Commit 36189a3e authored by JX's avatar JX 😵
Browse files

Merge remote-tracking branch 'origin/develop'

parents dd26d370 27646bc4
Pipeline #4509 passed with stage
in 0 seconds
"""
generate image header
"""
import numpy as np
from astropy.io import fits
import astropy.wcs as pywcs
from scipy import math
import random
import os
import sys
def chara2digit(char):
""" Function to judge and convert characters to digitals
Parameters
----------
"""
try:
float(char) # for int, long and float
except ValueError:
pass
return char
else:
data = float(char)
return data
def read_header_parameter(filename='global_header.param'):
""" Function to read the header parameters
Parameters
----------
"""
name = []
value = []
description = []
for line in open(filename):
line = line.strip("\n")
arr = line.split('|')
# csvReader = csv.reader(csvDataFile)
# for arr in csvReader:
name.append(arr[0])
value.append(chara2digit(arr[1]))
description.append(arr[2])
# print(value)
return name, value, description
def rotate_CD_matrix(cd, pa_aper):
"""Rotate CD matrix
Parameters
----------
cd: (2,2) array
CD matrix
pa_aper: float
Position angle, in degrees E from N, of y axis of the detector
Returns
-------
cd_rot: (2,2) array
Rotated CD matrix
Comments
--------
`astropy.wcs.WCS.rotateCD` doesn't work for non-square pixels in that it
doesn't preserve the pixel scale! The bug seems to come from the fact
that `rotateCD` assumes a transposed version of its own CD matrix.
"""
rad = np.deg2rad(-pa_aper)
mat = np.zeros((2,2))
mat[0,:] = np.array([np.cos(rad),-np.sin(rad)])
mat[1,:] = np.array([np.sin(rad),np.cos(rad)])
cd_rot = np.dot(mat, cd)
return cd_rot
def Header_extention(xlen = 9232, ylen = 9216, gain = 1.0, readout = 5.0, dark = 0.02,saturation=90000, row_num = 1, col_num = 1):
""" Creat an image frame for CCST with multiple extensions
Parameters
----------
"""
flag_ltm_x = [0,1,-1,1,-1]
flag_ltm_y = [0,1,1,-1,-1]
flag_ltv_x = [0,0,1,0,1]
flag_ltv_y = [0,0,0,1,1]
detector_size_x = int(xlen)
detector_size_y = int(ylen)
data_x = str(int(detector_size_x))
data_y = str(int(detector_size_y))
data_sec = '[1:'+data_x+',1:'+data_y+']'
name = []
value = []
description = []
for k in range(1,2):
# f = open("extension"+str(k)+"_image.param","w")
j = row_num
i = col_num
ccdnum = str((j-1)*5+i)
name = ['EXTNAME',
'BSCALE',
'BZERO',
'OBSID',
'CCDNAME',
'AMPNAME',
'GAIN',
'RDNOISE',
'DARK',
'SATURATE',
'RSPEED',
'CHIPTEMP',
'CCDCHIP',
'DATASEC',
'CCDSUM',
'NSUM',
'LTM1_1',
'LTM2_2',
'LTV1',
'LTV2',
'ATM1_1',
'ATM2_2',
'ATV1',
'ATV2',
'DTV1',
'DTV2',
'DTM1_1',
'DTM2_2']
value = ['IM'+str(k),
1.0,
0.0,
'CSST.20200101T000000',
'ccd' + ccdnum.rjust(2,'0'),
'ccd' + ccdnum.rjust(2,'0') + ':'+str(k),
gain,
readout,
dark,
saturation,
10.0,
-100.0,
'ccd' + ccdnum.rjust(2,'0'),
data_sec,
'1 1',
'1 1',
flag_ltm_x[k],
flag_ltm_y[k],
flag_ltv_x[k]*(detector_size_x-20*2+1),
flag_ltv_y[k]*(detector_size_y+1),
flag_ltm_x[k],
flag_ltm_y[k],
flag_ltv_x[k]*(detector_size_x-20*2+1),
flag_ltv_y[k]*(detector_size_y+1),
0,
0,
1,
1]
description = ['Extension name',
' ',
' ',
'Observation ID',
'CCD name',
'Amplifier name',
'Gain (e-/ADU)',
'Readout noise (e-/pixel)',
'Dark noise (e-/pixel/s)',
'Saturation (e-)',
'Read speed',
'Chip temperature',
'CCD chip ID',
'Data section',
'CCD pixel summing',
'CCD pixel summing',
'CCD to image transformation',
'CCD to image transformation',
'CCD to image transformation',
'CCD to image transformation',
'CCD to amplifier transformation',
'CCD to amplifier transformation',
'CCD to amplifier transformation',
'CCD to amplifier transformation',
'CCD to detector transformatio',
'CCD to detector transformatio',
'CCD to detector transformatio',
'CCD to detector transformatio']
return name, value, description
##9232 9216 898 534 1309 60 -40 -23.4333
def WCS_def(xlen = 9232, ylen = 9216, gapx = 898.0, gapy1 = 534, gapy2 = 1309, ra = 60, dec = -40, pa = -23.433,psize = 0.074, row_num = 1, col_num = 1):
""" Creat a wcs frame for CCST with multiple extensions
Parameters
----------
"""
flag_x = [0, 1, -1, 1, -1]
flag_y = [0, 1, 1, -1, -1]
flag_ext_x = [0,-1,1,-1,1]
flag_ext_y = [0,-1,-1,1,1]
x_num = 5
y_num = 6
detector_num = x_num*y_num
detector_size_x = xlen
detector_size_y = ylen
gap_x = gapx
gap_y = [gapy1,gapy2]
ra_ref = ra
dec_ref = dec
pa_aper = pa
pixel_size = psize
gap_y1_num = 3
gap_y2_num = 2
x_center = (detector_size_x*x_num+gap_x*(x_num-1))/2
y_center = (detector_size_y*y_num+gap_y[0]*gap_y1_num+gap_y[1]*gap_y2_num)/2
gap_y_map = np.array([[0,0,0,0,0],[gap_y[0],gap_y[1],gap_y[1],gap_y[1],gap_y[1]],[gap_y[1],gap_y[0],gap_y[0],gap_y[0],gap_y[0]],[gap_y[0],gap_y[0],gap_y[0],gap_y[0],gap_y[0]],[gap_y[0],gap_y[0],gap_y[0],gap_y[0],gap_y[1]],[gap_y[1],gap_y[1],gap_y[1],gap_y[1],gap_y[0]]])
frame_array = np.empty((5,6),dtype=np.float64)
# print(x_center,y_center)
j = row_num
i = col_num
ccdnum = str((j-1)*5+i)
x_ref, y_ref = (detector_size_x+gap_x)*i-gap_x-detector_size_x/2, detector_size_y*j + sum(gap_y_map[0:j,i-1]) - detector_size_y/2
# print(i,j,x_ref,y_ref,ra_ref,dec_ref)
name = []
value = []
description = []
for k in range(1,2):
cd = np.array([[ pixel_size, 0], [0, pixel_size]])/3600.*flag_x[k]
cd_rot = rotate_CD_matrix(cd, pa_aper)
# f = open("CCD"+ccdnum.rjust(2,'0')+"_extension"+str(k)+"_wcs.param","w")
name = ['EQUINOX',
'WCSDIM',
'CTYPE1',
'CTYPE2',
'CRVAL1',
'CRVAL2',
'CRPIX1',
'CRPIX2',
'CD1_1',
'CD1_2',
'CD2_1',
'CD2_2']
value = [2000.0,
2.0,
'RA---TAN',
'DEC--TAN',
ra_ref,
dec_ref,
flag_ext_x[k]*((x_ref+flag_ext_x[k]*detector_size_x/2)-x_center),
flag_ext_y[k]*((y_ref+flag_ext_y[k]*detector_size_y/2)-y_center),
cd_rot[0,0],
cd_rot[0,1],
cd_rot[1,0],
cd_rot[1,1]]
description = ['Equinox of WCS',
'WCS Dimensionality',
'Coordinate type',
'Coordinate typ',
'Coordinate reference value',
'Coordinate reference value',
'Coordinate reference pixel',
'Coordinate reference pixel',
'Coordinate matrix',
'Coordinate matrix',
'Coordinate matrix',
'Coordinate matrix']
return name, value, description
def generatePrimaryHeader(xlen = 9232, ylen = 9216,pointNum = '1', ra = 60, dec = -40, psize = 0.074, row_num = 1, col_num = 1):
# array_size1, array_size2, flux, sigma = int(argv[1]), int(argv[2]), 1000.0, 5.0
filerParm_fn = os.path.split(os.path.realpath(__file__))[0] + '/filter.lst'
f = open(filerParm_fn)
s = f.readline()
s = s.strip("\n")
filter = s.split(' ')
k = (row_num-1)*5+col_num
ccdnum = str(k)
g_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/global_header.param'
name, value, description = read_header_parameter(g_header_fn)
h_prim = fits.Header()
date = '200930'
time_obs = '120000'
for i in range(len(name)):
if(name[i]=='FILTER'):
value[i] = filter[k-1]
if(name[i]=='FILENAME'):
value[i] = 'CSST_' + date + '_' +time_obs + '_' + pointNum.rjust(6,'0') + '_' +ccdnum.rjust(2,'0')+'_raw'
if(name[i]=='DETSIZE'):
value[i] = '[1:' + str(int(xlen)) + ',1:'+ str(int(ylen)) + ']'
if(name[i]=='PIXSCAL1'):
value[i] = str(psize)
if(name[i]=='PIXSCAL2'):
value[i] = str(psize)
h_prim[name[i]] = (value[i],description[i])
h_prim.add_comment('==================================================================',after='FILETYPE')
h_prim.add_comment('Target information')
h_prim.add_comment('==================================================================')
h_prim.add_comment('==================================================================',after='EQUINOX')
h_prim.add_comment('Exposure information')
h_prim.add_comment('==================================================================')
h_prim.add_comment('==================================================================',after='MJDEND')
h_prim.add_comment('Telescope information')
h_prim.add_comment('==================================================================')
h_prim.add_comment('==================================================================',after='REFFRAME')
h_prim.add_comment('Detector information')
h_prim.add_comment('==================================================================')
h_prim.add_comment('==================================================================',after='FILTER')
h_prim.add_comment('Other information')
h_prim.add_comment('==================================================================')
return h_prim
def generateExtensionHeader(xlen = 9232, ylen = 9216,ra = 60, dec = -40, pa = -23.433, gain = 1.0, readout = 5.0, dark = 0.02, saturation=90000, psize = 0.074, row_num = 1, col_num = 1):
h_ext = fits.Header()
for i in range(1,2):
# NAXIS1:Number of pixels per row; NAXIS2:Number of rows
h_ext['NAXIS1'] = xlen
h_ext['NAXIS2'] = ylen
name, value, description = Header_extention(xlen = xlen, ylen = ylen, gain = gain, readout = readout, dark = dark, saturation=saturation, row_num = row_num, col_num = col_num)
for j in range(len(name)):
h_ext[name[j]] = (value[j],description[j])
name, value, description = WCS_def(xlen = xlen, ylen = ylen, gapx = 898.0, gapy1 = 534, gapy2 = 1309, ra = ra, dec = dec, pa = pa ,psize = psize, row_num = row_num, col_num = col_num)
for j in range(len(name)):
h_ext[name[j]] = (value[j],description[j])
h_ext.add_comment('==================================================================',after='OBSID')
h_ext.add_comment('Readout information')
h_ext.add_comment('==================================================================')
h_ext.add_comment('==================================================================',after='CHIPTEMP')
h_ext.add_comment('Chip information')
h_ext.add_comment('==================================================================')
h_ext.add_comment('==================================================================',after='DTM2_2')
h_ext.add_comment('WCS information')
h_ext.add_comment('==================================================================')
return h_ext
def main(argv):
xlen = int(argv[1])
ylen = int(argv[2])
pointingNum = argv[3]
ra = float(argv[4])
dec = float(argv[5])
pSize = float(argv[6])
ccd_row_num = int(argv[7])
ccd_col_num = int(argv[8])
pa_aper = float(argv[9])
gain = float(argv[10])
readout = float(argv[11])
dark = float(argv[12])
fw = float(argv[13])
h_prim = generatePrimaryHeader(xlen = xlen, ylen = ylen,ra = ra, dec = dec, psize = pSize, row_num = ccd_row_num, col_num = ccd_col_num, pointNum = pointingNum)
h_ext = generateExtensionHeader(xlen = xlen, ylen = ylen,ra = ra, dec = dec, pa = pa_aper, gain = gain, readout = readout, dark = dark, saturation=fw, psize = pSize, row_num = ccd_row_num, col_num = ccd_col_num)
hdu1 = fits.PrimaryHDU(header=h_prim)
hdu2 = fits.ImageHDU(np.zeros([ylen,xlen]),header = h_ext)
hdul = fits.HDUList([hdu1,hdu2])
hdul.writeto(h_prim['FILENAME']+'.fits',output_verify='ignore')
# if __name__ == "__main__":
# main(sys.argv)
import galsim
import os
import numpy as np
import pickle
import json
import ObservationSim.Instrument._util as _util
from astropy.table import Table
from numpy.random import Generator, PCG64
from astropy.io import fits
from datetime import datetime
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader
from ObservationSim.Instrument._util import rotate_conterclockwise
from ObservationSim.Instrument.Chip import ChipUtils as chip_utils
from ObservationSim.Instrument.Chip.libCTI.CTI_modeling import CTI_sim
try:
import importlib.resources as pkg_resources
except ImportError:
# Try backported to PY<37 'importlib_resources'
import importlib_resources as pkg_resources
class Chip(FocalPlane):
def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None):
# Get focal plane (instance of paraent class) info
super().__init__()
self.nsecy = 2
self.nsecx = 8
self.gain_channel = np.ones(self.nsecy * self.nsecx)
self._set_attributes_from_config(config)
self.logger = logger
# A chip ID must be assigned
self.chipID = int(chipID)
self.chip_name = str(chipID).rjust(2, '0')
# Get corresponding filter info
self.filter_id, self.filter_type = self.getChipFilter()
self.survey_type = self._getSurveyType()
if self.filter_type != "FGS":
self._getChipRowCol()
# Set the relavent specs for detectors
try:
with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath("chip_definition.json") as chip_definition:
with open(chip_definition, "r") as f:
chip_dict = json.load(f)[str(self.chipID)]
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.ccd', "chip_definition.json") as chip_definition:
with open(chip_definition, "r") as f:
chip_dict = json.load(f)[str(self.chipID)]
for key in chip_dict:
setattr(self, key, chip_dict[key])
self.fdModel = None
if self.filter_type == "FGS":
fgs_name = self.chip_name[0:4]
try:
with pkg_resources.files('ObservationSim.Instrument.data.field_distortion').joinpath("FieldDistModelGlobal_pr4_%s.pickle" % (fgs_name.lower())) as field_distortion:
with open(field_distortion, "rb") as f:
self.fdModel = pickle.load(f)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.field_distortion', "FieldDistModelGlobal_pr4_%s.pickle" % (fgs_name.lower())) as field_distortion:
with open(field_distortion, "rb") as f:
self.fdModel = pickle.load(f)
else:
# Get the corresponding field distortion model
try:
with pkg_resources.files('ObservationSim.Instrument.data.field_distortion').joinpath("FieldDistModel_v2.0.pickle") as field_distortion:
with open(field_distortion, "rb") as f:
self.fdModel = pickle.load(f)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.field_distortion', "FieldDistModelGlobal_mainFP_v1.0.pickle") as field_distortion:
with open(field_distortion, "rb") as f:
self.fdModel = pickle.load(f)
# Get boundary (in pix)
self.bound = self.getChipLim()
self.ccdEffCurve_dir = ccdEffCurve_dir
self.CRdata_dir = CRdata_dir
slsconfs = chip_utils.getChipSLSConf(chipID=self.chipID)
if np.size(slsconfs) == 1:
try:
with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs) as conf_path:
self.sls_conf = str(conf_path)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
self.sls_conf = str(conf_path)
else:
# self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
self.sls_conf = []
try:
with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[0]) as conf_path:
self.sls_conf.append(str(conf_path))
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
self.sls_conf.append(str(conf_path))
try:
with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[1]) as conf_path:
self.sls_conf.append(str(conf_path))
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
self.sls_conf.append(str(conf_path))
self.effCurve = self._getChipEffCurve(self.filter_type)
self._getCRdata()
# # Define the sensor model
self.sensor = galsim.Sensor()
self.flat_cube = None # for spectroscopic flat field cube simulation
def _set_attributes_from_config(self, config):
# Default setting
self.read_noise = 5.0 # e/pix
self.dark_noise = 0.02 # e/pix/s
self.rotate_angle = 0.
