Newer
Older
import os
import gc
import psutil
import traceback
import numpy as np
import galsim
from observation_sim._util import get_shear_field
from observation_sim.psf import PSFGauss, FieldDistortion, PSFInterp, PSFInterpSLS
from astropy.time import Time
from datetime import datetime, timezone
def _is_obj_valid(self, obj):
if obj.param['star'] == 4:
# Currently there's no parameter checks for 'calib' type
return True
pos_keys = ['ra', 'dec']
shape_keys = ['hlr_bulge', 'hlr_disk', 'e1_disk', 'e2_disk', 'e1_bulge', 'e2_bulge']
if any(obj.param[key] == -999. for key in pos_keys):
msg = 'One or more positional information (ra, dec) is missing'
self.chip_output.Log_error(msg)
return False
if obj.param['star'] == 0 and any(obj.param[key] == -999. for key in shape_keys):
msg = 'One or more shape information (hlr_bulge, hlr_disk, e1_disk, e2_disk, e1_bulge, e2_bulge) is missing'
self.chip_output.Log_error(msg)
return False
return True
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):
# Get exposure time
if (obs_param) and ("exptime" in obs_param) and (obs_param["exptime"] is not None):
exptime = obs_param["exptime"]
else:
exptime = pointing.exp_time
# Load catalogues
if catalog is None:
self.chip_output.Log_error(
"Catalog interface class must be specified for SCIE-OBS")
raise ValueError(
"Catalog interface class must be specified for SCIE-OBS")
cat = catalog(config=self.overall_config, chip=chip,
pointing=pointing, chip_output=self.chip_output, filt=filt)
# Prepare output file(s) for this chip
# [NOTE] Headers of output .cat file may be updated by Catalog instance
# this should be called after the creation of Catalog instance
self.chip_output.create_output_file()
# Prepare the PSF model
if self.overall_config["psf_setting"]["psf_model"] == "Gauss":
psf_model = PSFGauss(
chip=chip, psfRa=self.overall_config["psf_setting"]["psf_rcont"])
elif self.overall_config["psf_setting"]["psf_model"] == "Interp":
if chip.survey_type == "spectroscopic":
psf_model = PSFInterpSLS(
chip, filt, PSF_data_prefix=self.overall_config["psf_setting"]["psf_sls_dir"])
else:
psf_model = PSFInterp(chip=chip, npsf=chip.n_psf_samples,
PSF_data_file=self.overall_config["psf_setting"]["psf_pho_dir"])
else:
self.chip_output.Log_error("unrecognized PSF model type!!", flush=True)
# Apply field distortion model
fd_model = FieldDistortion(chip=chip, img_rot=pointing.img_pa.deg)
else:
fd_model = None
# Update limiting magnitudes for all filters based on the exposure time
# Get the filter which will be used for magnitude cut
for ifilt in range(len(self.all_filters)):
temp_filter = self.all_filters[ifilt]
temp_filter.update_limit_saturation_mags(
exptime=pointing.exp_time,
full_depth_exptime=pointing.get_full_depth_exptime(temp_filter.filter_type),
chip=chip)
if temp_filter.filter_type.lower() == self.overall_config["obs_setting"]["cut_in_band"].lower():
cut_filter = temp_filter
# Read in shear values from configuration file if the constant shear type is used
if self.overall_config["shear_setting"]["shear_type"] == "constant":
g1_field, g2_field, _ = get_shear_field(config=self.overall_config)
self.chip_output.Log_info(
"Use constant shear: g1=%.5f, g2=%.5f" % (g1_field, g2_field))
# Get chip WCS
if not hasattr(self, 'h_ext'):
_, _ = self.prepare_headers(chip=chip, pointing=pointing)
chip_wcs = galsim.FitsWCS(header=self.h_ext)
# Loop over objects
nobj = len(cat.objs)
