("  Adding Bias level and 16-channel non-uniformity")
                    # img += float(config["bias_level"])
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
                        nsecy = 2, nsecx=8, 
                        seed=SeedBiasNonuni+self.chipID)

                # Add Read-out Noise
                if config["add_readout"].lower() == "y":
                    seed = int(config["seed_readout"]) + pointing_ID*30 + self.chipID
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
696
697
698
699
700
701
702
703
704
705
706
707

                DarkCombImg = effects.ApplyGainNonUniform16(
                    DarkCombImg, gain=self.gain, 
                    nsecy = 2, nsecx=8, 
                    seed=SeedGainNonuni+self.chipID)
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
Fang Yuedong's avatar
Fang Yuedong committed
708
709
710
711
                # DarkCombImg.write("%s/DarkImg_%s_%s_%s.fits" % (chip_output.subdir, DarkTag, self.chipID, i+1))
                datetime_obs = datetime.fromtimestamp(timestamp_obs)
                date_obs = datetime_obs.strftime("%y%m%d")
                time_obs = datetime_obs.strftime("%H%M%S")
712
                timestamp_obs += 10 * 60
Fang Yuedong's avatar
Fang Yuedong committed
713
714
715
716
717
718
719
720
721
722
723
                self.outputCal(
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
                    im_type='CLD',
                    pointing_ID=pointing_ID,
                    date_obs=date_obs,
                    time_obs=time_obs,
                    output_dir=chip_output.subdir,
                    exptime=self.dark_exptime)
Fang Yuedong's avatar
Fang Yuedong committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
        # if config["readout16"].lower() == "y":
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
741
        return img