self.overscan = 1000
# Override default values
# for key in ["gain", "bias_level, dark_exptime", "flat_exptime", "readout_time", "full_well", "read_noise", "dark_noise", "overscan"]:
# if key in config["ins_effects"]:
# setattr(self, key, config["ins_effects"][key])
def _getChipRowCol(self):
self.rowID, self.colID = self.getChipRowCol(self.chipID)
def getChipRowCol(self, chipID):
rowID = ((chipID - 1) % 5) + 1
colID = 6 - ((chipID - 1) // 5)
return rowID, colID
def _getSurveyType(self):
if self.filter_type in _util.SPEC_FILTERS:
return "spectroscopic"
elif self.filter_type in _util.PHOT_FILTERS:
return "photometric"
# elif self.filter_type in ["FGS"]:
# return "FGS"
def _getChipEffCurve(self, filter_type):
# CCD efficiency curves
if filter_type in ['NUV', 'u', 'GU']:
filename = 'UV0.txt'
if filter_type in ['g', 'r', 'GV', 'FGS']:
# TODO, need to switch to the right efficiency curvey for FGS CMOS
filename = 'Astro_MB.txt'
if filter_type in ['i', 'z', 'y', 'GI']:
filename = 'Basic_NIR.txt'
try:
with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath(filename) as ccd_path:
table = Table.read(ccd_path, format='ascii')
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
table = Table.read(ccd_path, format='ascii')
throughput = galsim.LookupTable(
x=table['col1'], f=table['col2'], interpolant='linear')
bandpass = galsim.Bandpass(throughput, wave_type='nm')
return bandpass
def _getCRdata(self):
try:
with pkg_resources.files('ObservationSim.Instrument.data').joinpath("wfc-cr-attachpixel.dat") as cr_path:
self.attachedSizes = np.loadtxt(cr_path)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
self.attachedSizes = np.loadtxt(cr_path)
# def loadSLSFLATCUBE(self, flat_fn='flat_cube.fits'):
# try:
# with pkg_resources.files('ObservationSim.Instrument.data').joinpath(flat_fn) as data_path:
# flat_fits = fits.open(data_path, ignore_missing_simple=True)
# except AttributeError:
# with pkg_resources.path('ObservationSim.Instrument.data', flat_fn) as data_path:
# flat_fits = fits.open(data_path, ignore_missing_simple=True)
# fl = len(flat_fits)
# fl_sh = flat_fits[0].data.shape
# assert fl == 4, 'FLAT Field Cube is Not 4 layess!!!!!!!'
# self.flat_cube = np.zeros([fl, fl_sh[0], fl_sh[1]])
# for i in np.arange(0, fl, 1):
# self.flat_cube[i] = flat_fits[i].data
def getChipFilter(self, chipID=None):
"""Return the filter index and type for a given chip #(chipID)
"""
filter_type_list = _util.ALL_FILTERS
if chipID == None:
chipID = self.chipID
# updated configurations
if chipID > 42 or chipID < 1:
raise ValueError("!!! Chip ID: [1,42]")
if chipID in [6, 15, 16, 25]:
filter_type = "y"
if chipID in [11, 20]:
filter_type = "z"
if chipID in [7, 24]:
filter_type = "i"
if chipID in [14, 17]:
filter_type = "u"
if chipID in [9, 22]:
filter_type = "r"
if chipID in [12, 13, 18, 19]:
filter_type = "NUV"
if chipID in [8, 23]:
filter_type = "g"
if chipID in [1, 10, 21, 30]:
filter_type = "GI"
if chipID in [2, 5, 26, 29]:
filter_type = "GV"
if chipID in [3, 4, 27, 28]:
filter_type = "GU"
if chipID in range(31, 43):
filter_type = 'FGS'
filter_id = filter_type_list.index(filter_type)
return filter_id, filter_type
def getChipLim(self, chipID=None):
"""Calculate the edges in pixel for a given CCD chip on the focal plane
NOTE: There are 5*4 CCD chips in the focus plane for photometric / spectroscopic observation.
Parameters:
chipID: int
the index of the chip
Returns:
A galsim BoundsD object
"""
xmin, xmax, ymin, ymax = 1e10, -1e10, 1e10, -1e10
xcen = self.x_cen / self.pix_size
ycen = self.y_cen / self.pix_size
sign_x = [-1., 1., -1., 1.]
sign_y = [-1., -1., 1., 1.]
for i in range(4):
x = xcen + sign_x[i] * self.npix_x / 2.
y = ycen + sign_y[i] * self.npix_y / 2.
x, y = _util.rotate_conterclockwise(
x0=xcen, y0=ycen, x=x, y=y, angle=self.rotate_angle)
xmin, xmax = min(xmin, x), max(xmax, x)
ymin, ymax = min(ymin, y), max(ymax, y)
return galsim.BoundsD(xmin, xmax, ymin, ymax)
def getSkyCoverage(self, wcs):
# print("In getSkyCoverage: xmin = %.3f, xmax = %.3f, ymin = %.3f, ymax = %.3f"%(self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax))
return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)
def getSkyCoverageEnlarged(self, wcs, margin=0.5):
"""The enlarged sky coverage of the chip
"""
margin /= 60.0
bound = self.getSkyCoverage(wcs)
return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)
def isContainObj(self, ra_obj=None, dec_obj=None, x_image=None, y_image=None, wcs=None, margin=1):
# magin in number of pix
if (ra_obj is not None) and (dec_obj is not None):
if wcs is None:
wcs = self.img.wcs
pos_obj = wcs.toImage(galsim.CelestialCoord(
ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
x_image, y_image = pos_obj.x, pos_obj.y
elif (x_image is None) or (y_image is None):
raise ValueError(
"Either (ra_obj, dec_obj) or (x_image, y_image) should be given")
xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
if (x_image - xmin) * (x_image - xmax) > 0.0 or (y_image - ymin) * (y_image - ymax) > 0.0:
return False
return True
def getChipNoise(self, exptime=150.0):
noise = self.dark_noise * exptime + self.read_noise**2
return noise
# def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='SCI', sky_map=None, post_flash_map=None, tel=None, logger=None):
# # Set random seeds
# SeedGainNonuni = int(config["random_seeds"]["seed_gainNonUniform"])
# SeedBiasNonuni = int(config["random_seeds"]["seed_biasNonUniform"])
# SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
# SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
# SeedDefective = int(config["random_seeds"]["seed_defective"])
# SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
# fullwell = int(self.full_well)
# if config["ins_effects"]["add_hotpixels"] == True:
# BoolHotPix = True
# else:
# BoolHotPix = False
# if config["ins_effects"]["add_deadpixels"] == True:
# BoolDeadPix = True
# else:
# BoolDeadPix = False
# self.logger = logger
# # Get Poisson noise generator
# rng_poisson, poisson_noise = chip_utils.get_poisson(
# seed=int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID, sky_level=0.)
# # Add sky background
# if config["ins_effects"]["add_back"] == True:
# img, sky_map = chip_utils.add_sky_background(
# img=img, filt=filt, exptime=exptime, sky_map=sky_map, tel=tel)
# del sky_map
# # Apply flat-field large scale structure for one chip
# if config["ins_effects"]["flat_fielding"] == True:
# chip_utils.log_info(
# msg=" Creating and applying Flat-Fielding", logger=self.logger)
# chip_utils.log_info(msg=str(img.bounds), logger=self.logger)
# flat_img, flat_normal = chip_utils.get_flat(
# img=img, seed=int(config["random_seeds"]["seed_flat"]))
# if self.survey_type == "photometric":
# img *= flat_normal
# del flat_normal
# if config["output_setting"]["flat_output"] == False:
# del flat_img
# if post_flash_map is not None:
# img = img + post_flash_map
# # Apply Shutter-effect for one chip
# if config["ins_effects"]["shutter_effect"] == True:
# chip_utils.log_info(
# msg=" Apply shutter effect", logger=self.logger)
# # shutter effect normalized image for this chip
# shuttimg = effects.ShutterEffectArr(
# img, t_shutter=1.3, dist_bearing=735, dt=1E-3)
# if self.survey_type == "photometric":
# img *= shuttimg
# # output 16-bit shutter effect image with pixel value <=65535
# if config["output_setting"]["shutter_output"] == True:
# shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
# shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" %
# (chip_output.subdir, self.chipID))
# del shutt_gsimg
# del shuttimg
# # # Add Poisson noise to the resulting images
# # # (NOTE): this can only applied to the slitless image
# # # since it dose not use photon shooting to draw stamps
# # if self.survey_type == "spectroscopic":
# # img.addNoise(poisson_noise)
# # Add cosmic-rays
# if config["ins_effects"]["cosmic_ray"] == True and pointing_type == 'SCI':
# chip_utils.log_info(msg=" Adding Cosmic-Ray", logger=self.logger)
# img, crmap_gsimg, cr_event_num = chip_utils.add_cosmic_rays(img=img, chip=self, exptime=exptime,
# seed=SeedCosmicRay+pointing_ID*30+self.chipID)
# chip_utils.outputCal(
# chip=self,
# img=crmap_gsimg,
# ra_cen=ra_cen,
# dec_cen=dec_cen,
# img_rot=img_rot,
# im_type='CRS',
# pointing_ID=pointing_ID,
# output_dir=chip_output.subdir,
# exptime=exptime,
# project_cycle=config["project_cycle"],
# run_counter=config["run_counter"],
# timestamp=timestamp_obs)
# del crmap_gsimg
# # Apply PRNU effect and output PRNU flat file:
# if config["ins_effects"]["prnu_effect"] == True:
# chip_utils.log_info(
# msg=" Applying PRNU effect", logger=self.logger)
# img, prnu_img = chip_utils.add_PRNU(img=img, chip=self,
# seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
# if config["output_setting"]["prnu_output"] == True:
# prnu_img.write("%s/FlatImg_PRNU_%s.fits" %
# (chip_output.subdir, self.chipID))
# if config["output_setting"]["flat_output"] == False:
# del prnu_img
# # # Add dark current
# # if config["ins_effects"]["add_dark"] == True:
# # dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(exptime+0.5*self.readout_time)))
# # img.addNoise(dark_noise)
# # Add dark current & Poisson noise
# InputDark = False
# if config["ins_effects"]["add_dark"] == True:
# if InputDark:
# img = chip_utils.add_inputdark(
# img=img, chip=self, exptime=exptime)
# else:
# img, _ = chip_utils.add_poisson(
# img=img, chip=self, exptime=exptime, poisson_noise=poisson_noise)
# else:
# img, _ = chip_utils.add_poisson(
# img=img, chip=self, exptime=exptime, poisson_noise=poisson_noise, dark_noise=0.)
# # Add diffusion & brighter-fatter effects
# if config["ins_effects"]["bright_fatter"] == True:
# img = chip_utils.add_brighter_fatter(img=img)
# # Add Hot Pixels or/and Dead Pixels
# rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
# badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
# img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix,
# fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)
# # Apply Bad lines
# if config["ins_effects"]["add_badcolumns"] == True:
# img = effects.BadColumns(
# img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
# # Apply Nonlinearity on the chip image
# if config["ins_effects"]["non_linear"] == True:
# chip_utils.log_info(
# msg=" Applying Non-Linearity on the chip image", logger=self.logger)
# img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)
# # Apply CCD Saturation & Blooming
# if config["ins_effects"]["saturbloom"] == True:
# chip_utils.log_info(
# msg=" Applying CCD Saturation & Blooming", logger=self.logger)
# img = effects.SaturBloom(
# GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)
# # Apply CTE Effect
# # if config["ins_effects"]["cte_trail"] == True:
# # chip_utils.log_info(msg=" Apply CTE Effect", logger=self.logger)
# # img = effects.CTE_Effect(GSImage=img, threshold=27)
# pre1 = self.prescan_x # 27
# over1 = self.overscan_x # 71
# pre2 = self.prescan_y # 0 #4
# over2 = self.overscan_y # 84 #80
# if config["ins_effects"]["cte_trail"] == True:
# chip_utils.log_info(msg=" Apply CTE Effect", logger=self.logger)
# # img = effects.CTE_Effect(GSImage=img, threshold=27)
# # CTI_modeling
# # 2*8 -> 1*16 img-layout
# img = chip_utils.formatOutput(GSImage=img)
# self.nsecy = 1
# self.nsecx = 16
# img_arr = img.array
# ny, nx = img_arr.shape
# dx = int(nx/self.nsecx)
# dy = int(ny/self.nsecy)
# newimg = galsim.Image(nx, int(ny+over2), init_value=0)
# for ichannel in range(16):
# print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(
# pointing_ID, self.chipID, ichannel+1))
# # nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
# noverscan, nsp, nmax = over2, 3, 10
# beta, w, c = 0.478, 84700, 0
# t = np.array([0.74, 7.7, 37], dtype=np.float32)
# rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32)
# trap_seeds = np.array(
# [0, 1000, 10000], dtype=np.int32) + ichannel + self.chipID*16
# release_seed = 50 + ichannel + pointing_ID*30 + self.chipID*16
# newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(
# img_arr[:, 0+ichannel*dx:dx+ichannel*dx], dx, dy, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed)
# newimg.wcs = img.wcs
# del img
# img = newimg
# # 1*16 -> 2*8 img-layout
# img = chip_utils.formatRevert(GSImage=img)
# self.nsecy = 2
# self.nsecx = 8
# # prescan & overscan
# if config["ins_effects"]["add_prescan"] == True:
# chip_utils.log_info(
# msg=" Apply pre/over-scan", logger=self.logger)
# if config["ins_effects"]["cte_trail"] == False:
# img = chip_utils.AddPreScan(
# GSImage=img, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
# if config["ins_effects"]["cte_trail"] == True:
# img = chip_utils.AddPreScan(
# GSImage=img, pre1=pre1, pre2=pre2, over1=over1, over2=0)
# # 1*16 output
# if config["ins_effects"]["format_output"] == True:
# chip_utils.log_info(msg=" Apply 1*16 format", logger=self.logger)
# img = chip_utils.formatOutput(GSImage=img)
# self.nsecy = 1
# self.nsecx = 16
# # Add Bias level
# if config["ins_effects"]["add_bias"] == True:
# chip_utils.log_info(
# msg=" Adding Bias level and 16-channel non-uniformity", logger=self.logger)
# if config["ins_effects"]["bias_16channel"] == True:
# img = effects.AddBiasNonUniform16(img,
# bias_level=float(
# self.bias_level),
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedBiasNonuni+self.chipID,
# logger=self.logger)
# elif config["ins_effects"]["bias_16channel"] == False:
# img += self.bias_level
# # Add Read-out Noise
# if config["ins_effects"]["add_readout"] == True:
# seed = int(config["random_seeds"]["seed_readout"]
# ) + pointing_ID*30 + self.chipID
# rng_readout = galsim.BaseDeviate(seed)
# readout_noise = galsim.GaussianNoise(
# rng=rng_readout, sigma=self.read_noise)
# img.addNoise(readout_noise)
# # Apply Gain & Quantization
# chip_utils.log_info(
# msg=" Applying Gain (and 16 channel non-uniformity) & Quantization", logger=self.logger)
# if config["ins_effects"]["gain_16channel"] == True:
# img, self.gain_channel = effects.ApplyGainNonUniform16(
# img, gain=self.gain,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedGainNonuni+self.chipID,
# logger=self.logger)
# elif config["ins_effects"]["gain_16channel"] == False:
# img /= self.gain
# img.array[img.array > 65535] = 65535
# img.replaceNegative(replace_value=0)
# img.quantize()
# ######################################################################################
# # Output images for calibration pointing
# ######################################################################################
# # Bias output
# if config["ins_effects"]["add_bias"] == True and config["output_setting"]["bias_output"] == True and pointing_type == 'CAL':
