Quasar.py 4.18 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
import galsim
import os, sys
import numpy as np
import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate
7
8
9

from ObservationSim.MockObject.MockObject import MockObject
from ObservationSim.MockObject._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG
Fang Yuedong's avatar
Fang Yuedong committed
10
11

class Quasar(MockObject):
12
13
    def __init__(self, param, logger=None):
        super().__init__(param, logger=logger)
Fang Yuedong's avatar
Fang Yuedong committed
14

Fang Yuedong's avatar
Fang Yuedong committed
15
    def load_SED(self, survey_type, sed_path=None, cosids=None, objtypes=None, sed_templates=None, normFilter=None, target_filt=None):
Fang Yuedong's avatar
Fang Yuedong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        if survey_type == "photometric":
            norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
            if sed_templates is None:
                # Read SED data directly
                itype = objtypes[cosids==self.sed_type][0]
                sed_file = os.path.join(sed_path, itype + "_ID%s.sed"%(self.sed_type))
                if not os.path.exists(sed_file):
                    raise ValueError("!!! No SED found.")
                sed_data = Table.read(sed_file, format="ascii")
                wave, flux = sed_data["observedLambda"].data, sed_data["observedFlux"].data
            else:
                # Load SED from templates
                sed_data = sed_templates[self.sed_type]
                # redshift, intrinsic extinction
                sed_data = getObservedSED(
                    sedCat=sed_data, 
                    redshift=self.z, 
                    av=self.param['av'], 
                    redden=self.param['redden'])
                wave, flux = sed_data[0], sed_data[1]
                
            flux_photon = flux * (wave / (cons.h.value * cons.c.value)) * 1e-13
            sed_photon = Table(np.array([wave, flux_photon]).T, names=('WAVELENGTH', 'FLUX'))
            # Get scaling factor for SED
            sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'],
                spectrum=sed_photon,
                norm_thr=normFilter,
                sWave=np.floor(normFilter[norm_thr_rang_ids][0][0]),
                eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
            sed_photon = np.array([sed_photon['WAVELENGTH'], sed_photon['FLUX']*sedNormFactor]).T
            # Convert to galsim.SED object
            spec = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest')
            self.sed = galsim.SED(spec, wave_type='A', flux_type='1', fast=False)
            # Get magnitude
            interFlux = integrate_sed_bandpass(sed=self.sed, bandpass=target_filt.bandpass_full)
            self.param['mag_%s'%target_filt.filter_type] = getABMAG(
                interFlux=interFlux, 
                bandpass=target_filt.bandpass_full)
            # print('mag_use_normal = ', self.param['mag_use_normal'])
            # print('mag_%s = '%target_filt.filter_type, self.param['mag_%s'%target_filt.filter_type])

        elif survey_type == "spectroscopic":
            if sed_templates is None:
                self.sedPhotons(sed_path=sed_path, cosids=cosids, objtypes=objtypes)
            else:
                sed_data = sed_templates[self.sed_type]
                sed_data = getObservedSED(
                    sedCat=sed_data, 
                    redshift=self.z, 
                    av=self.param['av'], 
                    redden=self.param['redden'])
                speci = interpolate.interp1d(sed_data[0], sed_data[1])
                lamb = np.arange(2500, 10001 + 0.5, 0.5)
                y = speci(lamb)
                # erg/s/cm2/A --> photo/s/m2/A
                all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
                self.sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))


    def unload_SED(self):
        """(Test) free up SED memory
        """
        del self.sed

    def getGSObj(self, psf, g1=0, g2=0, flux=None, filt=None, tel=None, exptime=150.):
        if flux == None:
            flux = self.getElectronFluxFilt(filt, tel, exptime)
        qso = galsim.Gaussian(sigma=1.e-8, flux=1.)
        qso = qso.withFlux(flux)
        final = galsim.Convolve(psf, qso)
        return final