missed_obj = 0
bright_obj = 0
dim_obj = 0
for j in range(nobj):
# # [DEBUG] [TODO]
# if j >= 10:
# break
obj = cat.objs[j]
if not self._is_obj_valid(obj):
continue
# load and convert SED; also caculate object's magnitude in all CSST bands
try:
sed_data = cat.load_sed(obj)
norm_filt = cat.load_norm_filt(obj)
obj.sed, obj.param["mag_%s" % filt.filter_type.lower()], obj.param["flux_%s" % filt.filter_type.lower()] = cat.convert_sed(
mag=obj.param["mag_use_normal"],
sed=sed_data,
target_filt=filt,
norm_filt=norm_filt,
mu=obj.mu
)
_, obj.param["mag_%s" % cut_filter.filter_type.lower()], obj.param["flux_%s" % cut_filter.filter_type.lower()] = cat.convert_sed(
mag=obj.param["mag_use_normal"],
sed=sed_data,
target_filt=cut_filter,
mu=obj.mu
)
except Exception as e:
traceback.print_exc()
self.chip_output.Log_error(e)
continue
# [TODO] Testing
# print(obj.param["mag_%s" % filt.filter_type.lower()], obj.param["mag_%s" % cut_filter.filter_type.lower()])
# self.chip_output.Log_info("mag_%s = %.3f"%(filt.filter_type.lower(), obj.param["mag_%s"%filt.filter_type.lower()]))
# Exclude very bright/dim objects (for now)
if cut_filter.is_too_bright(
mag=obj.param["mag_%s" %
self.overall_config["obs_setting"]["cut_in_band"].lower()],
margin=self.overall_config["obs_setting"]["mag_sat_margin"]):
self.chip_output.Log_info("obj %s too bright!! mag_%s = %.3f" % (
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
obj.id, cut_filter.filter_type, obj.param["mag_%s" % self.overall_config["obs_setting"]["cut_in_band"].lower()]))
bright_obj += 1
obj.unload_SED()
continue
if filt.is_too_dim(
mag=obj.getMagFilter(filt),
margin=self.overall_config["obs_setting"]["mag_lim_margin"]):
self.chip_output.Log_info("obj %s too dim!! mag_%s = %.3f" % (
obj.id, filt.filter_type, obj.getMagFilter(filt)))
dim_obj += 1
obj.unload_SED()
continue
# Get corresponding shear values
if self.overall_config["shear_setting"]["shear_type"] == "constant":
if obj.type == 'star':
obj.g1, obj.g2 = 0., 0.
else:
# Figure out shear fields from overall configuration shear setting
obj.g1, obj.g2 = g1_field, g2_field
elif self.overall_config["shear_setting"]["shear_type"] == "catalog":
pass
else:
self.chip_output.Log_error("Unknown shear input")
raise ValueError("Unknown shear input")
# Get position of object on the focal plane
pos_img, _, _, _, fd_shear = obj.getPosImg_Offset_WCS(
img=chip.img, fdmodel=fd_model, chip=chip, verbose=False, chip_wcs=chip_wcs, img_header=self.h_ext, ra_offset=self.ra_offset, dec_offset=self.dec_offset)
# [TODO] For now, only consider objects which their centers (after field distortion) are projected within the focal plane
# Otherwise they will be considered missed objects
# if pos_img.x == -1 or pos_img.y == -1 or (not chip.isContainObj(x_image=pos_img.x, y_image=pos_img.y, margin=0.)):
if pos_img.x == -1 or pos_img.y == -1:
self.chip_output.Log_info('obj_ra = %.6f, obj_dec = %.6f, obj_ra_orig = %.6f, obj_dec_orig = %.6f' % (
obj.ra, obj.dec, obj.ra_orig, obj.dec_orig))
self.chip_output.Log_error("Object missed: %s" % (obj.id))
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
missed_obj += 1
obj.unload_SED()
continue
# Draw object & update output catalog
try:
if self.overall_config["run_option"]["out_cat_only"]:
isUpdated = True
obj.real_pos = obj.getRealPos(
chip.img, global_x=obj.posImg.x, global_y=obj.posImg.y, img_real_wcs=obj.chip_wcs)
pos_shear = 0.