# if self.logger is not None:
# self.logger.info(" Output N frame Bias files")
# else:
# print(" Output N frame Bias files", flush=True)
# NBias = int(config["output_setting"]["NBias"])
# for i in range(NBias):
# # BiasCombImg, BiasTag = effects.MakeBiasNcomb(
# # self.npix_x, self.npix_y,
# # bias_level=float(self.bias_level),
# # ncombine=1, read_noise=self.read_noise, gain=1,
# # seed=SeedBiasNonuni+self.chipID,
# # logger=self.logger)
# BiasCombImg = galsim.Image(
# self.npix_x, self.npix_y, init_value=0)
# if config["ins_effects"]["add_bias"] == True:
# biaslevel = self.bias_level
# overscan = biaslevel-2
# elif config["ins_effects"]["add_bias"] == False:
# biaslevel = 0
# overscan = 0
# # Readout noise for Biases is not generated with random seeds. So readout noise for bias images can't be reproduced.
# if config["ins_effects"]["cosmic_ray"] == True:
# if config["ins_effects"]["cray_differ"] == True:
# cr_map, cr_event_num = effects.produceCR_Map(
# xLen=self.npix_x, yLen=self.npix_y,
# exTime=0.01,
# cr_pixelRatio=0.003 *
# (0.01+0.5*self.readout_time)/150.,
# gain=self.gain,
# attachedSizes=self.attachedSizes,
# seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
# # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
# BiasCombImg += cr_map
# del cr_map
# # Apply Bad lines
# if config["ins_effects"]["add_badcolumns"] == True:
# BiasCombImg = effects.BadColumns(
# BiasCombImg-float(self.bias_level)+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(self.bias_level)-5
# # Non-Linearity for Bias
# if config["ins_effects"]["non_linear"] == True:
# if self.logger is not None:
# self.logger.info(
# " Applying Non-Linearity on the Bias image")
# else:
# print(
# " Applying Non-Linearity on the Bias image", flush=True)
# BiasCombImg = effects.NonLinearity(
# GSImage=BiasCombImg, beta1=5.e-7, beta2=0)
# # START
# pre1 = self.prescan_x # 27
# over1 = self.overscan_x # 71
# pre2 = self.prescan_y # 0 #4
# over2 = self.overscan_y # 84 #80
# # prescan & overscan
# if config["ins_effects"]["add_prescan"] == True:
# chip_utils.log_info(
# msg=" Apply pre/over-scan", logger=self.logger)
# BiasCombImg = chip_utils.AddPreScan(
# GSImage=BiasCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
# # 1*16 output
# if config["ins_effects"]["format_output"] == True:
# chip_utils.log_info(
# msg=" Apply 1*16 format", logger=self.logger)
# BiasCombImg = chip_utils.formatOutput(GSImage=BiasCombImg)
# self.nsecy = 1
# self.nsecx = 16
# # END
# # Add Bias level
# if config["ins_effects"]["add_bias"] == True:
# if self.logger is not None:
# self.logger.info(
# " Adding Bias level and 16-channel non-uniformity")
# else:
# print(" Adding Bias level and 16-channel non-uniformity")
# BiasCombImg = effects.AddBiasNonUniform16(BiasCombImg,
# bias_level=biaslevel,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedBiasNonuni+self.chipID,
# logger=self.logger)
# rng = galsim.UniformDeviate()
# ncombine = 1
# NoiseBias = galsim.GaussianNoise(
# rng=rng, sigma=self.read_noise*ncombine**0.5)
# BiasCombImg.addNoise(NoiseBias)
# BiasCombImg, self.gain_channel = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedGainNonuni+self.chipID,
# logger=self.logger)
# # BiasCombImg = effects.AddOverscan(
# # BiasCombImg,
# # overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain,
# # widthl=27, widthr=27, widtht=8, widthb=8)
# BiasCombImg.replaceNegative(replace_value=0)
# BiasCombImg.quantize()
# BiasCombImg = galsim.ImageUS(BiasCombImg)
# timestamp_obs += 10 * 60
# chip_utils.outputCal(
# chip=self,
# img=BiasCombImg,
# ra_cen=ra_cen,
# dec_cen=dec_cen,
# img_rot=img_rot,
# im_type='BIAS',
# pointing_ID=pointing_ID,
# output_dir=chip_output.subdir,
# exptime=0.0,
# project_cycle=config["project_cycle"],
# run_counter=config["run_counter"],
# timestamp=timestamp_obs)
# del BiasCombImg
# # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
# if config["ins_effects"]["flat_fielding"] == True and config["output_setting"]["flat_output"] == True and pointing_type == 'CAL':
# if self.logger is not None:
# self.logger.info(" Output N frame Flat-Field files")
# else:
# print(" Output N frame Flat-Field files", flush=True)
# NFlat = int(config["output_setting"]["NFlat"])
# if config["ins_effects"]["add_bias"] == True:
# biaslevel = self.bias_level
# overscan = biaslevel-2
# elif config["ins_effects"]["add_bias"] == False:
# biaslevel = 0
# overscan = 0
# darklevel = self.dark_noise * \
# (self.flat_exptime+0.5*self.readout_time)
# for i in range(NFlat):
# FlatSingle = flat_img * prnu_img + darklevel
# FlatCombImg, FlatTag = effects.MakeFlatNcomb(
# flat_single_image=FlatSingle,
# ncombine=1,
# read_noise=self.read_noise,
# gain=1,
# overscan=overscan,
# biaslevel=0,
# seed_bias=SeedDefective+self.chipID,
# logger=self.logger
# )
# if config["ins_effects"]["cosmic_ray"] == True:
# if config["ins_effects"]["cray_differ"] == True:
# cr_map, cr_event_num = effects.produceCR_Map(
# xLen=self.npix_x, yLen=self.npix_y,
# exTime=self.flat_exptime+0.5*self.readout_time,
# cr_pixelRatio=0.003 *
# (self.flat_exptime+0.5*self.readout_time)/150.,
# gain=self.gain,
# attachedSizes=self.attachedSizes,
# seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
# # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
# FlatCombImg += cr_map
# del cr_map
# # Add Hot Pixels or/and Dead Pixels
# rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
# badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
# FlatCombImg = effects.DefectivePixels(
# FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)
# # Apply Bad lines
# if config["ins_effects"]["add_badcolumns"] == True:
# FlatCombImg = effects.BadColumns(
# FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
# if config["ins_effects"]["non_linear"] == True:
# if self.logger is not None:
# self.logger.info(
# " Applying Non-Linearity on the Flat image")
# else:
# print(
# " Applying Non-Linearity on the Flat image", flush=True)
# FlatCombImg = effects.NonLinearity(
# GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
# # if config["ins_effects"]["cte_trail"] == True:
# # FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)
# # START
# pre1 = self.prescan_x # 27
# over1 = self.overscan_x # 71
# pre2 = self.prescan_y # 0 #4
# over2 = self.overscan_y # 84 #80
# if config["ins_effects"]["cte_trail"] == True:
# chip_utils.log_info(
# msg=" Apply CTE Effect", logger=self.logger)
# # img = effects.CTE_Effect(GSImage=img, threshold=27)
# # CTI_modeling
# # 2*8 -> 1*16 img-layout
# FlatCombImg = chip_utils.formatOutput(GSImage=FlatCombImg)
# self.nsecy = 1
# self.nsecx = 16
# img_arr = FlatCombImg.array
# ny, nx = img_arr.shape
# dx = int(nx/self.nsecx)
# dy = int(ny/self.nsecy)
# newimg = galsim.Image(nx, int(ny+over2), init_value=0)
# for ichannel in range(16):
# print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(
# pointing_ID, self.chipID, ichannel+1))
# # nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
# noverscan, nsp, nmax = over2, 3, 10
# beta, w, c = 0.478, 84700, 0
# t = np.array([0.74, 7.7, 37], dtype=np.float32)
# rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32)
# trap_seeds = np.array(
# [0, 1000, 10000], dtype=np.int32) + ichannel + self.chipID*16
# release_seed = 50 + ichannel + pointing_ID*30 + self.chipID*16
# newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(
# img_arr[:, 0+ichannel*dx:dx+ichannel*dx], dx, dy, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed)
# newimg.wcs = FlatCombImg.wcs
# del FlatCombImg
# FlatCombImg = newimg
# # 1*16 -> 2*8 img-layout
# FlatCombImg = chip_utils.formatRevert(GSImage=FlatCombImg)
# self.nsecy = 2
# self.nsecx = 8
# # prescan & overscan
# if config["ins_effects"]["add_prescan"] == True:
# chip_utils.log_info(
# msg=" Apply pre/over-scan", logger=self.logger)
# if config["ins_effects"]["cte_trail"] == False:
# FlatCombImg = chip_utils.AddPreScan(
# GSImage=FlatCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
# if config["ins_effects"]["cte_trail"] == True:
# FlatCombImg = chip_utils.AddPreScan(
# GSImage=FlatCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=0)
# # 1*16 output
# if config["ins_effects"]["format_output"] == True:
# chip_utils.log_info(
# msg=" Apply 1*16 format", logger=self.logger)
# FlatCombImg = chip_utils.formatOutput(GSImage=FlatCombImg)
# self.nsecy = 1
# self.nsecx = 16
# # END
# # Add Bias level
# if config["ins_effects"]["add_bias"] == True:
# if self.logger is not None:
# self.logger.info(
# " Adding Bias level and 16-channel non-uniformity")
# else:
# print(" Adding Bias level and 16-channel non-uniformity")
# # img += float(config["ins_effects"]["bias_level"])
# FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg,
# bias_level=biaslevel,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedBiasNonuni+self.chipID,
# logger=self.logger)
# # Add Read-out Noise
# if config["ins_effects"]["add_readout"] == True:
# seed = int(config["random_seeds"]["seed_readout"]
# ) + pointing_ID*30 + self.chipID + 3
# rng_readout = galsim.BaseDeviate(seed)
# readout_noise = galsim.GaussianNoise(
# rng=rng_readout, sigma=self.read_noise)
# FlatCombImg.addNoise(readout_noise)
# FlatCombImg, self.gain_channel = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedGainNonuni+self.chipID,
# logger=self.logger)
# # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
# FlatCombImg.replaceNegative(replace_value=0)
# FlatCombImg.quantize()
# FlatCombImg = galsim.ImageUS(FlatCombImg)
# timestamp_obs += 10 * 60
# chip_utils.outputCal(
# chip=self,
# img=FlatCombImg,
# ra_cen=ra_cen,
# dec_cen=dec_cen,
# img_rot=img_rot,
# im_type='FLAT',
# pointing_ID=pointing_ID,
# output_dir=chip_output.subdir,
# exptime=self.flat_exptime,
# project_cycle=config["project_cycle"],
# run_counter=config["run_counter"],
# timestamp=timestamp_obs)
# del FlatCombImg, FlatSingle, prnu_img
# # flat_img.replaceNegative(replace_value=0)
# # flat_img.quantize()
# # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
# del flat_img
# # Export Dark current images
# if config["ins_effects"]["add_dark"] == True and config["output_setting"]["dark_output"] == True and pointing_type == 'CAL':
# if self.logger is not None:
# self.logger.info(" Output N frame Dark Current files")
# else:
# print(" Output N frame Dark Current files", flush=True)
# NDark = int(config["output_setting"]["NDark"])
# if config["ins_effects"]["add_bias"] == True:
# biaslevel = self.bias_level
# overscan = biaslevel-2
# elif config["ins_effects"]["add_bias"] == False:
# biaslevel = 0
# overscan = 0
# for i in range(NDark):
# DarkCombImg, DarkTag = effects.MakeDarkNcomb(
# self.npix_x, self.npix_y,
# overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
# ncombine=1, read_noise=self.read_noise,
# gain=1, seed_bias=SeedBiasNonuni+self.chipID,
# logger=self.logger)
# if config["ins_effects"]["cosmic_ray"] == True:
# if config["ins_effects"]["cray_differ"] == True:
# cr_map, cr_event_num = effects.produceCR_Map(
# xLen=self.npix_x, yLen=self.npix_y,
# exTime=self.dark_exptime+0.5*self.readout_time,
# cr_pixelRatio=0.003 *
# (self.dark_exptime+0.5*self.readout_time)/150.,
# gain=self.gain,
# attachedSizes=self.attachedSizes,
# seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
# # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
# DarkCombImg += cr_map
# cr_map[cr_map > 65535] = 65535
# cr_map[cr_map < 0] = 0
# crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
# del cr_map
# # START
# # prescan & overscan
# if config["ins_effects"]["add_prescan"] == True:
# chip_utils.log_info(
# msg=" Apply pre/over-scan", logger=self.logger)
# crmap_gsimg = chip_utils.AddPreScan(
# GSImage=crmap_gsimg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
# # 1*16 output
# if config["ins_effects"]["format_output"] == True:
# chip_utils.log_info(
# msg=" Apply 1*16 format", logger=self.logger)
# crmap_gsimg = chip_utils.formatOutput(
# GSImage=crmap_gsimg)
# self.nsecy = 1
# self.nsecx = 16
# # END
# chip_utils.outputCal(
# chip=self,
# img=crmap_gsimg,
# ra_cen=ra_cen,
# dec_cen=dec_cen,
# img_rot=img_rot,
# im_type='CRD',
# pointing_ID=pointing_ID,
# output_dir=chip_output.subdir,
# exptime=self.dark_exptime,
# project_cycle=config["project_cycle"],
# run_counter=config["run_counter"],
# timestamp=timestamp_obs)
# del crmap_gsimg
# # Add Hot Pixels or/and Dead Pixels
# rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
# badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
# DarkCombImg = effects.DefectivePixels(
# DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)
# # Apply Bad lines
# if config["ins_effects"]["add_badcolumns"] == True:
# DarkCombImg = effects.BadColumns(
# DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
# # Non-Linearity for Dark
# if config["ins_effects"]["non_linear"] == True:
# if self.logger is not None:
# self.logger.info(
# " Applying Non-Linearity on the Dark image")
# else:
# print(
# " Applying Non-Linearity on the Dark image", flush=True)
# DarkCombImg = effects.NonLinearity(
# GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
# # if config["ins_effects"]["cte_trail"] == True:
# # DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)
# # START
# pre1 = self.prescan_x # 27
# over1 = self.overscan_x # 71
# pre2 = self.prescan_y # 0 #4
# over2 = self.overscan_y # 84 #80
# if config["ins_effects"]["cte_trail"] == True:
# chip_utils.log_info(
# msg=" Apply CTE Effect", logger=self.logger)
# # img = effects.CTE_Effect(GSImage=img, threshold=27)
# # CTI_modeling
# # 2*8 -> 1*16 img-layout
# DarkCombImg = chip_utils.formatOutput(GSImage=DarkCombImg)
# self.nsecy = 1
# self.nsecx = 16
# img_arr = DarkCombImg.array
# ny, nx = img_arr.shape
# dx = int(nx/self.nsecx)
# dy = int(ny/self.nsecy)
# newimg = galsim.Image(nx, int(ny+over2), init_value=0)
# for ichannel in range(16):
# print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(
# pointing_ID, self.chipID, ichannel+1))
# # nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
# noverscan, nsp, nmax = over2, 3, 10
# beta, w, c = 0.478, 84700, 0
# t = np.array([0.74, 7.7, 37], dtype=np.float32)
# rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32)
# trap_seeds = np.array(
# [0, 1000, 10000], dtype=np.int32) + ichannel + self.chipID*16
# release_seed = 50 + ichannel + pointing_ID*30 + self.chipID*16
# newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(
# img_arr[:, 0+ichannel*dx:dx+ichannel*dx], dx, dy, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed)
# newimg.wcs = DarkCombImg.wcs
# del DarkCombImg
# DarkCombImg = newimg
# # 1*16 -> 2*8 img-layout
# DarkCombImg = chip_utils.formatRevert(GSImage=DarkCombImg)
# self.nsecy = 2
# self.nsecx = 8
# # prescan & overscan
# if config["ins_effects"]["add_prescan"] == True:
# chip_utils.log_info(
# msg=" Apply pre/over-scan", logger=self.logger)
# if config["ins_effects"]["cte_trail"] == False:
# DarkCombImg = chip_utils.AddPreScan(
# GSImage=DarkCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
# if config["ins_effects"]["cte_trail"] == True:
# DarkCombImg = chip_utils.AddPreScan(
# GSImage=DarkCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=0)
# # 1*16 output
# if config["ins_effects"]["format_output"] == True:
# chip_utils.log_info(
# msg=" Apply 1*16 format", logger=self.logger)
# DarkCombImg = chip_utils.formatOutput(GSImage=DarkCombImg)
# self.nsecy = 1
# self.nsecx = 16
# # END
# # Add Bias level
# if config["ins_effects"]["add_bias"] == True:
# if self.logger is not None:
# self.logger.info(
# " Adding Bias level and 16-channel non-uniformity")
# else:
# print(" Adding Bias level and 16-channel non-uniformity")
# # img += float(config["ins_effects"]["bias_level"])
# DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg,
# bias_level=biaslevel,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedBiasNonuni+self.chipID,
# logger=self.logger)
# # Add Read-out Noise
# if config["ins_effects"]["add_readout"] == True:
# seed = int(config["random_seeds"]["seed_readout"]
# ) + pointing_ID*30 + self.chipID + 2
# rng_readout = galsim.BaseDeviate(seed)
# readout_noise = galsim.GaussianNoise(
# rng=rng_readout, sigma=self.read_noise)
# DarkCombImg.addNoise(readout_noise)
# DarkCombImg, self.gain_channel = effects.ApplyGainNonUniform16(
# DarkCombImg, gain=self.gain,
# nsecy=self.nsecy, nsecx=self.nsecx,
# seed=SeedGainNonuni+self.chipID,
# logger=self.logger)
# # DarkCombImg = effects.AddOverscan(
# # DarkCombImg,
# # overscan=overscan, gain=self.gain,
# # widthl=27, widthr=27, widtht=8, widthb=8)
# DarkCombImg.replaceNegative(replace_value=0)
# DarkCombImg.quantize()
# DarkCombImg = galsim.ImageUS(DarkCombImg)
# timestamp_obs += 10 * 60
# chip_utils.outputCal(
# chip=self,
# img=DarkCombImg,
# ra_cen=ra_cen,
# dec_cen=dec_cen,
# img_rot=img_rot,
# im_type='DARK',
# pointing_ID=pointing_ID,
# output_dir=chip_output.subdir,
# exptime=self.dark_exptime,
# project_cycle=config["project_cycle"],
# run_counter=config["run_counter"],
# timestamp=timestamp_obs)
# del DarkCombImg
# # img = galsim.ImageUS(img)
# # # 16 output channel, with each a single image file
# # if config["ins_effects"]["readout16"] == True:
# # print(" 16 Output Channel simulation")
# # for coli in [0, 1]:
# # for rowi in range(8):
# # sub_img = effects.readout16(
# # GSImage=img,
# # rowi=rowi,
# # coli=coli,
# # overscan_value=self.overscan)
# # rowcoltag = str(rowi) + str(coli)
# # img_name_root = chip_output.img_name.split(".")[0]
# # sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
# # del sub_img
# return img
import numpy as np
try:
import importlib.resources as pkg_resources
except ImportError:
# Try backported to PY<37 'importlib_resources'
import importlib_resources as pkg_resources
class Telescope(object):
def __init__(self, param=None, optEffCurve_path=None):
self.diameter = 2.0 # in unit of meter
if param is not None:
self.diameter = param["diameter"]
self.pupil_area = np.pi * (0.5 * self.diameter)**2
if optEffCurve_path is not None:
self.efficiency = self._get_efficiency(optEffCurve_path)
else:
try:
with pkg_resources.files('ObservationSim.Instrument.data').joinpath('mirror_ccdnote.txt') as optEffCurve_path:
self.efficiency = self._get_efficiency(optEffCurve_path)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data', 'mirror_ccdnote.txt') as optEffCurve_path:
self.efficiency = self._get_efficiency(optEffCurve_path)
def _get_efficiency(self, effCurve_path):
""" Read in the efficiency of optics
for each band
Parameters:
effCurve_path: the path for efficiency file
Returns:
opticsEff: a dictionary of efficiency (a scalar) for each band
"""
f = open(effCurve_path, 'r')
for _ in range(2):
header = f.readline()
iline = 0
opticsEff = {}
for line in f:
line = line.strip()
columns = line.split()
opticsEff[str(columns[0])] = float(columns[2])
f.close()
return opticsEff
\ No newline at end of file
import numpy as np
import os
import math
from pylab import *
from scipy import interpolate
try:
import importlib.resources as pkg_resources
except ImportError:
# Try backported to PY<37 'importlib_resources'
import importlib_resources as pkg_resources
VC_A = 2.99792458e+18 # speed of light: A/s
VC_M = 2.99792458e+8 # speed of light: m/s
H_PLANK = 6.626196e-27 # Plank constant: erg s
ALL_FILTERS = ["NUV","u", "g", "r", "i","z","y","GU", "GV", "GI", "FGS"]
PHOT_FILTERS = ["NUV", "u", "g", 'r', 'i', 'z', 'y', 'FGS']
SPEC_FILTERS = ["GI", "GV", "GU"]
def rotate_conterclockwise(x0, y0, x, y, angle):
"""
Rotate a point counterclockwise by a given angle around a given origin.
