FocalPlane.py 4.67 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import galsim
import numpy as np

class FocalPlane(object):
    def __init__(self, config=None, survey_type='Photometric', bad_chips=None):
        """Get the focal plane layout
        Note: (If applicable) make sure the config file have the most basic info, e.g.: "nchip_x"...
        """
        if bad_chips == None:
            self.bad_chips = []
        else:
            self.bad_chips = bad_chips
        
        self.ignore_chips = []
        if survey_type == 'Photometric':
            # for i in range(6):
            #     self.ignore_chips.append(i+1)
            #     self.ignore_chips.append(i+25)
            for i in range(5):
                self.ignore_chips.append(i+1)
                self.ignore_chips.append(i+26)
            self.ignore_chips.append(10)
            self.ignore_chips.append(21)
        elif survey_type == 'Spectroscopic':
            # for i in range(18):
            #     self.ignore_chips.append(i+7)
            for i in range(6, 26):
                if i == 10 or i == 21:
                    continue
                else:
                    self.ignore_chips.append(i)

        if config is not None:
            self.nchip_x    = config["nchip_x"]
            self.nchip_y    = config["nchip_y"]
            self.npix_tot_x = config["npix_tot_x"]
            self.npix_tot_y = config["npix_tot_y"]
            self.npix_gap_x = config["npix_gap_x"]
            self.npix_gap_y = config["npix_gap_y"]
            if "chipLabelIDs" in config:
                self.chipLabelIDs = config["chipLabelIDs"]
            if "bad_chips" in config:
                self.bad_chips = config["bad_chips"]
        else:
            # self.nchip_x = 5
            # self.nchip_y = 6
            # self.npix_tot_x = 49752
            # self.npix_tot_y = 59516
            # self.npix_gap_x = 898
            # self.npix_gap_y = (534, 1309)
            self.nchip_x = 6
            self.nchip_y = 5
            self.npix_tot_x = 59516
            self.npix_tot_y = 49752
            self.npix_gap_x = (534, 1309)
            self.npix_gap_y = 898
        
        self._getCenter()

    def _getCenter(self):
        # self.cen_pix_x = 0.5 * (self.npix_tot_x + 1.0)
        # self.cen_pix_y = 0.5 * (self.npix_tot_y + 1.0)
        self.cen_pix_x = 0
        self.cen_pix_y = 0

    def getChipLabel(self, chipID):
        return str("0%d"%chipID)[-2:]

    def isBadChip(self, chipID):
        """Check if chip #(chipID) on the focal plane is bad or not
        """
        return (chipID in self.bad_chips)

    def isIgnored(self, chipID):
        return (chipID in self.ignore_chips)

    def getTanWCS(self, ra, dec, img_rot, pix_scale, xcen=None, ycen=None, logger=None):
        """ Get the WCS of the image mosaic using Gnomonic/TAN projection

        Parameter:
            ra, dec:    float
                        (RA, Dec) of pointing of optical axis
            img_rot:    galsim Angle object
                        Rotation of image
            pix_scale:  float
                        Pixel size in unit of as/pix
        Returns:
            WCS of the focal plane
        """
        if logger is not None:
            logger.info("    Construct the wcs of the entire image mosaic using Gnomonic/TAN projection")
        if (xcen == None) or (ycen == None):
            xcen = self.cen_pix_x
            ycen = self.cen_pix_y
        dudx =  -np.cos(img_rot.rad) * pix_scale
        dudy =  -np.sin(img_rot.rad) * pix_scale
        dvdx =  -np.sin(img_rot.rad) * pix_scale
        dvdy =  +np.cos(img_rot.rad) * pix_scale
        
        # dudx =  +np.sin(img_rot.rad) * pix_scale
        # dudy =  +np.cos(img_rot.rad) * pix_scale
        # dvdx =  -np.cos(img_rot.rad) * pix_scale
        # dvdy =  +np.sin(img_rot.rad) * pix_scale
        moscen = galsim.PositionD(x=xcen, y=ycen)
        sky_center = galsim.CelestialCoord(ra=ra*galsim.degrees, dec=dec*galsim.degrees)
        affine = galsim.AffineTransform(dudx, dudy, dvdx, dvdy, origin=moscen)
        WCS = galsim.TanWCS(affine, sky_center, units=galsim.arcsec)

        return WCS

    def getSkyCoverage(self, wcs, x0, x1, y0, y1):
        """
        The sky coverage of an area
        """
        r2d = 180.0/np.pi
        s1 = wcs.toWorld(galsim.PositionD(x0,y0))
        s2 = wcs.toWorld(galsim.PositionD(x0,y1))
        s3 = wcs.toWorld(galsim.PositionD(x1,y0))
        s4 = wcs.toWorld(galsim.PositionD(x1,y1))
        ra = [s1.ra.rad*r2d, s2.ra.rad*r2d, s3.ra.rad*r2d, s4.ra.rad*r2d]
        dec = [s1.dec.rad*r2d, s2.dec.rad*r2d, s3.dec.rad*r2d, s4.dec.rad*r2d]

        return galsim.BoundsD(min(ra), max(ra), min(dec), max(dec))