elif chip.survey_type == "photometric" and not self.overall_config["run_option"]["out_cat_only"]:
isUpdated, pos_shear = obj.drawObj_multiband(
tel=tel,
pos_img=pos_img,
psf_model=psf_model,
bandpass_list=filt.bandpass_sub_list,
filt=filt,
chip=chip,
g1=obj.g1,
g2=obj.g2,
exptime=exptime,
fd_shear=fd_shear)
elif chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"]:
isUpdated, pos_shear = obj.drawObj_slitless(
tel=tel,
pos_img=pos_img,
psf_model=psf_model,
bandpass_list=filt.bandpass_sub_list,
filt=filt,
chip=chip,
g1=obj.g1,
g2=obj.g2,
exptime=exptime,
normFilter=norm_filt,
fd_shear=fd_shear)
if isUpdated == 1:
# TODO: add up stats
self.chip_output.cat_add_obj(
obj, pos_img, pos_shear, ra_offset=self.ra_offset, dec_offset=self.dec_offset)
self.chip_output.Log_error("Object missed: %s" % (obj.id))
else:
self.chip_output.Log_error(
"Draw error, object omitted: %s" % (obj.id))
continue
except Exception as e:
traceback.print_exc()
self.chip_output.Log_error(e)
self.chip_output.Log_error(
"pointing: #%d, chipID: %d" % (pointing.id, chip.chipID))
if obj.type == "galaxy":
self.chip_output.Log_error("obj id: %s" % (obj.param['id']))
self.chip_output.Log_error(" e1: %.5f\n e2: %.5f\n size: %f\n bfrac: %f\n detA: %f\n g1: %.5f\n g2: %.5f\n" % (
obj.param['e1'], obj.param['e2'], obj.param['size'], obj.param['bfrac'], obj.param['detA'], obj.param['g1'], obj.param['g2']))
# Unload SED:
obj.unload_SED()
del obj
cat.starDDL.freeGlobeData()
del cat.starDDL
if chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"] and chip.slsPSFOptim:
# from observation_sim.instruments.chip import chip_utils as chip_utils
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[0]
# img1 = np.zeros([2,chip.img.array.shape[0],chip.img.array.shape[1]])
# for id1 in np.arange(2):
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
# img_i = 0
# for id2 in ['0','1']:
# o_n = "order"+id2
# for id3 in ['1','2','3','4']:
# w_n = "w"+id3
# img1[img_i] = img1[img_i] + chip.img_stack[gn][o_n][w_n].array
# img_i = img_i + 1
# from astropy.io import fits
# fits.writeto('order0.fits',img1[0],overwrite=True)
# fits.writeto('order1.fits',img1[1],overwrite=True)
psf_model.convolveFullImgWithPCAPSF(chip)
del psf_model
gc.collect()
self.chip_output.Log_info("Running checkpoint #1 (Object rendering finished): pointing-%d chip-%d pid-%d memory-%6.2fGB" %
(pointing.id, chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024)))
self.chip_output.Log_info(
"# objects that are too bright %d out of %d" % (bright_obj, nobj))
self.chip_output.Log_info(
"# objects that are too dim %d out of %d" % (dim_obj, nobj))
self.chip_output.Log_info(
"# objects that are missed %d out of %d" % (missed_obj, nobj))
# Apply flat fielding (with shutter effects)
flat_normal = np.ones_like(chip.img.array)
flat_normal = flat_normal * chip.flat_img.array / \
np.mean(chip.flat_img.array)
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
flat_normal = flat_normal * chip.shutter_img
flat_normal = np.array(flat_normal, dtype='float32')
self.updateHeaderInfo(header_flag='ext', keys=[
'SHTSTAT'], values=[True])
else:
self.updateHeaderInfo(header_flag='ext', keys=['SHTSTAT', 'SHTOPEN1', 'SHTCLOS0'], values=[
True, self.h_ext['SHTCLOS1'], self.h_ext['SHTOPEN0']])
chip.img *= flat_normal
del flat_normal
# renew header info
datetime_obs = datetime.utcfromtimestamp(pointing.timestamp)
datetime_obs = datetime_obs.replace(tzinfo=timezone.utc)
t_obs = Time(datetime_obs)
# ccd刷新2s,等待0.s,开始曝光
t_obs_renew = Time(t_obs.mjd - (2.+0.) / 86400., format="mjd")
t_obs_utc = datetime.utcfromtimestamp(np.round(datetime.utcfromtimestamp(
t_obs_renew.unix).replace(tzinfo=timezone.utc).timestamp(), 1))
self.updateHeaderInfo(header_flag='prim', keys=[
'DATE-OBS'], values=[t_obs_utc.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-5]])
# dark time : 曝光时间+刷新后等带时间0.s+关快门后读出前等待0.s
self.updateHeaderInfo(header_flag='ext', keys=[
'DARKTIME'], values=[0.+0.+pointing.exp_time])
return chip, filt, tel, pointing