The angle should be given in radians.
"""
angle = np.deg2rad(angle)
qx = x0 + np.cos(angle)*(x - x0) - np.sin(angle) * (y - y0)
qy = y0 + np.sin(angle)*(x - x0) + np.cos(angle) * (y - y0)
return qx, qy
def photonEnergy(lambd):
""" The energy of photon at a given wavelength
Parameter:
lambd: the wavelength in unit of Angstrom
Return:
eph: energy of photon in unit of erg
"""
nu = VC_A / lambd
eph = H_PLANK * nu
return eph
def calculateLimitMag(aperture = 2.0, psf_fwhm = 0.1969,pixelSize = 0.074, pmRation = 0.8, throughputFn = 'i_throughput.txt', readout = 5.0, skyFn= 'sky_emiss_hubble_50_50_A.dat', darknoise = 0.02,exTime = 150, exNum = 1, fw = 90000):
'''
description:
param {*} aperture: unit m, default 2 m
param {*} psf_fwhm: psf fwhm, default 0.1969"
param {*} pixelSize: pixel size, default 0.074"
param {*} pmRation: the ratio of souce flux in the limit mag calculation
param {*} throughputFn: throuput file name
param {*} readout: unit, e-/pixel
param {*} skyFn: sky sed file name, average of hst, 'sky_emiss_hubble_50_50_A.dat'
param {*} darknoise: unit, e-/pixel/s
param {*} exTime: exposure time one time, default 150s
param {*} exNum: exposure number, defautl 1
param {*} fw, full well value( or saturation value),default 90000e-/pixel
return {*} limit mag and saturation mag
'''
try:
with pkg_resources.files('ObservationSim.Instrument.data.throughputs').joinpath(throughputFn) as data_file:
throughput_f = np.loadtxt(data_file)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.throughputs', throughputFn) as data_file:
throughput_f = np.loadtxt(data_file)
thr_i = interpolate.interp1d(throughput_f[:,0]/10, throughput_f[:,1]); # wavelength in anstrom
f_s = 200
f_e = 1100
delt_f = 0.5
data_num = int((f_e-f_s)/delt_f+1)
eff = np.zeros([data_num,2])
eff[:,0] = np.arange(f_s,f_e+delt_f,delt_f)
eff[:,1] = thr_i(eff[:,0])
wave = np.arange(f_s,f_e+delt_f,delt_f)
wavey = np.ones(wave.shape[0])
try:
with pkg_resources.files('ObservationSim.Instrument.data.throughputs').joinpath(skyFn) as data_file:
skydata = np.loadtxt(data_file)
except AttributeError:
with pkg_resources.path('ObservationSim.Instrument.data.throughputs', skyFn) as data_file:
skydata = np.loadtxt(data_file)
skydatai = interpolate.interp1d(skydata[:,0]/10, skydata[:,1]*10)
sky_data = np.zeros([data_num,2])
sky_data[:,0] = np.arange(f_s,f_e+delt_f,delt_f)
sky_data[:,1] = skydatai(sky_data[:,0])
flux_sky = trapz((sky_data[:,1])*eff[:,1],sky_data[:,0])
skyPix = flux_sky*pixelSize*pixelSize*pi*(aperture*aperture/4)
###limit mag
r_pix = psf_fwhm*0.7618080243778568/pixelSize # radius RE80, pixel
cnum = math.pi * r_pix * r_pix
sn = 5
d = skyPix*exTime*exNum*cnum + darknoise*exTime*exNum*cnum+readout*readout*cnum*exNum
a=1
b=-sn*sn
c=-sn*sn*d
flux = (-b+sqrt(b*b-4*a*c))/(2*a)/pmRation
limitMag = -2.5*log10(flux/(54799275581.04437 * trapz(wavey*eff[:,1]/wave,wave, 0.1)*exTime*exNum*pi*(aperture/2)*(aperture/2)))
### saturation mag
from astropy.modeling.models import Gaussian2D
m_size = int(20 * psf_fwhm/pixelSize)
if m_size%2 == 0:
m_size + 1
m_cen = m_size//2
psf_sigma = psf_fwhm/2.355/pixelSize
gaussShape = Gaussian2D(1, m_cen, m_cen, psf_sigma, psf_sigma)
yp, xp = np.mgrid[0:m_size, 0:m_size]
psfMap = gaussShape(xp, yp)
maxRatio = np.amax(psfMap)/np.sum(psfMap)
# print(maxRatio)
flux_sat = fw/maxRatio*exNum
satMag = -2.5*log10(flux_sat/(54799275581.04437 * trapz(wavey*eff[:,1]/wave,wave, 0.1)*exTime*exNum*pi*(aperture/2)*(aperture/2)));
return limitMag , satMag
\ No newline at end of file
from ObservationSim.MockObject.MockObject import MockObject
class CosmicRay(MockObject):
pass
\ No newline at end of file
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d
from ObservationSim.PSF.PSFModel import PSFModel
class PSFGauss(PSFModel):
def __init__(self, chip, fwhm=0.187, sigSpin=0., psfRa=None):
self.pix_size = chip.pix_scale
self.chip = chip
if psfRa is None:
self.fwhm = fwhm
self.sigGauss = 0.15
else:
self.fwhm = self.fwhmGauss(r=psfRa)
self.sigGauss = psfRa # 80% light radius
self.sigSpin = sigSpin
self.psf = galsim.Gaussian(flux=1.0,fwhm=fwhm)
def perfGauss(self, r, sig):
"""
pseudo-error function, i.e. Cumulative distribution function of Gaussian distribution
Parameter:
r: radius
sig: sigma of the Gaussian distribution
Return:
the value of the pseudo CDF
"""
gaussFun = lambda sigma, r: 1.0/(np.sqrt(2.0*np.pi)*sigma) * np.exp(-r**2/(2.0*sigma**2))
nxx = 1000
rArr = np.linspace(0.0,r,nxx)
gauss = gaussFun(sig,rArr)
erf = 2.0*np.trapz(gauss,rArr)
return erf
def fracGauss(self, sig, r=0.15, pscale=None):
"""
For a given Gaussian PSF with sigma=sig,
derive the flux ratio ar the given radius r
Parameters:
sig: sigma of the Gauss PSF Function in arcsec
r: radius in arcsec
pscale: pixel scale
Return: the flux ratio
"""
if pscale == None:
pscale = self.pix_size
gaussx = galsim.Gaussian(flux=1.0,sigma=sig)
gaussImg = gaussx.drawImage(scale=pscale, method='no_pixel')
gaussImg = gaussImg.array
size = np.size(gaussImg,axis=0)
cxy = 0.5*(size-1)
flux, ferr, flag = sep.sum_circle(gaussImg,[cxy],[cxy],[r/pscale],subpix=0)
return flux
def fwhmGauss(self, r=0.15,fr=0.8,pscale=None):
"""
Given a total flux ratio 'fr' within a fixed radius 'r',
estimate the fwhm of the Gaussian function
return the fwhm in arcsec
"""
if pscale == None:
pscale = self.pix_size
err = 1.0e-3
nxx = 100
sig = np.linspace(0.5*pscale,1.0,nxx)
frA = np.zeros(nxx)
for i in range(nxx): frA[i] = self.fracGauss(sig[i],r=r,pscale=pscale)
index = [i for i in range(nxx-1) if (fr-frA[i])*(fr-frA[i+1])<=0.0][0]
while abs(frA[index]-fr)>1.0e-3:
sig = np.linspace(sig[index],sig[index+1],nxx)
for i in range(nxx): frA[i] = self.fracGauss(sig[i],r=r,pscale=pscale)
index = [i for i in range(nxx-1) if (fr-frA[i])*(fr-frA[i+1])<=0.0][0]
fwhm = 2.35482*sig[index]
return fwhm
def get_PSF(self, pos_img, chip=None, bandpass=None, folding_threshold=5.e-3):
dx = pos_img.x - self.chip.cen_pix_x
dy = pos_img.y - self.chip.cen_pix_y
return self.PSFspin(dx, dy)
def PSFspin(self, x, y):
"""
The PSF profile at a given image position relative to the axis center
Parameters:
theta : spin angles in a given exposure in unit of [arcsecond]
dx, dy: relative position to the axis center in unit of [pixels]
Return:
Spinned PSF: g1, g2 and axis ratio 'a/b'
"""
a2Rad = np.pi/(60.0*60.0*180.0)
ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
rc = np.sqrt(x*x + y*y)
cpix = rc*(self.sigSpin*a2Rad)
beta = (np.arctan2(y,x) + np.pi/2)
ell = cpix**2/(2.0*ff**2+cpix**2)
#ell *= 10.0
qr = np.sqrt((1.0+ell)/(1.0-ell))
#psfShape = galsim.Shear(e=ell, beta=beta)
#g1, g2 = psfShape.g1, psfShape.g2
#qr = np.sqrt((1.0+ell)/(1.0-ell))
#return ell, beta, qr
PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
return self.psf.shear(PSFshear), PSFshear
\ No newline at end of file
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d
import pylab as pl
import os, sys
class PSFModel(object):
def __init__(self, sigSpin=0., psfRa=0.15):
# TODO: what are the nesseary fields in PSFModel class?
pass
def PSFspin(self, psf, sigSpin, sigGauss, dx, dy):
"""
The PSF profile at a given image position relative to the axis center
Parameters:
theta : spin angles in a given exposure in unit of [arcsecond]
dx, dy: relative position to the axis center in unit of [pixels]
Return:
Spinned PSF: g1, g2 and axis ratio 'a/b'
"""
a2Rad = np.pi/(60.0*60.0*180.0)
ff = sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
rc = np.sqrt(dx*dx + dy*dy)
cpix = rc*(sigSpin*a2Rad)
beta = (np.arctan2(dy,dx) + np.pi/2)
ell = cpix**2/(2.0*ff**2+cpix**2)
#ell *= 10.0
qr = np.sqrt((1.0+ell)/(1.0-ell))
#psfShape = galsim.Shear(e=ell, beta=beta)
#g1, g2 = psfShape.g1, psfShape.g2
#qr = np.sqrt((1.0+ell)/(1.0-ell))
#return ell, beta, qr
PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
return psf.shear(PSFshear), PSFshear
\ No newline at end of file
......@@ -12,9 +12,9 @@ from astropy.table import Table
from scipy import interpolate
from datetime import datetime
from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar
from ObservationSim.MockObject._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position
from observation_sim.mock_objects import CatalogBase, Star, Galaxy, Quasar
from observation_sim.mock_objects._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from observation_sim.astrometry.Astrometry_util import on_orbit_obs_position
# (TEST)
from astropy.cosmology import FlatLambdaCDM
......@@ -34,41 +34,49 @@ except ImportError:
NSIDE = 128
bundle_file_list = ['galaxies_C6_bundle000199.h5','galaxies_C6_bundle000200.h5','galaxies_C6_bundle000241.h5','galaxies_C6_bundle000242.h5','galaxies_C6_bundle000287.h5','galaxies_C6_bundle000288.h5','galaxies_C6_bundle000714.h5','galaxies_C6_bundle000715.h5','galaxies_C6_bundle000778.h5','galaxies_C6_bundle000779.h5','galaxies_C6_bundle000842.h5','galaxies_C6_bundle000843.h5','galaxies_C6_bundle002046.h5','galaxies_C6_bundle002110.h5','galaxies_C6_bundle002111.h5','galaxies_C6_bundle002173.h5','galaxies_C6_bundle002174.h5','galaxies_C6_bundle002238.h5','galaxies_C6_bundle002596.h5','galaxies_C6_bundle002597.h5','galaxies_C6_bundle002656.h5','galaxies_C6_bundle002657.h5','galaxies_C6_bundle002711.h5','galaxies_C6_bundle002712.h5','galaxies_C6_bundle002844.h5','galaxies_C6_bundle002845.h5','galaxies_C6_bundle002884.h5','galaxies_C6_bundle002885.h5','galaxies_C6_bundle002921.h5','galaxies_C6_bundle002922.h5']
bundle_file_list = ['galaxies_C6_bundle000199.h5', 'galaxies_C6_bundle000200.h5', 'galaxies_C6_bundle000241.h5', 'galaxies_C6_bundle000242.h5', 'galaxies_C6_bundle000287.h5', 'galaxies_C6_bundle000288.h5', 'galaxies_C6_bundle000714.h5', 'galaxies_C6_bundle000715.h5', 'galaxies_C6_bundle000778.h5', 'galaxies_C6_bundle000779.h5', 'galaxies_C6_bundle000842.h5', 'galaxies_C6_bundle000843.h5', 'galaxies_C6_bundle002046.h5', 'galaxies_C6_bundle002110.h5', 'galaxies_C6_bundle002111.h5',
'galaxies_C6_bundle002173.h5', 'galaxies_C6_bundle002174.h5', 'galaxies_C6_bundle002238.h5', 'galaxies_C6_bundle002596.h5', 'galaxies_C6_bundle002597.h5', 'galaxies_C6_bundle002656.h5', 'galaxies_C6_bundle002657.h5', 'galaxies_C6_bundle002711.h5', 'galaxies_C6_bundle002712.h5', 'galaxies_C6_bundle002844.h5', 'galaxies_C6_bundle002845.h5', 'galaxies_C6_bundle002884.h5', 'galaxies_C6_bundle002885.h5', 'galaxies_C6_bundle002921.h5', 'galaxies_C6_bundle002922.h5']
qsosed_file_list = ['quickspeclib_interp1d_run1.fits','quickspeclib_interp1d_run2.fits','quickspeclib_interp1d_run3.fits','quickspeclib_interp1d_run4.fits','quickspeclib_interp1d_run5.fits','quickspeclib_interp1d_run6.fits','quickspeclib_interp1d_run7.fits','quickspeclib_interp1d_run8.fits','quickspeclib_interp1d_run9.fits','quickspeclib_interp1d_run10.fits','quickspeclib_interp1d_run11.fits','quickspeclib_interp1d_run12.fits','quickspeclib_interp1d_run13.fits','quickspeclib_interp1d_run14.fits','quickspeclib_interp1d_run15.fits','quickspeclib_interp1d_run16.fits','quickspeclib_interp1d_run17.fits','quickspeclib_interp1d_run18.fits','quickspeclib_interp1d_run19.fits','quickspeclib_interp1d_run20.fits','quickspeclib_interp1d_run21.fits','quickspeclib_interp1d_run22.fits','quickspeclib_interp1d_run23.fits','quickspeclib_interp1d_run24.fits','quickspeclib_interp1d_run25.fits','quickspeclib_interp1d_run26.fits','quickspeclib_interp1d_run27.fits','quickspeclib_interp1d_run28.fits','quickspeclib_interp1d_run29.fits','quickspeclib_interp1d_run30.fits']
qsosed_file_list = ['quickspeclib_interp1d_run1.fits', 'quickspeclib_interp1d_run2.fits', 'quickspeclib_interp1d_run3.fits', 'quickspeclib_interp1d_run4.fits', 'quickspeclib_interp1d_run5.fits', 'quickspeclib_interp1d_run6.fits', 'quickspeclib_interp1d_run7.fits', 'quickspeclib_interp1d_run8.fits', 'quickspeclib_interp1d_run9.fits', 'quickspeclib_interp1d_run10.fits', 'quickspeclib_interp1d_run11.fits', 'quickspeclib_interp1d_run12.fits', 'quickspeclib_interp1d_run13.fits', 'quickspeclib_interp1d_run14.fits', 'quickspeclib_interp1d_run15.fits',
'quickspeclib_interp1d_run16.fits', 'quickspeclib_interp1d_run17.fits', 'quickspeclib_interp1d_run18.fits', 'quickspeclib_interp1d_run19.fits', 'quickspeclib_interp1d_run20.fits', 'quickspeclib_interp1d_run21.fits', 'quickspeclib_interp1d_run22.fits', 'quickspeclib_interp1d_run23.fits', 'quickspeclib_interp1d_run24.fits', 'quickspeclib_interp1d_run25.fits', 'quickspeclib_interp1d_run26.fits', 'quickspeclib_interp1d_run27.fits', 'quickspeclib_interp1d_run28.fits', 'quickspeclib_interp1d_run29.fits', 'quickspeclib_interp1d_run30.fits']
# star_file_list = ['C7_Gaia_Galaxia_RA170DECm23_healpix.hdf5', 'C7_Gaia_Galaxia_RA180DECp60_healpix.hdf5', 'C7_Gaia_Galaxia_RA240DECp30_healpix.hdf5', 'C7_Gaia_Galaxia_RA300DECm60_healpix.hdf5', 'C7_Gaia_Galaxia_RA30DECm48_healpix.hdf5']
star_center_list = [(170., -23.), (180., 60.), (240., 30.), (300., -60.), (30., -48.),[246.5, 40]]
star_center_list = [(170., -23.), (180., 60.), (240., 30.),
(300., -60.), (30., -48.), [246.5, 40]]
star_file_list = ['C9_RA170_DECm23_calmag_Nside_128_healpix.hdf5', 'C9_RA180_DECp60_calmag_Nside_128_healpix.hdf5', 'C9_RA240_DECp30_calmag_Nside_128_healpix.hdf5',
'C9_RA300_DECm60_calmag_Nside_128_healpix.hdf5', 'C9_RA30_DECm48_calmag_Nside_128_healpix.hdf5', 'trilegal_calMag_mpi_Nside_128_healpix.hdf5']
star_file_list = ['C9_RA170_DECm23_calmag_Nside_128_healpix.hdf5', 'C9_RA180_DECp60_calmag_Nside_128_healpix.hdf5', 'C9_RA240_DECp30_calmag_Nside_128_healpix.hdf5', 'C9_RA300_DECm60_calmag_Nside_128_healpix.hdf5', 'C9_RA30_DECm48_calmag_Nside_128_healpix.hdf5','trilegal_calMag_mpi_Nside_128_healpix.hdf5']
class StarParm(ctypes.Structure):
_fields_ = [
('logte',ctypes.c_float),
('logg',ctypes.c_float),
('Mass',ctypes.c_float),
('logte', ctypes.c_float),
('logg', ctypes.c_float),
('Mass', ctypes.c_float),
('Av', ctypes.c_float),
('mu0', ctypes.c_float),
('Z', ctypes.c_float)]
def get_bundleIndex(healpixID_ring, bundleOrder=4, healpixOrder=7):
assert NSIDE == 2**healpixOrder
shift = healpixOrder - bundleOrder
shift = 2*shift
nside_bundle = 2**bundleOrder
nside_healpix= 2**healpixOrder
nside_healpix = 2**healpixOrder
healpixID_nest= hp.ring2nest(nside_healpix, healpixID_ring)
healpixID_nest = hp.ring2nest(nside_healpix, healpixID_ring)
bundleID_nest = (healpixID_nest >> shift)
bundleID_ring = hp.nest2ring(nside_bundle, bundleID_nest)
return bundleID_ring
def get_agnsed_file(bundle_file_name):
return qsosed_file_list[bundle_file_list.index(bundle_file_name)]
def get_star_cat(ra_pointing, dec_pointing):
pointing_c = SkyCoord(ra=ra_pointing*U.deg, dec=dec_pointing*U.deg)
max_dist = 10
......@@ -81,6 +89,7 @@ def get_star_cat(ra_pointing, dec_pointing):
max_dist = dist
return return_star_path
class Catalog(CatalogBase):
def __init__(self, config, chip, pointing, chip_output, filt, **kwargs):
super().__init__()
......@@ -92,7 +101,7 @@ class Catalog(CatalogBase):
self.filt = filt
self.logger = chip_output.logger
with pkg_resources.path('Catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
with pkg_resources.path('catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
self.normF_star = Table.read(str(filter_path))
self.config = config
......@@ -103,8 +112,10 @@ class Catalog(CatalogBase):
if "star_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["star_cat"] and not config["catalog_options"]["galaxy_only"]:
# Get the cloest star catalog file
star_file_name = get_star_cat(ra_pointing=self.pointing.ra, dec_pointing=self.pointing.dec)
star_path = os.path.join(config["catalog_options"]["input_path"]["star_cat"], star_file_name)
star_file_name = get_star_cat(
ra_pointing=self.pointing.ra, dec_pointing=self.pointing.dec)
star_path = os.path.join(
config["catalog_options"]["input_path"]["star_cat"], star_file_name)
self.star_path = os.path.join(self.cat_dir, star_path)
self.star_SED_path = config["catalog_options"]["SED_templates_path"]["star_SED"]
self._load_SED_lib_star()
......@@ -120,7 +131,8 @@ class Catalog(CatalogBase):
self.AGN_SED_path = config["catalog_options"]["SED_templates_path"]["AGN_SED"]
if "rotateEll" in config["catalog_options"]:
self.rotation = np.radians(float(config["catalog_options"]["rotateEll"]))
self.rotation = np.radians(
float(config["catalog_options"]["rotateEll"]))
else:
self.rotation = 0.
......@@ -136,10 +148,12 @@ class Catalog(CatalogBase):
self.add_fmt = "%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f"
self.add_fmt += " %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %4d %8.4f "
self.chip_output.update_output_header(additional_column_names=self.add_hdr)
self.chip_output.update_output_header(
additional_column_names=self.add_hdr)
def _get_healpix_list(self):
self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2)
self.sky_coverage = self.chip.getSkyCoverageEnlarged(
self.chip.img.wcs, margin=0.2)
ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
......@@ -167,27 +181,31 @@ class Catalog(CatalogBase):
# self.tempSED_star = h5.File(self.star_SED_path,'r')
def _load_SED_lib_star(self):
# self.tempSED_star = h5.File(self.star_SED_path,'r')
with pkg_resources.path('Catalog.data', 'starSpecInterp.so') as ddl_path:
with pkg_resources.path('catalog.data', 'starSpecInterp.so') as ddl_path:
self.starDDL = ctypes.CDLL(str(ddl_path))
self.starDDL.loadSpecLibs.argtypes=[ctypes.c_char_p, ctypes.c_char_p]
self.starDDL.loadExts.argtypes=[ctypes.c_char_p]
nwv = self.starDDL.loadSpecLibs(str.encode(os.path.join(self.star_SED_path,'file_BT-Settl_CSST_wl1000-24000_R1000.par')),str.encode(self.star_SED_path))
self.starDDL.loadExts(str.encode(os.path.join(self.star_SED_path,"Ext_odonnell94_R3.1_CSST_wl1000-24000_R1000.fits")))
self.starDDL.loadSpecLibs.argtypes = [ctypes.c_char_p, ctypes.c_char_p]
self.starDDL.loadExts.argtypes = [ctypes.c_char_p]
nwv = self.starDDL.loadSpecLibs(str.encode(os.path.join(
self.star_SED_path, 'file_BT-Settl_CSST_wl1000-24000_R1000.par')), str.encode(self.star_SED_path))
self.starDDL.loadExts(str.encode(os.path.join(
self.star_SED_path, "Ext_odonnell94_R3.1_CSST_wl1000-24000_R1000.fits")))
self.star_spec_len = nwv
def _interp_star_sed(self, obj):
spec = (ctypes.c_float*self.star_spec_len)()
wave = (ctypes.c_float*self.star_spec_len)()
self.starDDL.interpSingleStar.argtypes=[ctypes.Structure, ctypes.POINTER(ctypes.c_float)]
self.starDDL.interpSingleStar.argtypes = [
ctypes.Structure, ctypes.POINTER(ctypes.c_float)]
# s=Star(obj.param['teff'], obj.param['grav''], obj.paramstar['mwmsc_mass'], obj.param['AV'], obj.param['DM'], obj.param['z_met'])
s=StarParm(obj.param['teff'], obj.param['logg'], obj.param['stellarMass'], obj.param['av'], obj.param['DM'], obj.param['feh'])
s = StarParm(obj.param['teff'], obj.param['logg'], obj.param['stellarMass'],
obj.param['av'], obj.param['DM'], obj.param['feh'])
self.starDDL.interpSingleStar(s, spec, wave)
rv_c = obj.param['rv']/(atcons.c.value/1000.)
Doppler_factor = np.sqrt((1+rv_c)/(1-rv_c))
wave_RV = wave*Doppler_factor
return wave_RV, np.power(10,spec[:])
return wave_RV, np.power(10, spec[:])
def _load_SED_lib_gals(self):
pcs = h5.File(os.path.join(self.galaxy_SED_path, "pcs.h5"), "r")
......@@ -231,9 +249,9 @@ class Catalog(CatalogBase):
)
for igals in range(ngals):
# # (TEST)
# if igals > 100:
# break
# (TEST)
if igals > 100:
break
param = self.initialize_param()
param['ra'] = ra_arr[igals]
......@@ -248,7 +266,8 @@ class Catalog(CatalogBase):
if self.filt.filter_type == 'NUV':
param['mag_use_normal'] = gals['mag_csst_nuv'][igals]
else:
param['mag_use_normal'] = gals['mag_csst_%s'%(self.filt.filter_type)][igals]
param['mag_use_normal'] = gals['mag_csst_%s' %
(self.filt.filter_type)][igals]
if self.filt.is_too_dim(mag=param['mag_use_normal'], margin=self.config["obs_setting"]["mag_lim_margin"]):
continue
......@@ -278,7 +297,6 @@ class Catalog(CatalogBase):
param['e1_bulge'] = param['e1']
param['e2_bulge'] = param['e2']
param['delta_ra'] = 0
param['delta_dec'] = 0
......@@ -295,7 +313,8 @@ class Catalog(CatalogBase):
param['bulge_sersic_idx'] = 4.
# Sizes
param['bfrac'] = param['bulgemass']/(param['bulgemass'] + param['diskmass'])
param['bfrac'] = param['bulgemass'] / \
(param['bulgemass'] + param['diskmass'])
if param['bfrac'] >= 0.6:
param['hlr_bulge'] = param['size']
param['hlr_disk'] = param['size'] * (1. - param['bfrac'])
......@@ -317,7 +336,8 @@ class Catalog(CatalogBase):
# TEMP
self.ids += 1
param['id'] = '%06d'%(int(pix_id)) + '%06d'%(cat_id) + '%08d'%(igals)
param['id'] = '%06d' % (int(pix_id)) + \
'%06d' % (cat_id) + '%08d' % (igals)
# Is this an Quasar?
param['qsoindex'] = gals['qsoindex'][igals]
......@@ -332,7 +352,7 @@ class Catalog(CatalogBase):
# First add QSO model
obj = Quasar(param_qso, logger=self.logger)
# Need to deal with additional output columns
obj.additional_output_str = self.add_fmt%(0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
obj.additional_output_str = self.add_fmt % (0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0, 0.)
self.objs.append(obj)
# Then add host galaxy model
......@@ -341,7 +361,7 @@ class Catalog(CatalogBase):
obj = Galaxy(param, logger=self.logger)
# Need to deal with additional output columns for (host) galaxy
obj.additional_output_str = self.add_fmt%(0., 0., 0., 0., 0., 0.,
obj.additional_output_str = self.add_fmt % (0., 0., 0., 0., 0., 0.,
param['bulgemass'], param['diskmass'], param['detA'],
param['e1'], param['e2'], param['kappa'], param['g1'], param['g2'], param['size'],
param['galType'], param['veldisp'])
......@@ -387,8 +407,8 @@ class Catalog(CatalogBase):
)
for istars in range(nstars):
# (TEST)
# if istars > 100:
# break
if istars > 100:
break
param = self.initialize_param()
param['ra'] = ra_arr[istars]
......@@ -404,7 +424,7 @@ class Catalog(CatalogBase):
param['mag_use_normal'] = stars['app_sdss_g'][istars]
self.ids += 1
param['id'] = '%06d'%(int(pix_id)) + '%08d'%(istars)
param['id'] = '%06d' % (int(pix_id)) + '%08d' % (istars)
# param['sed_type'] = istars
# param['model_tag'] = ''
param['teff'] = stars['teff'][istars]
......@@ -412,7 +432,6 @@ class Catalog(CatalogBase):
param['feh'] = stars['z_met'][istars]
param['stellarMass'] = stars['mass'][istars]
param['av'] = stars['AV'][istars]
param['DM'] = stars['DM'][istars]
# param['z_met'] = stars['z_met'][istars]
......@@ -426,7 +445,7 @@ class Catalog(CatalogBase):
print(e)
# Append additional output columns to the .cat file
obj.additional_output_str = self.add_fmt%(param["av"], param['stellarMass'], param['DM'], param['teff'], param['logg'], param['feh'],
obj.additional_output_str = self.add_fmt % (param["av"], param['stellarMass'], param['DM'], param['teff'], param['logg'], param['feh'],
0., 0., 0., 0., 0., 0., 0., 0., 0., -1, 0.)
self.objs.append(obj)
......@@ -460,7 +479,8 @@ class Catalog(CatalogBase):
agnsed_path = os.path.join(self.AGN_SED_path, agnsed_file)
self.agn_seds[agnsed_file] = fits.open(agnsed_path)[0].data
self._load_gals(gals, pix_id=pix, cat_id=bundleID, agnsed_file=agnsed_file)
self._load_gals(gals, pix_id=pix,
cat_id=bundleID, agnsed_file=agnsed_file)
del gals
except Exception as e:
......@@ -469,8 +489,9 @@ class Catalog(CatalogBase):
print(e)
if self.logger is not None:
self.logger.info("maximum galaxy size: %.4f"%(self.max_size))
self.logger.info("number of objects in catalog: %d"%(len(self.objs)))
self.logger.info("maximum galaxy size: %.4f" % (self.max_size))
self.logger.info("number of objects in catalog: %d" %
(len(self.objs)))
else:
print("number of objects in catalog: ", len(self.objs))
......@@ -500,7 +521,8 @@ class Catalog(CatalogBase):
)
wave, flux = sed_data[0], sed_data[1]
elif obj.type == 'quasar':
flux = self.agn_seds[obj.agnsed_file][int(obj.qsoindex)] * 1e-17
flux = self.agn_seds[obj.agnsed_file][int(
obj.qsoindex)] * 1e-17
flux[flux < 0] = 0.
wave = self.lamb_gal * (1.0 + obj.z)
else:
......@@ -514,10 +536,14 @@ class Catalog(CatalogBase):
if obj.type == 'quasar':
# integrate to get the magnitudes
sed_photon = np.array([sed['WAVELENGTH'], sed['FLUX']]).T
sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest')
sed_photon = galsim.SED(sed_photon, wave_type='A', flux_type='1', fast=False)
interFlux = integrate_sed_bandpass(sed=sed_photon, bandpass=self.filt.bandpass_full)
obj.param['mag_use_normal'] = getABMAG(interFlux, self.filt.bandpass_full)
sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(
sed_photon[:, 1]), interpolant='nearest')
sed_photon = galsim.SED(
sed_photon, wave_type='A', flux_type='1', fast=False)
interFlux = integrate_sed_bandpass(
sed=sed_photon, bandpass=self.filt.bandpass_full)
obj.param['mag_use_normal'] = getABMAG(
interFlux, self.filt.bandpass_full)
# mag = getABMAG(interFlux, self.filt.bandpass_full)
# print("mag diff = %.3f"%(mag - obj.param['mag_use_normal']))
del wave
......
......@@ -4,7 +4,8 @@ import astropy.constants as cons
from astropy.table import Table
from scipy import interpolate
from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar
from observation_sim.mock_objects import CatalogBase, Star, Galaxy, Quasar
class Catalog(CatalogBase):
"""An user customizable class for reading in catalog(s) of objects and SEDs.
......@@ -32,6 +33,7 @@ class Catalog(CatalogBase):
load_norm_filt(obj):
load the filter throughput for the input catalog's photometric system.
"""
def __init__(self, config, chip, **kwargs):
"""Constructor method.
......@@ -51,13 +53,15 @@ class Catalog(CatalogBase):
"""
super().__init__()
self.cat_dir = os.path.join(config["data_dir"], config["catalog_options"]["input_path"]["cat_dir"])
self.cat_dir = os.path.join(
config["data_dir"], config["catalog_options"]["input_path"]["cat_dir"])
self.chip = chip
if "star_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["star_cat"]:
star_file = config["catalog_options"]["input_path"]["star_cat"]
star_SED_file = config["catalog_options"]["SED_templates_path"]["star_SED"]
self.star_path = os.path.join(self.cat_dir, star_file)
self.star_SED_path = os.path.join(config["data_dir"], star_SED_file)
self.star_SED_path = os.path.join(
config["data_dir"], star_SED_file)
# NOTE: must call _load() method here to read in all objects
self.objs = []
self._load()
......@@ -173,7 +177,8 @@ class Catalog(CatalogBase):
"""
if obj.type == 'star':
wave = Table.read(self.star_SED_path, path=f"/SED/wave_{obj.model_tag}")
wave = Table.read(self.star_SED_path,
path=f"/SED/wave_{obj.model_tag}")
flux = Table.read(self.star_SED_path, path=f"/SED/{obj.sed_type}")
wave, flux = wave['col0'].data, flux['col0'].data
else:
......
......@@ -11,12 +11,12 @@ from astropy.table import Table
from scipy import interpolate
from datetime import datetime
from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar, Stamp
from ObservationSim.MockObject._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position
from observation_sim.mock_objects import CatalogBase, Star, Galaxy, Quasar, Stamp
from observation_sim.mock_objects._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from observation_sim.astrometry.Astrometry_util import on_orbit_obs_position
import astropy.io.fits as fitsio
from ObservationSim.MockObject._util import seds, sed_assign, extAv
from observation_sim.mock_objects._util import seds, sed_assign, extAv
# (TEST)
from astropy.cosmology import FlatLambdaCDM
......@@ -31,11 +31,12 @@ except ImportError:
NSIDE = 128
class Catalog(CatalogBase):
def __init__(self, config, chip, pointing, chip_output, filt, **kwargs):
super().__init__()
self.cat_dir = config["catalog_options"]["input_path"]["cat_dir"]
self.seed_Av = 121212 #config["catalog_options"]["seed_Av"]
self.seed_Av = 121212 # config["catalog_options"]["seed_Av"]
# (TEST)
self.cosmo = FlatLambdaCDM(H0=67.66, Om0=0.3111)
......@@ -44,9 +45,9 @@ class Catalog(CatalogBase):
self.filt = filt
self.logger = chip_output.logger
with pkg_resources.path('Catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
with pkg_resources.path('catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
self.normF_star = Table.read(str(filter_path))
with pkg_resources.path('Catalog.data', 'lsst_throuput_g.fits') as filter_path:
with pkg_resources.path('catalog.data', 'lsst_throuput_g.fits') as filter_path:
self.normF_galaxy = Table.read(str(filter_path))
self.config = config
......@@ -58,9 +59,10 @@ class Catalog(CatalogBase):
if "stamp_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["stamp_cat"] and config["catalog_options"]["stamp_yes"]:
stamp_file = config["catalog_options"]["input_path"]["stamp_cat"]
self.stamp_path = os.path.join(self.cat_dir, stamp_file)
#self.stamp_SED_path = os.path.join(config["data_dir"], config["SED_templates_path"]["stamp_SED"]) ###shoule be stamp-SED
#self._load_SED_lib_stamps() ###shoule be stamp-SED
self.tempSed_gal, self.tempRed_gal = seds("galaxy.list", seddir="/public/home/chengliang/CSSOSDataProductsSims/testCats/Templates/Galaxy/") #only for test
# self.stamp_SED_path = os.path.join(config["data_dir"], config["SED_templates_path"]["stamp_SED"]) ###shoule be stamp-SED
# self._load_SED_lib_stamps() ###shoule be stamp-SED
self.tempSed_gal, self.tempRed_gal = seds(
"galaxy.list", seddir="/public/home/chengliang/CSSOSDataProductsSims/testCats/Templates/Galaxy/") # only for test
self._add_output_columns_header()
self._get_healpix_list()
......@@ -72,10 +74,12 @@ class Catalog(CatalogBase):
self.add_fmt = " %10s %8.4f %8.4f %8.4f"
self.add_fmt += " %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %4d %8.4f "
self.chip_output.update_output_header(additional_column_names=self.add_hdr)
self.chip_output.update_output_header(
additional_column_names=self.add_hdr)
def _get_healpix_list(self):
self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2)
self.sky_coverage = self.chip.getSkyCoverageEnlarged(
self.chip.img.wcs, margin=0.2)
ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
......@@ -94,7 +98,7 @@ class Catalog(CatalogBase):
def load_norm_filt(self, obj):
if obj.type == "stamp":
return self.normF_galaxy ###normalize_filter for stamp
return self.normF_galaxy # normalize_filter for stamp
else:
return None
......@@ -102,35 +106,38 @@ class Catalog(CatalogBase):
print("debug:: load_stamps")
nstamps = len(stamps['filename'])
self.rng_sedGal = random.Random()
self.rng_sedGal.seed(float(pix_id)) # Use healpix index as the random seed
# Use healpix index as the random seed
self.rng_sedGal.seed(float(pix_id))
self.ud = galsim.UniformDeviate(pix_id)
for istamp in range(nstamps):
print("debug::", istamp)
fitsfile = os.path.join(self.cat_dir, "stampCats/"+stamps['filename'][istamp].decode('utf-8'))
fitsfile = os.path.join(
self.cat_dir, "stampCats/"+stamps['filename'][istamp].decode('utf-8'))
print("debug::", istamp, fitsfile)
hdu=fitsio.open(fitsfile)
hdu = fitsio.open(fitsfile)
param = self.initialize_param()
param['id'] = hdu[0].header['index'] #istamp
param['id'] = hdu[0].header['index'] # istamp
param['star'] = 3 # Stamp type in .cat file
param['ra'] = hdu[0].header['ra']
param['dec']= hdu[0].header['dec']
param['pixScale']= hdu[0].header['pixScale']
#param['srcGalaxyID'] = hdu[0].header['srcGID']
#param['mu']= hdu[0].header['mu']
#param['PA']= hdu[0].header['PA']
#param['bfrac']= hdu[0].header['bfrac']
#param['z']= hdu[0].header['z']
param['mag_use_normal'] = hdu[0].header['mag_g'] #gals['mag_true_g_lsst']
param['dec'] = hdu[0].header['dec']
param['pixScale'] = hdu[0].header['pixScale']
# param['srcGalaxyID'] = hdu[0].header['srcGID']
# param['mu']= hdu[0].header['mu']
# param['PA']= hdu[0].header['PA']
# param['bfrac']= hdu[0].header['bfrac']
# param['z']= hdu[0].header['z']
# gals['mag_true_g_lsst']
param['mag_use_normal'] = hdu[0].header['mag_g']
# Apply astrometric modeling
# in C3 case only aberration
param['ra_orig'] = param['ra']
param['dec_orig']= param['dec']
param['dec_orig'] = param['dec']
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = [param['ra']] #ra_arr.tolist()
dec_list= [param['dec']] #dec_arr.tolist()
ra_list = [param['ra']] # ra_arr.tolist()
dec_list = [param['dec']] # dec_arr.tolist()
pmra_list = np.zeros(1).tolist()
pmdec_list = np.zeros(1).tolist()
rv_list = np.zeros(1).tolist()
......@@ -157,19 +164,20 @@ class Catalog(CatalogBase):
input_time_str=time_str
)
param['ra'] = ra_arr[0]
param['dec']= dec_arr[0]
param['dec'] = dec_arr[0]
# Assign each galaxy a template SED
param['sed_type'] = sed_assign(phz=param['z'], btt=param['bfrac'], rng=self.rng_sedGal)
param['sed_type'] = sed_assign(
phz=param['z'], btt=param['bfrac'], rng=self.rng_sedGal)
param['redden'] = self.tempRed_gal[param['sed_type']]
param['av'] = 0.0
param['redden'] = 0
param['mu'] = 1
#param["CSSTmag"]= True
#param["mag_r"] = 20.
#param['']
###more keywords for stamp###
# param["CSSTmag"]= True
# param["mag_r"] = 20.
# param['']
### more keywords for stamp###
param['image'] = hdu[0].data
param['image'] = param['image']/(np.sum(param['image']))
obj = Stamp(param)
......@@ -181,12 +189,12 @@ class Catalog(CatalogBase):
if "stamp_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["stamp_cat"] and self.config["catalog_options"]["stamp_yes"]:
stamps_cat = h5.File(self.stamp_path, 'r')['Stamps']
print("debug::",stamps_cat.keys())
print("debug::", stamps_cat.keys())
for pix in self.pix_list:
try:
stamps = stamps_cat[str(pix)]
print("debug::",stamps.keys())
print("debug::", stamps.keys())
self._load_stamps(stamps, pix_id=pix)
del stamps
except Exception as e:
......@@ -194,12 +202,12 @@ class Catalog(CatalogBase):
print(e)
if self.logger is not None:
self.logger.info("maximum galaxy size: %.4f"%(self.max_size))
self.logger.info("number of objects in catalog: %d"%(len(self.objs)))
self.logger.info("maximum galaxy size: %.4f" % (self.max_size))
self.logger.info("number of objects in catalog: %d" %
(len(self.objs)))
else:
print("number of objects in catalog: ", len(self.objs))
def load_sed(self, obj, **kwargs):
if obj.type == 'stamp':
sed_data = getObservedSED(
......
......@@ -8,12 +8,13 @@ from datetime import datetime
import traceback
from ObservationSim.Config import ChipOutput
from ObservationSim.Instrument import Telescope, Filter, FilterParam, FocalPlane, Chip
from ObservationSim.Instrument.Chip import Effects
from ObservationSim.Instrument.Chip import ChipUtils as chip_utils
from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position
from ObservationSim.sim_steps import SimSteps, SIM_STEP_TYPES
from observation_sim.config import ChipOutput
from observation_sim.instruments import Telescope, Filter, FilterParam, FocalPlane, Chip
from observation_sim.instruments.chip import effects
from observation_sim.instruments.chip import chip_utils as chip_utils
from observation_sim.astrometry.Astrometry_util import on_orbit_obs_position
from observation_sim.sim_steps import SimSteps, SIM_STEP_TYPES
class Observation(object):
def __init__(self, config, Catalog, work_dir=None, data_dir=None):
......@@ -25,7 +26,8 @@ class Observation(object):
def prepare_chip_for_exposure(self, chip, ra_cen, dec_cen, pointing, wcs_fp=None):
# Get WCS for the focal plane
if wcs_fp == None:
wcs_fp = self.focal_plane.getTanWCS(ra_cen, dec_cen, pointing.img_pa, chip.pix_scale)
wcs_fp = self.focal_plane.getTanWCS(
ra_cen, dec_cen, pointing.img_pa, chip.pix_scale)
# Create chip Image
chip.img = galsim.ImageF(chip.npix_x, chip.npix_y)
......@@ -37,27 +39,34 @@ class Observation(object):
seed=int(self.config["random_seeds"]["seed_poisson"]) + pointing.id*30 + chip.chipID, sky_level=0.)
# Get flat, shutter, and PRNU images
chip.flat_img, _ = chip_utils.get_flat(img=chip.img, seed=int(self.config["random_seeds"]["seed_flat"]))
chip.flat_img, _ = chip_utils.get_flat(
img=chip.img, seed=int(self.config["random_seeds"]["seed_flat"]))
if chip.chipID > 30:
chip.shutter_img = np.ones_like(chip.img.array)
else:
chip.shutter_img = Effects.ShutterEffectArr(chip.img, t_shutter=1.3, dist_bearing=735, dt=1E-3)
chip.prnu_img = Effects.PRNU_Img(xsize=chip.npix_x, ysize=chip.npix_y, sigma=0.01,
chip.shutter_img = effects.ShutterEffectArr(
chip.img, t_shutter=1.3, dist_bearing=735, dt=1E-3)
chip.prnu_img = effects.PRNU_Img(xsize=chip.npix_x, ysize=chip.npix_y, sigma=0.01,
seed=int(self.config["random_seeds"]["seed_prnu"]+chip.chipID))
return chip
def run_one_chip(self, chip, filt, pointing, chip_output, wcs_fp=None, psf_model=None, cat_dir=None, sed_dir=None):
chip_output.Log_info(':::::::::::::::::::Current Pointing Information::::::::::::::::::')
chip_output.Log_info(
':::::::::::::::::::Current Pointing Information::::::::::::::::::')
chip_output.Log_info("RA: %f, DEC; %f" % (pointing.ra, pointing.dec))
chip_output.Log_info("Time: %s" % datetime.utcfromtimestamp(pointing.timestamp).isoformat())
chip_output.Log_info("Time: %s" % datetime.utcfromtimestamp(
pointing.timestamp).isoformat())
chip_output.Log_info("Exposure time: %f" % pointing.exp_time)
chip_output.Log_info("Satellite Position (x, y, z): (%f, %f, %f)" % (pointing.sat_x, pointing.sat_y, pointing.sat_z))
chip_output.Log_info("Satellite Velocity (x, y, z): (%f, %f, %f)" % (pointing.sat_vx, pointing.sat_vy, pointing.sat_vz))
chip_output.Log_info("Satellite Position (x, y, z): (%f, %f, %f)" % (
pointing.sat_x, pointing.sat_y, pointing.sat_z))
chip_output.Log_info("Satellite Velocity (x, y, z): (%f, %f, %f)" % (
pointing.sat_vx, pointing.sat_vy, pointing.sat_vz))
chip_output.Log_info("Position Angle: %f" % pointing.img_pa.deg)
chip_output.Log_info('Chip : %d' % chip.chipID)
chip_output.Log_info(':::::::::::::::::::::::::::END:::::::::::::::::::::::::::::::::::')
chip_output.Log_info(
':::::::::::::::::::::::::::END:::::::::::::::::::::::::::::::::::')
# Apply astrometric simulation for pointing
if self.config["obs_setting"]["enable_astrometric_model"]:
......@@ -91,13 +100,15 @@ class Observation(object):
chip = self.prepare_chip_for_exposure(chip, ra_cen, dec_cen, pointing)
# Initialize SimSteps
sim_steps = SimSteps(overall_config=self.config, chip_output=chip_output, all_filters=self.all_filters)
sim_steps = SimSteps(overall_config=self.config,
chip_output=chip_output, all_filters=self.all_filters)
for step in pointing.obs_param["call_sequence"]:
if self.config["run_option"]["out_cat_only"]:
if step != "scie_obs":
continue
chip_output.Log_info("Starting simulation step: %s, calling function: %s"%(step, SIM_STEP_TYPES[step]))
chip_output.Log_info("Starting simulation step: %s, calling function: %s" % (
step, SIM_STEP_TYPES[step]))
obs_param = pointing.obs_param["call_sequence"][step]
step_name = SIM_STEP_TYPES[step]
try:
......@@ -109,14 +120,15 @@ class Observation(object):
pointing=pointing,
catalog=self.Catalog,
obs_param=obs_param)
chip_output.Log_info("Finished simulation step: %s"%(step))
chip_output.Log_info("Finished simulation step: %s" % (step))
except Exception as e:
traceback.print_exc()
chip_output.Log_error(e)
chip_output.Log_error("Failed simulation on step: %s"%(step))
chip_output.Log_error("Failed simulation on step: %s" % (step))
break
chip_output.Log_info("check running:1: pointing-%d chip-%d pid-%d memory-%6.2fGB"%(pointing.id, chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024) ))
chip_output.Log_info("check running:1: pointing-%d chip-%d pid-%d memory-%6.2fGB" % (pointing.id,
chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024)))
del chip.img
def runExposure_MPI_PointingList(self, pointing_list, chips=None):
......@@ -131,9 +143,11 @@ class Observation(object):
# pointing_ID = pointing.id
pointing_ID = pointing.obs_id
pointing.make_output_pointing_dir(overall_config=self.config, copy_obs_config=True)
pointing.make_output_pointing_dir(
overall_config=self.config, copy_obs_config=True)
self.focal_plane = FocalPlane(chip_list=pointing.obs_param["run_chips"])
self.focal_plane = FocalPlane(
chip_list=pointing.obs_param["run_chips"])
# Make Chip & Filter lists
self.chip_list = []
self.filter_list = []
......@@ -178,18 +192,20 @@ class Observation(object):
filt = run_filts[ichip]
chip_output = ChipOutput(
config = self.config,
chip = chip,
filt = filt,
pointing = pointing
config=self.config,
chip=chip,
filt=filt,
pointing=pointing
)
chip_output.Log_info("running pointing#%d, chip#%d, at PID#%d..."%(int(pointing_ID), chip.chipID, pid))
chip_output.Log_info("running pointing#%d, chip#%d, at PID#%d..." % (
int(pointing_ID), chip.chipID, pid))
self.run_one_chip(
chip=chip,
filt=filt,
chip_output=chip_output,
pointing=pointing)
chip_output.Log_info("finished running chip#%d..."%(chip.chipID))
chip_output.Log_info(
"finished running chip#%d..." % (chip.chipID))
for handler in chip_output.logger.handlers[:]:
chip_output.logger.removeHandler(handler)
gc.collect()
......
......@@ -2,6 +2,7 @@ import galsim
import numpy as np
import cmath
class FieldDistortion(object):
def __init__(self, chip, fdModel=None, fdModel_path=None, img_rot=0.):
......@@ -13,7 +14,8 @@ class FieldDistortion(object):
with open(fdModel_path, "rb") as f:
self.fdModel = pickle.load(f)
else:
raise ValueError("Error: no field distortion model has been specified!")
raise ValueError(
"Error: no field distortion model has been specified!")
else:
self.fdModel = fdModel
self.img_rot = img_rot
......@@ -21,19 +23,20 @@ class FieldDistortion(object):
self.ixfdModel = self.ifdModel["xImagePos"]
self.iyfdModel = self.ifdModel["yImagePos"]
# first-order derivatives of the global field distortion model
self.ifx_dx = self.ixfdModel.partial_derivative(1,0)
self.ifx_dy = self.ixfdModel.partial_derivative(0,1)
self.ify_dx = self.iyfdModel.partial_derivative(1,0)
self.ify_dy = self.iyfdModel.partial_derivative(0,1)
self.ifx_dx = self.ixfdModel.partial_derivative(1, 0)
self.ifx_dy = self.ixfdModel.partial_derivative(0, 1)
self.ify_dx = self.iyfdModel.partial_derivative(1, 0)
self.ify_dy = self.iyfdModel.partial_derivative(0, 1)
if "residual" in self.fdModel["wave1"]:
self.irsModel = self.fdModel["wave1"]["residual"]["ccd" + chip.getChipLabel(chipID=chip.chipID)]
self.irsModel = self.fdModel["wave1"]["residual"]["ccd" +
chip.getChipLabel(chipID=chip.chipID)]
self.ixrsModel = self.irsModel["xResidual"]
self.iyrsModel = self.irsModel["yResidual"]
# first-order derivatives of the residual field distortion model
self.irx_dx = self.ixrsModel.partial_derivative(1,0)
self.irx_dy = self.ixrsModel.partial_derivative(0,1)
self.iry_dx = self.iyrsModel.partial_derivative(1,0)
self.iry_dy = self.iyrsModel.partial_derivative(0,1)
self.irx_dx = self.ixrsModel.partial_derivative(1, 0)
self.irx_dy = self.ixrsModel.partial_derivative(0, 1)
self.iry_dx = self.iyrsModel.partial_derivative(1, 0)
self.iry_dy = self.iyrsModel.partial_derivative(0, 1)
else:
self.irsModel = None
......@@ -107,4 +110,3 @@ class FieldDistortion(object):
fd_shear = galsim.Shear(g1=g1k_fd, g2=g2k_fd)
return galsim.PositionD(x, y), fd_shear
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d
from observation_sim.PSF.PSFModel import PSFModel
class PSFGauss(PSFModel):
def __init__(self, chip, fwhm=0.187, sigSpin=0., psfRa=None):
self.pix_size = chip.pix_scale
self.chip = chip
if psfRa is None:
self.fwhm = fwhm
self.sigGauss = 0.15
else:
self.fwhm = self.fwhmGauss(r=psfRa)
self.sigGauss = psfRa # 80% light radius
self.sigSpin = sigSpin
self.psf = galsim.Gaussian(flux=1.0, fwhm=fwhm)
def perfGauss(self, r, sig):
"""
pseudo-error function, i.e. Cumulative distribution function of Gaussian distribution
Parameter:
r: radius
sig: sigma of the Gaussian distribution
Return:
the value of the pseudo CDF
"""
def gaussFun(sigma, r): return 1.0/(np.sqrt(2.0*np.pi)
* sigma) * np.exp(-r**2/(2.0*sigma**2))
nxx = 1000
rArr = np.linspace(0.0, r, nxx)
gauss = gaussFun(sig, rArr)
erf = 2.0*np.trapz(gauss, rArr)
return erf
def fracGauss(self, sig, r=0.15, pscale=None):
"""
For a given Gaussian PSF with sigma=sig,
derive the flux ratio ar the given radius r
Parameters:
sig: sigma of the Gauss PSF Function in arcsec
r: radius in arcsec
pscale: pixel scale
Return: the flux ratio
"""
if pscale == None:
pscale = self.pix_size
gaussx = galsim.Gaussian(flux=1.0, sigma=sig)
gaussImg = gaussx.drawImage(scale=pscale, method='no_pixel')
gaussImg = gaussImg.array
size = np.size(gaussImg, axis=0)
cxy = 0.5*(size-1)
flux, ferr, flag = sep.sum_circle(
gaussImg, [cxy], [cxy], [r/pscale], subpix=0)
return flux
def fwhmGauss(self, r=0.15, fr=0.8, pscale=None):
"""
Given a total flux ratio 'fr' within a fixed radius 'r',
estimate the fwhm of the Gaussian function
return the fwhm in arcsec
"""
if pscale == None:
pscale = self.pix_size
err = 1.0e-3
nxx = 100
sig = np.linspace(0.5*pscale, 1.0, nxx)
frA = np.zeros(nxx)
for i in range(nxx):
frA[i] = self.fracGauss(sig[i], r=r, pscale=pscale)
index = [i for i in range(nxx-1) if (fr-frA[i])
* (fr-frA[i+1]) <= 0.0][0]
while abs(frA[index]-fr) > 1.0e-3:
sig = np.linspace(sig[index], sig[index+1], nxx)
for i in range(nxx):
frA[i] = self.fracGauss(sig[i], r=r, pscale=pscale)
index = [i for i in range(
nxx-1) if (fr-frA[i])*(fr-frA[i+1]) <= 0.0][0]
fwhm = 2.35482*sig[index]
return fwhm
def get_PSF(self, pos_img, chip=None, bandpass=None, folding_threshold=5.e-3):
dx = pos_img.x - self.chip.cen_pix_x
dy = pos_img.y - self.chip.cen_pix_y
return self.PSFspin(dx, dy)
def PSFspin(self, x, y):
"""
The PSF profile at a given image position relative to the axis center
Parameters:
theta : spin angles in a given exposure in unit of [arcsecond]
dx, dy: relative position to the axis center in unit of [pixels]
Return:
Spinned PSF: g1, g2 and axis ratio 'a/b'
"""
a2Rad = np.pi/(60.0*60.0*180.0)
ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
rc = np.sqrt(x*x + y*y)
cpix = rc*(self.sigSpin*a2Rad)
beta = (np.arctan2(y, x) + np.pi/2)
ell = cpix**2/(2.0*ff**2+cpix**2)
# ell *= 10.0
qr = np.sqrt((1.0+ell)/(1.0-ell))
# psfShape = galsim.Shear(e=ell, beta=beta)
# g1, g2 = psfShape.g1, psfShape.g2
# qr = np.sqrt((1.0+ell)/(1.0-ell))
# return ell, beta, qr
PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
return self.psf.shear(PSFshear), PSFshear
......@@ -12,14 +12,14 @@ import scipy.spatial as spatial
import galsim
import h5py
from ObservationSim.PSF.PSFModel import PSFModel
from observation_sim.PSF.PSFModel import PSFModel
NPSF = 900 #***# 30*30
PixSizeInMicrons = 5. #***# in microns
NPSF = 900 # ***# 30*30
PixSizeInMicrons = 5. # ***# in microns
###find neighbors-KDtree###
### find neighbors-KDtree###
def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
"""
find nearest neighbors by 2D-KDTree
......@@ -38,7 +38,7 @@ def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
datay = py
tree = spatial.KDTree(list(zip(datax.ravel(), datay.ravel())))
dataq=[]
dataq = []
rr = dr
if OnlyDistance == True:
dataq = tree.query_ball_point([tx, ty], rr)
......@@ -51,7 +51,9 @@ def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
dataq = np.array(dataq)[ddSortindx[0:dn]]
return dataq
###find neighbors-hoclist###
### find neighbors-hoclist###
def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
if np.max(partx) > nhocx*dhocx:
print('ERROR')
......@@ -61,7 +63,7 @@ def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
sys.exit()
npart = partx.size
hoclist= np.zeros(npart, dtype=np.int32)-1
hoclist = np.zeros(npart, dtype=np.int32)-1
hoc = np.zeros([nhocy, nhocx], dtype=np.int32)-1
for ipart in range(npart):
ix = int(partx[ipart]/dhocx)
......@@ -70,18 +72,20 @@ def hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy):
hoc[iy, ix] = ipart
return hoc, hoclist
def hocFind(px, py, dhocx, dhocy, hoc, hoclist):
ix = int(px/dhocx)
iy = int(py/dhocy)
neigh=[]
neigh = []
it = hoc[iy, ix]
while it != -1:
neigh.append(it)
it = hoclist[it]
return neigh
def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None):
def findNeighbors_hoclist(px, py, tx=None, ty=None, dn=4, hoc=None, hoclist=None):
nhocy = nhocx = 20
pxMin = np.min(px)
......@@ -91,21 +95,21 @@ def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None)
dhocx = (pxMax - pxMin)/(nhocx-1)
dhocy = (pyMax - pyMin)/(nhocy-1)
partx = px - pxMin +dhocx/2
party = py - pyMin +dhocy/2
partx = px - pxMin + dhocx/2
party = py - pyMin + dhocy/2
if hoc is None:
hoc, hoclist = hocBuild(partx, party, nhocx, nhocy, dhocx, dhocy)
return hoc, hoclist
if hoc is not None:
tx = tx - pxMin +dhocx/2
ty = ty - pyMin +dhocy/2
tx = tx - pxMin + dhocx/2
ty = ty - pyMin + dhocy/2
itx = int(tx/dhocx)
ity = int(ty/dhocy)
ps = [-1, 0, 1]
neigh=[]
neigh = []
for ii in range(3):
for jj in range(3):
ix = itx + ps[ii]
......@@ -119,23 +123,23 @@ def findNeighbors_hoclist(px, py, tx=None,ty=None, dn=4, hoc=None, hoclist=None)
if iy > nhocy-1:
continue
#neightt = myUtil.hocFind(ppx, ppy, dhocx, dhocy, hoc, hoclist)
# neightt = myUtil.hocFind(ppx, ppy, dhocx, dhocy, hoc, hoclist)
it = hoc[iy, ix]
while it != -1:
neigh.append(it)
it = hoclist[it]
#neigh.append(neightt)
#ll = [i for k in neigh for i in k]
# neigh.append(neightt)
# ll = [i for k in neigh for i in k]
if dn != -1:
ptx = np.array(partx[neigh])
pty = np.array(party[neigh])
dd = np.hypot(ptx-tx, pty-ty)
idx = np.argsort(dd)
neigh= np.array(neigh)[idx[0:dn]]
neigh = np.array(neigh)[idx[0:dn]]
return neigh
###PSF-IDW###
### PSF-IDW###
def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=None, hoclist=None, PSFCentroidWgt=False):
"""
psf interpolation by IDW
......@@ -161,9 +165,11 @@ def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=Tru
if OnlyNeighbors == True:
if hoc is None:
neigh = findNeighbors(px, py, cen_col, cen_row, dr=5., dn=4, OnlyDistance=False)
neigh = findNeighbors(px, py, cen_col, cen_row,
dr=5., dn=4, OnlyDistance=False)
if hoc is not None:
neigh = findNeighbors_hoclist(cen_col, cen_row, tx=px,ty=py, dn=4, hoc=hoc, hoclist=hoclist)
neigh = findNeighbors_hoclist(
cen_col, cen_row, tx=px, ty=py, dn=4, hoc=hoc, hoclist=hoclist)
neighFlag = np.zeros(npsf)
neighFlag[neigh] = 1
......@@ -173,7 +179,8 @@ def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=Tru
if neighFlag[ipsf] != 1:
continue
dist = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
dist = np.sqrt((ref_col - cen_col[ipsf])
** 2 + (ref_row - cen_row[ipsf])**2)
if IDWindex == 1:
psfWeight[ipsf] = dist
if IDWindex == 2:
......@@ -201,15 +208,14 @@ def psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=Tru
return psfMaker
###define PSFInterp###
### define PSFInterp###
class PSFInterp(PSFModel):
def __init__(self, chip, npsf=NPSF, PSF_data=None, PSF_data_file=None, PSF_data_prefix="", sigSpin=0, psfRa=0.15, HocBuild=False, LOG_DEBUG=False):
self.LOG_DEBUG = LOG_DEBUG
if self.LOG_DEBUG:
print('===================================================')
print('DEBUG: psf module for csstSim ' \
+time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
print('DEBUG: psf module for csstSim '
+ time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
print('===================================================')
self.sigSpin = sigSpin
......@@ -221,53 +227,62 @@ class PSFInterp(PSFModel):
print('Error - PSF_data_file is None')
sys.exit()
self.nwave= self._getPSFwave(self.iccd, PSF_data_file, PSF_data_prefix)
self.nwave = self._getPSFwave(
self.iccd, PSF_data_file, PSF_data_prefix)
self.npsf = npsf
self.PSF_data = self._loadPSF(self.iccd, PSF_data_file, PSF_data_prefix)
self.PSF_data = self._loadPSF(
self.iccd, PSF_data_file, PSF_data_prefix)
if self.LOG_DEBUG:
print('nwave-{:} on ccd-{:}::'.format(self.nwave, self.iccd), flush=True)
print('nwave-{:} on ccd-{:}::'.format(self.nwave,
self.iccd), flush=True)
print('self.PSF_data ... ok', flush=True)
print('Preparing self.[psfMat,cen_col,cen_row] for psfMaker ... ', end='', flush=True)
print(
'Preparing self.[psfMat,cen_col,cen_row] for psfMaker ... ', end='', flush=True)
ngy, ngx = self.PSF_data[0][0]['psfMat'].shape
self.psfMat = np.zeros([self.nwave, self.npsf, ngy, ngx], dtype=np.float32)
self.cen_col= np.zeros([self.nwave, self.npsf], dtype=np.float32)
self.cen_row= np.zeros([self.nwave, self.npsf], dtype=np.float32)
self.hoc =[]
self.hoclist=[]
self.psfMat = np.zeros(
[self.nwave, self.npsf, ngy, ngx], dtype=np.float32)
self.cen_col = np.zeros([self.nwave, self.npsf], dtype=np.float32)
self.cen_row = np.zeros([self.nwave, self.npsf], dtype=np.float32)
self.hoc = []
self.hoclist = []
for twave in range(self.nwave):
for tpsf in range(self.npsf):
self.psfMat[twave, tpsf, :, :] = self.PSF_data[twave][tpsf]['psfMat']
self.PSF_data[twave][tpsf]['psfMat'] = 0 ###free psfMat
self.psfMat[twave, tpsf, :,
:] = self.PSF_data[twave][tpsf]['psfMat']
self.PSF_data[twave][tpsf]['psfMat'] = 0 # free psfMat
self.pixsize = self.PSF_data[twave][tpsf]['pixsize']*1e-3 ##mm
self.cen_col[twave, tpsf] = self.PSF_data[twave][tpsf]['image_x'] + self.PSF_data[twave][tpsf]['centroid_x']
self.cen_row[twave, tpsf] = self.PSF_data[twave][tpsf]['image_y'] + self.PSF_data[twave][tpsf]['centroid_y']
self.pixsize = self.PSF_data[twave][tpsf]['pixsize']*1e-3 # mm
self.cen_col[twave, tpsf] = self.PSF_data[twave][tpsf]['image_x'] + \
self.PSF_data[twave][tpsf]['centroid_x']
self.cen_row[twave, tpsf] = self.PSF_data[twave][tpsf]['image_y'] + \
self.PSF_data[twave][tpsf]['centroid_y']
if HocBuild:
#hoclist on twave for neighborsFinding
hoc,hoclist = findNeighbors_hoclist(self.cen_col[twave], self.cen_row[twave])
# hoclist on twave for neighborsFinding
hoc, hoclist = findNeighbors_hoclist(
self.cen_col[twave], self.cen_row[twave])
self.hoc.append(hoc)
self.hoclist.append(hoclist)
if self.LOG_DEBUG:
print('ok', flush=True)
def _getPSFwave(self, iccd, PSF_data_file, PSF_data_prefix):
# fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_ccd{:}.h5'.format(iccd), 'r')
fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_{:}.h5'.format(iccd), 'r')
fq = h5py.File(PSF_data_file+'/' + PSF_data_prefix +
'psfCube_{:}.h5'.format(iccd), 'r')
nwave = len(fq.keys())
fq.close()
return nwave
def _loadPSF(self, iccd, PSF_data_file, PSF_data_prefix):
psfSet = []
# fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_ccd{:}.h5'.format(iccd), 'r')
fq = h5py.File(PSF_data_file+'/' +PSF_data_prefix +'psfCube_{:}.h5'.format(iccd), 'r')
fq = h5py.File(PSF_data_file+'/' + PSF_data_prefix +
'psfCube_{:}.h5'.format(iccd), 'r')
for ii in range(self.nwave):
iwave = ii+1
psfWave = []
......@@ -276,7 +291,7 @@ class PSFInterp(PSFModel):
for jj in range(self.npsf):
ipsf = jj+1
psfInfo = {}
psfInfo['wavelength']= fq_iwave['wavelength'][()]
psfInfo['wavelength'] = fq_iwave['wavelength'][()]
fq_iwave_ipsf = fq_iwave['psf_{:}'.format(ipsf)]
psfInfo['pixsize'] = PixSizeInMicrons
......@@ -284,8 +299,8 @@ class PSFInterp(PSFModel):
psfInfo['field_y'] = fq_iwave_ipsf['field_y'][()]
psfInfo['image_x'] = fq_iwave_ipsf['image_x'][()]
psfInfo['image_y'] = fq_iwave_ipsf['image_y'][()]
psfInfo['centroid_x']= fq_iwave_ipsf['cx'][()]
psfInfo['centroid_y']= fq_iwave_ipsf['cy'][()]
psfInfo['centroid_x'] = fq_iwave_ipsf['cx'][()]
psfInfo['centroid_y'] = fq_iwave_ipsf['cy'][()]
psfInfo['psfMat'] = fq_iwave_ipsf['psfMat'][()]
psfWave.append(psfInfo)
......@@ -294,12 +309,12 @@ class PSFInterp(PSFModel):
if self.LOG_DEBUG:
print('psfSet has been loaded:', flush=True)
print('psfSet[iwave][ipsf][keys]:', psfSet[0][0].keys(), flush=True)
print('psfSet[iwave][ipsf][keys]:',
psfSet[0][0].keys(), flush=True)
return psfSet
def _findWave(self, bandpass):
if isinstance(bandpass,int):
if isinstance(bandpass, int):
twave = bandpass
return twave
......@@ -309,7 +324,6 @@ class PSFInterp(PSFModel):
return twave
return -1
def get_PSF(self, chip, pos_img, bandpass, galsimGSObject=True, findNeighMode='treeFind', folding_threshold=5.e-3, pointing_pa=0.0):
"""
Get the PSF at a given image position
......@@ -323,7 +337,7 @@ class PSFInterp(PSFModel):
Returns:
PSF: A 'galsim.GSObject'.
"""
pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 #set psf pixsize
pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 # set psf pixsize
# assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
twave = self._findWave(bandpass)
......@@ -331,16 +345,18 @@ class PSFInterp(PSFModel):
print("!!!PSF bandpass does not match.")
exit()
PSFMat = self.psfMat[twave]
cen_col= self.cen_col[twave]
cen_row= self.cen_row[twave]
cen_col = self.cen_col[twave]
cen_row = self.cen_row[twave]
px = (pos_img.x - chip.cen_pix_x)*0.01
py = (pos_img.y - chip.cen_pix_y)*0.01
if findNeighMode == 'treeFind':
imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, PSFCentroidWgt=True)
imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row,
IDWindex=2, OnlyNeighbors=True, PSFCentroidWgt=True)
if findNeighMode == 'hoclistFind':
assert(self.hoc != 0), 'hoclist should be built correctly!'
imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)
assert (self.hoc != 0), 'hoclist should be built correctly!'
imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True,
hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)
'''
############TEST: START
......@@ -353,20 +369,21 @@ class PSFInterp(PSFModel):
'''
if galsimGSObject:
imPSFt = np.zeros([257,257])
imPSFt = np.zeros([257, 257])
imPSFt[0:256, 0:256] = imPSF
# imPSFt[120:130, 0:256] = 1.
img = galsim.ImageF(imPSFt, scale=pixSize)
gsp = galsim.GSParams(folding_threshold=folding_threshold)
############TEST: START
# TEST: START
# Use sheared PSF to test the PSF orientation
# self.psf = galsim.InterpolatedImage(img, gsparams=gsp).shear(g1=0.8, g2=0.)
############TEST: END
# TEST: END
self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
wcs = chip.img.wcs.local(pos_img)
scale = galsim.PixelScale(0.074)
self.psf = wcs.toWorld(scale.toImage(self.psf), image_pos=(pos_img))
self.psf = wcs.toWorld(scale.toImage(
self.psf), image_pos=(pos_img))
# return self.PSFspin(x=px/0.01, y=py/0.01)
return self.psf, galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)
......
......@@ -4,6 +4,7 @@ PSF interpolation for CSST-Sim
NOTE: [iccd, iwave, ipsf] are counted from 1 to n, but [tccd, twave, tpsf] are counted from 0 to n-1
'''
import yaml
import sys
import time
import copy
......@@ -12,8 +13,9 @@ import scipy.spatial as spatial
import galsim
import h5py
from ObservationSim.PSF.PSFModel import PSFModel
from ObservationSim.Instrument.Chip import ChipUtils as chip_utils
from observation_sim.instruments import Filter, FilterParam, Chip
from observation_sim.PSF.PSFModel import PSFModel
from observation_sim.instruments.chip import chip_utils
import os
from astropy.io import fits
......@@ -21,12 +23,12 @@ from astropy.modeling.models import Gaussian2D
from scipy import signal
LOG_DEBUG = False #***#
NPSF = 900 #***# 30*30
PixSizeInMicrons = 5. #***# in microns
LOG_DEBUG = False # ***#
NPSF = 900 # ***# 30*30
PIX_SIZE_MICRON = 5. # ***# in microns
###find neighbors-KDtree###
### find neighbors-KDtree###
# def findNeighbors(tx, ty, px, py, dr=0.1, dn=1, OnlyDistance=True):
# """
# find nearest neighbors by 2D-KDTree
......@@ -208,36 +210,35 @@ PixSizeInMicrons = 5. #***# in microns
# return psfMaker
###define PSFInterp###
### define PSFInterp###
class PSFInterpSLS(PSFModel):
def __init__(self, chip, filt,PSF_data_prefix="", sigSpin=0, psfRa=0.15, pix_size = 0.005):
def __init__(self, chip, filt, PSF_data_prefix="", sigSpin=0, psfRa=0.15, pix_size=0.005):
if LOG_DEBUG:
print('===================================================')
print('DEBUG: psf module for csstSim ' \
+time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
print('DEBUG: psf module for csstSim '
+ time.strftime("(%Y-%m-%d %H:%M:%S)", time.localtime()), flush=True)
print('===================================================')
self.sigSpin = sigSpin
self.sigGauss = psfRa
self.grating_ids = chip_utils.getChipSLSGratingID(chip.chipID)
_,self.grating_type = chip.getChipFilter(chipID=chip.chipID)
_, self.grating_type = chip.getChipFilter(chipID=chip.chipID)
self.data_folder = PSF_data_prefix
self.getPSFDataFromFile(filt)
self.pixsize = pix_size # um
def getPSFDataFromFile(self, filt):
gratingInwavelist = {'GU':0,'GV':1,'GI':2}
grating_orders = ['0','1']
gratingInwavelist = {'GU': 0, 'GV': 1, 'GI': 2}
grating_orders = ['0', '1']
waveListFn = self.data_folder + '/wavelist.dat'
wavelists = np.loadtxt(waveListFn)
self.waveList = wavelists[:,gratingInwavelist[self.grating_type]]
bandranges = np.zeros([4,2])
self.waveList = wavelists[:, gratingInwavelist[self.grating_type]]
bandranges = np.zeros([4, 2])
midBand = (self.waveList[0:3] + self.waveList[1:4])/2.*10000.
bandranges[0,0] = filt.blue_limit
bandranges[1:4,0] = midBand
bandranges[0, 0] = filt.blue_limit
bandranges[1:4, 0] = midBand
bandranges[0:3, 1] = midBand
bandranges[3,1] = filt.red_limit
bandranges[3, 1] = filt.red_limit
self.bandranges = bandranges
......@@ -246,7 +247,7 @@ class PSFInterpSLS(PSFModel):
for g_order in grating_orders:
g_folder_order = g_folder + 'PSF_Order_' + g_order + '/'
grating_order_data = {}
for bandi in [1,2,3,4]:
for bandi in [1, 2, 3, 4]:
subBand_data = {}
subBand_data['bandrange'] = bandranges[bandi-1]
final_folder = g_folder_order + str(bandi) + '/'
......@@ -305,7 +306,7 @@ class PSFInterpSLS(PSFModel):
# psfInfo['wavelength']= fq_iwave['wavelength'][()]
#
# fq_iwave_ipsf = fq_iwave['psf_{:}'.format(ipsf)]
# psfInfo['pixsize'] = PixSizeInMicrons
# psfInfo['pixsize'] = PIX_SIZE_MICRON
# psfInfo['field_x'] = fq_iwave_ipsf['field_x'][()]
# psfInfo['field_y'] = fq_iwave_ipsf['field_y'][()]
# psfInfo['image_x'] = fq_iwave_ipsf['image_x'][()]
......@@ -342,7 +343,7 @@ class PSFInterpSLS(PSFModel):
offset = int(np.ceil(sigma * 3))
g_size = 2 * offset + 1
m_cen = int(g_size / 2)
print('-----',g_size)
print('-----', g_size)
g_PSF_ = Gaussian2D(1, m_cen, m_cen, sigma, sigma)
yp, xp = np.mgrid[0:g_size, 0:g_size]
g_PSF = g_PSF_(xp, yp)
......@@ -351,8 +352,7 @@ class PSFInterpSLS(PSFModel):
convImg = convImg/np.sum(convImg)
return convImg
def get_PSF(self, chip, pos_img_local = [1000,1000], bandNo = 1, galsimGSObject=True, folding_threshold=5.e-3, g_order = 'A', grating_split_pos=3685):
def get_PSF(self, chip, pos_img_local=[1000, 1000], bandNo=1, galsimGSObject=True, folding_threshold=5.e-3, g_order='A', grating_split_pos=3685):
"""
Get the PSF at a given image position
......@@ -365,8 +365,9 @@ class PSFInterpSLS(PSFModel):
Returns:
PSF: A 'galsim.GSObject'.
"""
order_IDs = {'A': '1', 'B': '0' ,'C': '0', 'D': '0', 'E': '0'}
contam_order_sigma = {'C':0.28032344707964174,'D':0.39900182912061344,'E':1.1988309797685412} #arcsec
order_IDs = {'A': '1', 'B': '0', 'C': '0', 'D': '0', 'E': '0'}
contam_order_sigma = {'C': 0.28032344707964174,
'D': 0.39900182912061344, 'E': 1.1988309797685412} # arcsec
x_start = chip.x_cen/chip.pix_size - chip.npix_x / 2.
y_start = chip.y_cen/chip.pix_size - chip.npix_y / 2.
# print(pos_img.x - x_start)
......@@ -382,7 +383,6 @@ class PSFInterpSLS(PSFModel):
# if grating_order in ['-2','-1','2']:
# grating_order = '1'
# if grating_order in ['0', '1']:
psf_order = psf_data['order'+grating_order]
psf_order_b = psf_order['band'+str(bandNo)]
......@@ -396,31 +396,34 @@ class PSFInterpSLS(PSFModel):
px = pos_img.x*chip.pix_size
py = pos_img.y*chip.pix_size
dist2=(pos_p[:,1] - px)*(pos_p[:,1] - px) + (pos_p[:,0] - py)*(pos_p[:,0] - py)
temp_sort_dist = np.zeros([dist2.shape[0],2])
temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0],1)
dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + \
(pos_p[:, 0] - py)*(pos_p[:, 0] - py)
temp_sort_dist = np.zeros([dist2.shape[0], 2])
temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
temp_sort_dist[:, 1] = dist2
# print(temp_sort_dist)
dits2_sortlist = sorted(temp_sort_dist, key=lambda x:x[1])
dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
# print(dits2_sortlist)
nearest4p = np.zeros([4,2])
pc_coeff_4p = np.zeros([pc_coeff.data.shape[0],4])
nearest4p = np.zeros([4, 2])
pc_coeff_4p = np.zeros([pc_coeff.data.shape[0], 4])
for i in np.arange(4):
smaller_ids = int(dits2_sortlist[i][0])
nearest4p[i, 0] = pos_p[smaller_ids, 1]
nearest4p[i, 1] = pos_p[smaller_ids, 0]
pc_coeff_4p[:,i] = pc_coeff[:,smaller_ids]
idw_dist = 1/(np.sqrt((px-nearest4p[:,0]) * (px-nearest4p[:,0]) + (py-nearest4p[:,1]) * (py-nearest4p[:,1])))
pc_coeff_4p[:, i] = pc_coeff[:, smaller_ids]
idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))
coeff_int = np.zeros(pc_coeff.data.shape[0])
for i in np.arange(4):
coeff_int = coeff_int + pc_coeff_4p[:,i]*idw_dist[i]
coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
coeff_int = coeff_int / np.sum(coeff_int)
npc = 10
m_size = int(pcs.shape[0]**0.5)
PSF_int = np.dot(pcs[:,0:npc],coeff_int[0:npc]).reshape(m_size,m_size)
PSF_int = np.dot(pcs[:, 0:npc], coeff_int[0:npc]
).reshape(m_size, m_size)
# PSF_int = PSF_int/np.sum(PSF_int)
PSF_int_trans = np.flipud(np.fliplr(PSF_int))
......@@ -434,7 +437,6 @@ class PSFInterpSLS(PSFModel):
# from astropy.io import fits
# fits.writeto(str(bandNo) + '_' + g_order+ '_psf_o.fits', PSF_int_trans)
# if g_order in ['C','D','E']:
# g_simgma = contam_order_sigma[g_order]/pixel_size_arc
# PSF_int_trans = self.convolveWithGauss(PSF_int_trans,g_simgma)
......@@ -459,24 +461,24 @@ class PSFInterpSLS(PSFModel):
pixel_size_arc = np.rad2deg(self.pixsize * 1e-3 / 28) * 3600
img = galsim.ImageF(PSF_int_trans, scale=pixel_size_arc)
gsp = galsim.GSParams(folding_threshold=folding_threshold)
############TEST: START
# TEST: START
# Use sheared PSF to test the PSF orientation
# self.psf = galsim.InterpolatedImage(img, gsparams=gsp).shear(g1=0.8, g2=0.)
############TEST: END
# TEST: END
self.psf = galsim.InterpolatedImage(img, gsparams=gsp)
# if g_order in ['C','D','E']:
# add_psf = galsim.Gaussian(sigma=contam_order_sigma[g_order], flux=1.0)
# self.psf = galsim.Convolve(self.psf, add_psf)
wcs = chip.img.wcs.local(pos_img)
scale = galsim.PixelScale(0.074)
self.psf = wcs.toWorld(scale.toImage(self.psf), image_pos=(pos_img))
self.psf = wcs.toWorld(scale.toImage(
self.psf), image_pos=(pos_img))
# return self.PSFspin(x=px/0.01, y=py/0.01)
return self.psf, galsim.Shear(e=0., beta=(np.pi/2)*galsim.radians)
return PSF_int_trans, PSF_int
# pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 #set psf pixsize
#
# # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
......@@ -547,24 +549,23 @@ class PSFInterpSLS(PSFModel):
# PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
# return self.psf.shear(PSFshear), PSFshear
from ObservationSim.Instrument import Filter, FilterParam, Chip
import yaml
if __name__ == '__main__':
configfn = '/Users/zhangxin/Work/SlitlessSim/CSST_SIM/CSST_new_sim/csst-simulation/config/config_C6_dev.yaml'
with open(configfn, "r") as stream:
try:
config = yaml.safe_load(stream)
for key, value in config.items():
print (key + " : " + str(value))
print(key + " : " + str(value))
except yaml.YAMLError as exc:
print(exc)
chip = Chip(chipID=1,config=config)
chip = Chip(chipID=1, config=config)
filter_id, filter_type = chip.getChipFilter()
filt = Filter(filter_id=filter_id,
filter_type=filter_type,
filter_param=FilterParam())
psf_i = PSFInterpSLS(chip, filt,PSF_data_prefix="/Volumes/EAGET/CSST_PSF_data/SLS_PSF_PCA_fp/")
psf_i = PSFInterpSLS(
chip, filt, PSF_data_prefix="/Volumes/EAGET/CSST_PSF_data/SLS_PSF_PCA_fp/")
pos_img = galsim.PositionD(x=25155, y=-22060)
psf_im = psf_i.get_PSF(chip, pos_img = pos_img, g_order = '1')
psf_im = psf_i.get_PSF(chip, pos_img=pos_img, g_order='1')
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d
import pylab as pl
import os
import sys
class PSFModel(object):
def __init__(self, sigSpin=0., psfRa=0.15):
# TODO: what are the nesseary fields in PSFModel class?
pass
def PSFspin(self, psf, sigSpin, sigGauss, dx, dy):
"""
The PSF profile at a given image position relative to the axis center
Parameters:
theta : spin angles in a given exposure in unit of [arcsecond]
dx, dy: relative position to the axis center in unit of [pixels]
Return:
Spinned PSF: g1, g2 and axis ratio 'a/b'
"""
a2Rad = np.pi/(60.0*60.0*180.0)
ff = sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
rc = np.sqrt(dx*dx + dy*dy)
cpix = rc*(sigSpin*a2Rad)
beta = (np.arctan2(dy, dx) + np.pi/2)
ell = cpix**2/(2.0*ff**2+cpix**2)
# ell *= 10.0
qr = np.sqrt((1.0+ell)/(1.0-ell))
# psfShape = galsim.Shear(e=ell, beta=beta)
# g1, g2 = psfShape.g1, psfShape.g2
# qr = np.sqrt((1.0+ell)/(1.0-ell))
# return ell, beta, qr
PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
return psf.shear(PSFshear), PSFshear
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment