Commit b01c72c9 authored by Fang Yuedong's avatar Fang Yuedong
Browse files

Merge remote-tracking branch 'origin/develop' into develop

parents 7465f1d8 f4cf5529
import os
import galsim
import random
import copy
import numpy as np
import h5py as h5
import healpy as hp
import astropy.constants as cons
import traceback
from astropy.coordinates import spherical_to_cartesian
from astropy.table import Table
from scipy import interpolate
from datetime import datetime
from observation_sim.mock_objects import CatalogBase, Star, Galaxy, Quasar, ExtinctionMW
from observation_sim.mock_objects._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from observation_sim.astrometry.Astrometry_util import on_orbit_obs_position
# (TEST)
from astropy.cosmology import FlatLambdaCDM
from astropy import constants
from astropy import units as U
from astropy.coordinates import SkyCoord
from astropy.io import fits
import astropy.constants as atcons
import ctypes
try:
import importlib.resources as pkg_resources
except ImportError:
# Try backported to PY<37 'importlib_resources'
import importlib_resources as pkg_resources
NSIDE = 128
pointing_file_list = ['pointing_C10_1000deg_lat80.dat', 'pointing_C10_1000deg_latm80_.dat', 'pointing_C10_1000deg_p180_m30.dat', 'pointing_C10_1000deg_p320_m40.dat']
star_file_list = ['CSST_C10_1000sqd_1.hdf5', 'CSST_C10_1000sqd_2_Fornax.hdf5', 'CSST_C10_1000sqd_3.hdf5', 'CSST_C10_1000sqd_4.hdf5']
def get_galaxy_qso_list(config):
cat_dir = config["catalog_options"]["input_path"]["cat_dir"]
with open(cat_dir+"galcat_C10/qsocat/gal_C10_file", 'r', encoding='utf-8') as fn1:
fn1_list = fn1.readlines()
bundle_file_list = [line.strip() for line in fn1_list]
with open(cat_dir+"galcat_C10/qsocat/qso_sed_C10_file", 'r', encoding='utf-8') as fn2:
fn2_list = fn2.readlines()
qsosed_file_list = [line.strip() for line in fn2_list]
return bundle_file_list, qsosed_file_list
class StarParm(ctypes.Structure):
_fields_ = [
('logte', ctypes.c_float),
('logg', ctypes.c_float),
('Mass', ctypes.c_float),
('Av', ctypes.c_float),
('mu0', ctypes.c_float),
('Z', ctypes.c_float)]
def get_star_cat(config):
idx = pointing_file_list.index(os.path.basename(config['obs_setting']['pointing_file']))
return_star_path = star_file_list[idx]
return return_star_path
def get_bundleIndex(healpixID_ring, bundleOrder=4, healpixOrder=7):
assert NSIDE == 2**healpixOrder
shift = healpixOrder - bundleOrder
shift = 2*shift
nside_bundle = 2**bundleOrder
nside_healpix = 2**healpixOrder
healpixID_nest = hp.ring2nest(nside_healpix, healpixID_ring)
bundleID_nest = (healpixID_nest >> shift)
bundleID_ring = hp.nest2ring(nside_bundle, bundleID_nest)
return bundleID_ring
def get_agnsed_file(bundle_file_name, config):
bundle_file_list, qsosed_file_list = get_galaxy_qso_list(config)
return qsosed_file_list[bundle_file_list.index(bundle_file_name)]
class Catalog(CatalogBase):
def __init__(self, config, chip, pointing, chip_output, filt, **kwargs):
super().__init__()
self.cat_dir = config["catalog_options"]["input_path"]["cat_dir"]
self.cosmo = FlatLambdaCDM(H0=67.66, Om0=0.3111)
self.chip_output = chip_output
self.filt = filt
self.logger = chip_output.logger
with pkg_resources.path('catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
self.normF_star = Table.read(str(filter_path))
self.config = config
self.chip = chip
self.pointing = pointing
self.max_size = 0.
# [TODO] Milky Way extinction
if "enable_mw_ext_gal" in config["catalog_options"] and config["catalog_options"]["enable_mw_ext_gal"]:
if "planck_ebv_map" not in config["catalog_options"]:
raise ValueError(
"Planck dust map must be given to enable Milky Way extinction calculation for galaxies.")
self.mw_ext = ExtinctionMW()
self.mw_ext.init_ext_model(model_name="odonnell")
self.mw_ext.load_Planck_ext(
file_path=config["catalog_options"]["planck_ebv_map"])
if "star_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["star_cat"] and not config["catalog_options"]["galaxy_only"]:
# Get the cloest star catalog file
star_file_name = get_star_cat(self.config)
star_path = os.path.join(config["catalog_options"]["input_path"]["star_cat"], star_file_name)
self.star_path = os.path.join(self.cat_dir, star_path)
self.star_SED_path = config["catalog_options"]["SED_templates_path"]["star_SED"]
self._load_SED_lib_star()
if "galaxy_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["galaxy_cat"] and not config["catalog_options"]["star_only"]:
galaxy_dir = config["catalog_options"]["input_path"]["galaxy_cat"]
self.galaxy_path = os.path.join(self.cat_dir, galaxy_dir)
self.galaxy_SED_path = config["catalog_options"]["SED_templates_path"]["galaxy_SED"]
self._load_SED_lib_gals()
self.agn_seds = {}
if "AGN_SED" in config["catalog_options"]["SED_templates_path"] and not config["catalog_options"]["star_only"]:
self.AGN_SED_path = config["catalog_options"]["SED_templates_path"]["AGN_SED"]
if "rotateEll" in config["catalog_options"]:
self.rotation = np.radians(
float(config["catalog_options"]["rotateEll"]))
else:
self.rotation = 0.
# Update output .cat header with catalog specific output columns
self._add_output_columns_header()
self._get_healpix_list()
self._load()
def _add_output_columns_header(self):
self.add_hdr = " av stellarmass dm teff logg feh"
self.add_hdr += " bulgemass diskmass detA e1 e2 kappa g1 g2 size galType veldisp "
self.add_fmt = "%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f"
self.add_fmt += " %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %4d %8.4f "
self.chip_output.update_output_header(
additional_column_names=self.add_hdr)
def _get_healpix_list(self):
self.sky_coverage = self.chip.getSkyCoverageEnlarged(
self.chip.img.wcs, margin=0.2)
ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
self.pix_list = hp.query_polygon(
NSIDE,
hp.ang2vec(np.radians(90.) - dec, ra),
inclusive=True
)
if self.logger is not None:
msg = str(("HEALPix List: ", self.pix_list))
self.logger.info(msg)
else:
print("HEALPix List: ", self.pix_list)
def load_norm_filt(self, obj):
if obj.type == "star":
return self.normF_star
elif obj.type == "galaxy" or obj.type == "quasar":
# return self.normF_galaxy
return None
else:
return None
# def _load_SED_lib_star(self):
# self.tempSED_star = h5.File(self.star_SED_path,'r')
def _load_SED_lib_star(self):
# self.tempSED_star = h5.File(self.star_SED_path,'r')
with pkg_resources.path('catalog.data', 'starSpecInterp.so') as ddl_path:
self.starDDL = ctypes.CDLL(str(ddl_path))
self.starDDL.loadSpecLibs.argtypes = [ctypes.c_char_p, ctypes.c_char_p]
self.starDDL.loadExts.argtypes = [ctypes.c_char_p]
nwv = self.starDDL.loadSpecLibs(str.encode(os.path.join(
self.star_SED_path, 'file_BT-Settl_CSST_wl1000-24000_R1000.par')), str.encode(self.star_SED_path))
self.starDDL.loadExts(str.encode(os.path.join(
self.star_SED_path, "Ext_odonnell94_R3.1_CSST_wl1000-24000_R1000.fits")))
self.star_spec_len = nwv
def _interp_star_sed(self, obj):
spec = (ctypes.c_float*self.star_spec_len)()
wave = (ctypes.c_float*self.star_spec_len)()
self.starDDL.interpSingleStar.argtypes = [
ctypes.Structure, ctypes.POINTER(ctypes.c_float)]
# s=Star(obj.param['teff'], obj.param['grav''], obj.paramstar['mwmsc_mass'], obj.param['AV'], obj.param['DM'], obj.param['z_met'])
s = StarParm(obj.param['teff'], obj.param['logg'], obj.param['stellarMass'],
obj.param['av'], obj.param['DM'], obj.param['feh'])
self.starDDL.interpSingleStar(s, spec, wave)
rv_c = obj.param['rv']/(atcons.c.value/1000.)
Doppler_factor = np.sqrt((1+rv_c)/(1-rv_c))
wave_RV = wave*Doppler_factor
return wave_RV, np.power(10, spec[:])
def _load_SED_lib_gals(self):
pcs = h5.File(os.path.join(self.galaxy_SED_path, "pcs.h5"), "r")
lamb = h5.File(os.path.join(self.galaxy_SED_path, "lamb.h5"), "r")
self.lamb_gal = lamb['lamb'][()]
self.pcs = pcs['pcs'][()]
def _load_gals(self, gals, pix_id=None, cat_id=0, agnsed_file=""):
ngals = len(gals['ra'])
# Apply astrometric modeling
ra_arr = gals['ra'][:]
dec_arr = gals['dec'][:]
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist()
pmra_list = np.zeros(ngals).tolist()
pmdec_list = np.zeros(ngals).tolist()
rv_list = np.zeros(ngals).tolist()
parallax_list = [1e-9] * ngals
dt = datetime.utcfromtimestamp(self.pointing.timestamp)
date_str = dt.date().isoformat()
time_str = dt.time().isoformat()
ra_arr, dec_arr = on_orbit_obs_position(
input_ra_list=ra_list,
input_dec_list=dec_list,
input_pmra_list=pmra_list,
input_pmdec_list=pmdec_list,
input_rv_list=rv_list,
input_parallax_list=parallax_list,
input_nstars=ngals,
input_x=self.pointing.sat_x,
input_y=self.pointing.sat_y,
input_z=self.pointing.sat_z,
input_vx=self.pointing.sat_vx,
input_vy=self.pointing.sat_vy,
input_vz=self.pointing.sat_vz,
input_epoch="J2000",
input_date_str=date_str,
input_time_str=time_str
)
# [TODO] get Milky Way extinction AVs
if "enable_mw_ext_gal" in self.config["catalog_options"] and self.config["catalog_options"]["enable_mw_ext_gal"]:
MW_Av_arr = self.mw_ext.Av_from_Planck(ra=ra_arr, dec=dec_arr)
else:
MW_Av_arr = np.zeros(len(ra_arr))
for igals in range(ngals):
# # (TEST)
# if igals > 100:
# break
param = self.initialize_param()
param['ra'] = ra_arr[igals]
param['dec'] = dec_arr[igals]
param['ra_orig'] = gals['ra'][igals]
param['dec_orig'] = gals['dec'][igals]
# [TODO] get Milky Way extinction AVs
param['mw_Av'] = MW_Av_arr[igals]
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
# param['mag_use_normal'] = gals['mag_csst_%s'%(self.filt.filter_type)][igals]
# if self.filt.is_too_dim(mag=param['mag_use_normal'], margin=self.config["obs_setting"]["mag_lim_margin"]):
# continue
param['z'] = gals['redshift'][igals]
param['model_tag'] = 'None'
param['g1'] = gals['shear'][igals][0]
param['g2'] = gals['shear'][igals][1]
param['kappa'] = gals['kappa'][igals]
param['e1'] = gals['ellipticity_true'][igals][0]
param['e2'] = gals['ellipticity_true'][igals][1]
# For shape calculation
param['e1'], param['e2'], param['ell_total'] = self.rotate_ellipticity(
e1=gals['ellipticity_true'][igals][0],
e2=gals['ellipticity_true'][igals][1],
rotation=self.rotation,
unit='radians')
# param['ell_total'] = np.sqrt(param['e1']**2 + param['e2']**2)
if param['ell_total'] > 0.9:
continue
# phi_e = cmath.phase(complex(param['e1'], param['e2']))
# param['e1'] = param['ell_total'] * np.cos(phi_e + 2*self.rotation)
# param['e2'] = param['ell_total'] * np.sin(phi_e + 2*self.rotation)
param['e1_disk'] = param['e1']
param['e2_disk'] = param['e2']
param['e1_bulge'] = param['e1']
param['e2_bulge'] = param['e2']
param['delta_ra'] = 0
param['delta_dec'] = 0
# Masses
param['bulgemass'] = gals['bulgemass'][igals]
param['diskmass'] = gals['diskmass'][igals]
param['size'] = gals['size'][igals]
if param['size'] > self.max_size:
self.max_size = param['size']
# Sersic index
param['disk_sersic_idx'] = 1.
param['bulge_sersic_idx'] = 4.
# Sizes
param['bfrac'] = param['bulgemass'] / \
(param['bulgemass'] + param['diskmass'])
if param['bfrac'] >= 0.6:
param['hlr_bulge'] = param['size']
param['hlr_disk'] = param['size'] * (1. - param['bfrac'])
else:
param['hlr_disk'] = param['size']
param['hlr_bulge'] = param['size'] * param['bfrac']
# SED coefficients
param['coeff'] = gals['coeff'][igals]
param['detA'] = gals['detA'][igals]
# Others
param['galType'] = gals['type'][igals]
param['veldisp'] = gals['veldisp'][igals]
# TEST no redening and no extinction
param['av'] = 0.0
param['redden'] = 0
# TEMP
self.ids += 1
param['id'] = '%06d' % (int(pix_id)) + \
'%06d' % (cat_id) + '%08d' % (igals)
# Is this an Quasar?
param['qsoindex'] = gals['qsoindex'][igals]
if param['qsoindex'] == -1:
param['star'] = 0 # Galaxy
param['agnsed_file'] = ""
obj = Galaxy(param, logger=self.logger)
else:
param_qso = copy.deepcopy(param)
param_qso['star'] = 2 # Quasar
param_qso['agnsed_file'] = agnsed_file
# First add QSO model
obj = Quasar(param_qso, logger=self.logger)
# Need to deal with additional output columns
obj.additional_output_str = self.add_fmt % (0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0, 0.)
self.objs.append(obj)
# Then add host galaxy model
param['star'] = 0 # Galaxy
param['agnsed_file'] = ""
obj = Galaxy(param, logger=self.logger)
# Need to deal with additional output columns for (host) galaxy
obj.additional_output_str = self.add_fmt % (0., 0., 0., 0., 0., 0.,
param['bulgemass'], param['diskmass'], param['detA'],
param['e1'], param['e2'], param['kappa'], param['g1'], param['g2'], param['size'],
param['galType'], param['veldisp'])
self.objs.append(obj)
def _load_stars(self, stars, pix_id=None):
nstars = len(stars['RA'])
# Apply astrometric modeling
ra_arr = stars["RA"][:]
dec_arr = stars["DEC"][:]
pmra_arr = stars['pmra'][:]
pmdec_arr = stars['pmdec'][:]
rv_arr = stars['RV'][:]
parallax_arr = stars['parallax'][:]
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist()
pmra_list = pmra_arr.tolist()
pmdec_list = pmdec_arr.tolist()
rv_list = rv_arr.tolist()
parallax_list = parallax_arr.tolist()
dt = datetime.utcfromtimestamp(self.pointing.timestamp)
date_str = dt.date().isoformat()
time_str = dt.time().isoformat()
ra_arr, dec_arr = on_orbit_obs_position(
input_ra_list=ra_list,
input_dec_list=dec_list,
input_pmra_list=pmra_list,
input_pmdec_list=pmdec_list,
input_rv_list=rv_list,
input_parallax_list=parallax_list,
input_nstars=nstars,
input_x=self.pointing.sat_x,
input_y=self.pointing.sat_y,
input_z=self.pointing.sat_z,
input_vx=self.pointing.sat_vx,
input_vy=self.pointing.sat_vy,
input_vz=self.pointing.sat_vz,
input_epoch="J2000",
input_date_str=date_str,
input_time_str=time_str
)
for istars in range(nstars):
# # (TEST)
# if istars > 100:
# break
param = self.initialize_param()
param['ra'] = ra_arr[istars]
param['dec'] = dec_arr[istars]
param['ra_orig'] = stars["RA"][istars]
param['dec_orig'] = stars["DEC"][istars]
param['pmra'] = pmra_arr[istars]
param['pmdec'] = pmdec_arr[istars]
param['rv'] = rv_arr[istars]
param['parallax'] = parallax_arr[istars]
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
param['mag_use_normal'] = stars['app_SDSS_g'][istars]
self.ids += 1
param['id'] = '%06d' % (int(pix_id)) + '%08d' % (istars)
# param['sed_type'] = istars
# param['model_tag'] = ''
param['teff'] = stars['teff'][istars]
param['logg'] = stars['grav'][istars]
param['feh'] = stars['z_met'][istars]
param['stellarMass'] = stars['mass'][istars]
param['av'] = stars['AV'][istars]
param['DM'] = stars['DM'][istars]
# param['z_met'] = stars['z_met'][istars]
param['z'] = 0.0
param['star'] = 1 # Star
try:
obj = Star(param, logger=self.logger)
except Exception as e:
print(e)
# Append additional output columns to the .cat file
obj.additional_output_str = self.add_fmt % (param["av"], param['stellarMass'], param['DM'], param['teff'], param['logg'], param['feh'],
0., 0., 0., 0., 0., 0., 0., 0., 0., -1, 0.)
self.objs.append(obj)
def _load(self, **kwargs):
self.objs = []
self.ids = 0
if "star_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["star_cat"] and not self.config["catalog_options"]["galaxy_only"]:
star_cat = h5.File(self.star_path, 'r')['star_catalog']
for pix in self.pix_list:
try:
stars = star_cat[str(pix)]
self._load_stars(stars, pix_id=pix)
del stars
except Exception as e:
self.logger.error(str(e))
# print(e)
if "galaxy_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["galaxy_cat"] and not self.config["catalog_options"]["star_only"]:
for pix in self.pix_list:
try:
bundleID = get_bundleIndex(pix)
bundle_file = "galaxies_C10_bundle{:06}.h5".format(bundleID)
file_path = os.path.join(self.galaxy_path, bundle_file)
gals_cat = h5.File(file_path, 'r')['galaxies']
gals = gals_cat[str(pix)]
# Get corresponding AGN SED file
agnsed_file = get_agnsed_file(bundle_file, self.config)
agnsed_path = os.path.join(self.AGN_SED_path, agnsed_file)
self.agn_seds[agnsed_file] = fits.open(agnsed_path)[0].data
self._load_gals(gals, pix_id=pix, cat_id=bundleID, agnsed_file=agnsed_file)
del gals
except Exception as e:
traceback.print_exc()
self.logger.error(str(e))
print(e)
if self.logger is not None:
self.logger.info("maximum galaxy size: %.4f" % (self.max_size))
self.logger.info("number of objects in catalog: %d" %
(len(self.objs)))
else:
print("number of objects in catalog: ", len(self.objs))
def load_sed(self, obj, **kwargs):
if obj.type == 'star':
# _, wave, flux = tag_sed(
# h5file=self.tempSED_star,
# model_tag=obj.param['model_tag'],
# teff=obj.param['teff'],
# logg=obj.param['logg'],
# feh=obj.param['feh']
# )
wave, flux = self._interp_star_sed(obj)
elif obj.type == 'galaxy' or obj.type == 'quasar':
factor = 10**(-.4 * self.cosmo.distmod(obj.z).value)
if obj.type == 'galaxy':
flux = np.matmul(self.pcs, obj.coeff) * factor
# if np.any(flux < 0):
# raise ValueError("Glaxy %s: negative SED fluxes"%obj.id)
flux[flux < 0] = 0.
sedcat = np.vstack((self.lamb_gal, flux)).T
sed_data = getObservedSED(
sedCat=sedcat,
redshift=obj.z,
av=obj.param["av"],
redden=obj.param["redden"]
)
wave, flux = sed_data[0], sed_data[1]
elif obj.type == 'quasar':
flux = self.agn_seds[obj.agnsed_file][int(
obj.qsoindex)] * 1e-17
flux[flux < 0] = 0.
wave = self.lamb_gal * (1.0 + obj.z)
else:
raise ValueError("Object type not known")
speci = interpolate.interp1d(wave, flux, fill_value=0., bounds_error=False)
lamb = np.arange(2000, 11001+0.5, 0.5)
y = speci(lamb)
# [TODO] Apply Milky Way extinction
if obj.type != 'star' and ("enable_mw_ext_gal" in self.config["catalog_options"] and self.config["catalog_options"]["enable_mw_ext_gal"]):
y = self.mw_ext.apply_extinction(y, Av=obj.mw_Av)
# erg/s/cm2/A --> photon/s/m2/A
all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))
# if obj.type == 'quasar':
# # integrate to get the magnitudes
# sed_photon = np.array([sed['WAVELENGTH'], sed['FLUX']]).T
# sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(
# sed_photon[:, 1]), interpolant='nearest')
# sed_photon = galsim.SED(
# sed_photon, wave_type='A', flux_type='1', fast=False)
# interFlux = integrate_sed_bandpass(
# sed=sed_photon, bandpass=self.filt.bandpass_full)
# obj.param['mag_use_normal'] = getABMAG(
# interFlux, self.filt.bandpass_full)
# # mag = getABMAG(interFlux, self.filt.bandpass_full)
# # print("mag diff = %.3f"%(mag - obj.param['mag_use_normal']))
# integrate to get the magnitudes
if obj.type == 'quasar' or obj.type == 'galaxy':
sed_photon = np.array([sed['WAVELENGTH'], sed['FLUX']]).T
sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(
sed_photon[:, 1]), interpolant='nearest')
sed_photon = galsim.SED(
sed_photon, wave_type='A', flux_type='1', fast=False)
interFlux = integrate_sed_bandpass(
sed=sed_photon, bandpass=self.filt.bandpass_full)
obj.param['mag_use_normal'] = getABMAG(
interFlux, self.filt.bandpass_full)
# mag = getABMAG(interFlux, self.filt.bandpass_full)
# print("mag diff = %.3f"%(mag - obj.param['mag_use_normal']))
del wave
del flux
return sed
No preview for this file type
...@@ -62,10 +62,10 @@ call_sequence: ...@@ -62,10 +62,10 @@ call_sequence:
hot_pixels: YES hot_pixels: YES
dead_pixels: YES dead_pixels: YES
bad_columns: YES bad_columns: YES
# Apply response nonlinearity
nonlinearity: {}
# Apply CCD Saturation & Blooming # Apply CCD Saturation & Blooming
blooming: {} blooming: {}
# Apply response nonlinearity
nonlinearity: {}
# Run CTE simulation # Run CTE simulation
# CTE_effect: {} # CTE_effect: {}
# Add prescan and overscan # Add prescan and overscan
......
...@@ -154,13 +154,12 @@ class Observation(object): ...@@ -154,13 +154,12 @@ class Observation(object):
chip_output.Log_error(e) chip_output.Log_error(e)
chip_output.Log_error("Failed simulation on step: %s" % (step)) chip_output.Log_error("Failed simulation on step: %s" % (step))
break break
chip_output.Log_info("check running:1: pointing-%d chip-%d pid-%d memory-%6.2fGB" % (pointing.id,
chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024)))
del chip.img del chip.img
del chip.flat_img del chip.flat_img
del chip.prnu_img del chip.prnu_img
del chip.shutter_img del chip.shutter_img
chip_output.Log_info("check running:1: pointing-%d chip-%d pid-%d memory-%6.2fGB" % (pointing.id,
chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024)))
def runExposure_MPI_PointingList(self, pointing_list, chips=None): def runExposure_MPI_PointingList(self, pointing_list, chips=None):
comm = MPI.COMM_WORLD comm = MPI.COMM_WORLD
...@@ -239,5 +238,6 @@ class Observation(object): ...@@ -239,5 +238,6 @@ class Observation(object):
"finished running chip#%d..." % (chip.chipID)) "finished running chip#%d..." % (chip.chipID))
for handler in chip_output.logger.handlers[:]: for handler in chip_output.logger.handlers[:]:
chip_output.logger.removeHandler(handler) chip_output.logger.removeHandler(handler)
del chip_output
gc.collect() gc.collect()
process_counter += nchips_per_fp process_counter += nchips_per_fp
...@@ -37,7 +37,7 @@ void addEffects(int ngx_ima, int ngy_ima, float *arr_ima, float *arr_imc, int bi ...@@ -37,7 +37,7 @@ void addEffects(int ngx_ima, int ngy_ima, float *arr_ima, float *arr_imc, int bi
{ {
printf("Adding BF effect...\n"); printf("Adding BF effect...\n");
//setup BF correlation fliter //setup BF correlation fliter
float neX; float neX, neXtemp;
float neP1 = 50000; float neP1 = 50000;
float bfaP1[9]={0.9707182, 0.002143905, 0.004131103, 0.001149542, 0.0005501739, 0.0005469659, 0.0003726081, 0.0003795207, 0.0001633302}; float bfaP1[9]={0.9707182, 0.002143905, 0.004131103, 0.001149542, 0.0005501739, 0.0005469659, 0.0003726081, 0.0003795207, 0.0001633302};
float neP2 = 10000; float neP2 = 10000;
...@@ -56,15 +56,18 @@ void addEffects(int ngx_ima, int ngy_ima, float *arr_ima, float *arr_imc, int bi ...@@ -56,15 +56,18 @@ void addEffects(int ngx_ima, int ngy_ima, float *arr_ima, float *arr_imc, int bi
neX = arr_ima[j+i*ny]; neX = arr_ima[j+i*ny];
if(neX >= 10000) if(neX >= 10000)
{ {
neXtemp = neX;
if(neXtemp > 100000)
neXtemp = 100000;
bfa[0][0]=0; //linearInterp(neX, neP1, bfaP1[0], neP2, bfaP2[0]); //0; bfa[0][0]=0; //linearInterp(neX, neP1, bfaP1[0], neP2, bfaP2[0]); //0;
bfa[0][1]=bfa[0][-1]=linearInterp(neX, neP1, bfaP1[1], neP2, bfaP2[1]); //0.01575; bfa[0][1]=bfa[0][-1]=linearInterp(neXtemp, neP1, bfaP1[1], neP2, bfaP2[1]); //0.01575;
bfa[-1][0]=bfa[1][0]=linearInterp(neX, neP1, bfaP1[2], neP2, bfaP2[2]); //0.00652; bfa[-1][0]=bfa[1][0]=linearInterp(neXtemp, neP1, bfaP1[2], neP2, bfaP2[2]); //0.00652;
bfa[-1][-1]=bfa[1][1]=bfa[-1][1]=bfa[1][-1]=linearInterp(neX, neP1, bfaP1[3], neP2, bfaP2[3]); //0.00335; bfa[-1][-1]=bfa[1][1]=bfa[-1][1]=bfa[1][-1]=linearInterp(neXtemp, neP1, bfaP1[3], neP2, bfaP2[3]); //0.00335;
bfa[0][-2]=bfa[0][2]=linearInterp(neX, neP1, bfaP1[4], neP2, bfaP2[4]); bfa[0][-2]=bfa[0][2]=linearInterp(neXtemp, neP1, bfaP1[4], neP2, bfaP2[4]);
bfa[-2][0]=bfa[2][0]=linearInterp(neX, neP1, bfaP1[5], neP2, bfaP2[5]); //0.00118; bfa[-2][0]=bfa[2][0]=linearInterp(neXtemp, neP1, bfaP1[5], neP2, bfaP2[5]); //0.00118;
bfa[-2][-1]=bfa[-2][1]=bfa[2][1]=bfa[2][-1]=linearInterp(neX, neP1, bfaP1[6], neP2, bfaP2[6]); bfa[-2][-1]=bfa[-2][1]=bfa[2][1]=bfa[2][-1]=linearInterp(neXtemp, neP1, bfaP1[6], neP2, bfaP2[6]);
bfa[-1][-2]=bfa[1][2]=bfa[-1][2]=bfa[1][-2]=linearInterp(neX, neP1, bfaP1[7], neP2, bfaP2[7]); //0.00083; bfa[-1][-2]=bfa[1][2]=bfa[-1][2]=bfa[1][-2]=linearInterp(neXtemp, neP1, bfaP1[7], neP2, bfaP2[7]); //0.00083;
bfa[-2][-2]=bfa[-2][2]=bfa[2][-2]=bfa[2][2]=linearInterp(neX, neP1, bfaP1[8], neP2, bfaP2[8]); //0.00043; bfa[-2][-2]=bfa[-2][2]=bfa[2][-2]=bfa[2][2]=linearInterp(neXtemp, neP1, bfaP1[8], neP2, bfaP2[8]); //0.00043;
} }
else else
{ {
......
...@@ -115,7 +115,7 @@ class Galaxy(MockObject): ...@@ -115,7 +115,7 @@ class Galaxy(MockObject):
# Set Galsim Parameters # Set Galsim Parameters
if self.getMagFilter(filt) <= 15 and (not big_galaxy): if self.getMagFilter(filt) <= 15 and (not big_galaxy):
folding_threshold = 5.e-4 folding_threshold = 5.e-8
else: else:
folding_threshold = 5.e-3 folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold) gsp = galsim.GSParams(folding_threshold=folding_threshold)
...@@ -170,8 +170,11 @@ class Galaxy(MockObject): ...@@ -170,8 +170,11 @@ class Galaxy(MockObject):
# print("nphotons_sub-band_%d = %.2f"%(i, nphotons)) # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
# Get PSF model # Get PSF model
EXTRA = False
if self.getMagFilter(filt) <= filt.mag_saturation-1.:
EXTRA = True
psf, pos_shear = psf_model.get_PSF( psf, pos_shear = psf_model.get_PSF(
chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold) chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold, extrapolate=EXTRA)
if self.bfrac == 0: if self.bfrac == 0:
gal_temp = disk gal_temp = disk
...@@ -198,7 +201,7 @@ class Galaxy(MockObject): ...@@ -198,7 +201,7 @@ class Galaxy(MockObject):
# gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots # gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots
# stamp = gal.drawImage(wcs=chip_wcs_local, method='phot', offset=offset, save_photons=True) # stamp = gal.drawImage(wcs=chip_wcs_local, method='phot', offset=offset, save_photons=True)
stamp = gal.drawImage(wcs=chip_wcs_local, offset=offset) stamp = gal.drawImage(method='no_pixel', wcs=chip_wcs_local, offset=offset)
if np.sum(np.isnan(stamp.array)) > 0: if np.sum(np.isnan(stamp.array)) > 0:
# ERROR happens # ERROR happens
return 2, pos_shear return 2, pos_shear
......
...@@ -122,7 +122,7 @@ class MockObject(object): ...@@ -122,7 +122,7 @@ class MockObject(object):
return 2, None return 2, None
# Set Galsim Parameters # Set Galsim Parameters
if self.getMagFilter(filt) <= 15: if self.getMagFilter(filt) <= 15:
folding_threshold = 5.e-4 folding_threshold = 5.e-8
else: else:
folding_threshold = 5.e-3 folding_threshold = 5.e-3
gsp = galsim.GSParams(folding_threshold=folding_threshold) gsp = galsim.GSParams(folding_threshold=folding_threshold)
...@@ -160,14 +160,17 @@ class MockObject(object): ...@@ -160,14 +160,17 @@ class MockObject(object):
# print("nphotons_sub-band_%d = %.2f"%(i, nphotons)) # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
# Get PSF model # Get PSF model
EXTRA = False
if self.getMagFilter(filt) <= filt.mag_saturation-1.:
EXTRA = True
psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass, psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass,
folding_threshold=folding_threshold) folding_threshold=folding_threshold, extrapolate=EXTRA)
# star = galsim.DeltaFunction(gsparams=gsp) # star = galsim.DeltaFunction(gsparams=gsp)
# star = star.withFlux(nphotons) # star = star.withFlux(nphotons)
# star = galsim.Convolve(psf, star) # star = galsim.Convolve(psf, star)
star = psf.withFlux(nphotons) star = psf.withFlux(nphotons)
stamp = star.drawImage(wcs=chip_wcs_local, offset=offset) stamp = star.drawImage(method='no_pixel', wcs=chip_wcs_local, offset=offset)
if np.sum(np.isnan(stamp.array)) > 0: if np.sum(np.isnan(stamp.array)) > 0:
continue continue
stamp.setCenter(x_nominal, y_nominal) stamp.setCenter(x_nominal, y_nominal)
......
...@@ -92,7 +92,7 @@ class Stamp(MockObject): ...@@ -92,7 +92,7 @@ class Stamp(MockObject):
else: else:
gal = gal + gal_temp gal = gal + gal_temp
stamp = gal.drawImage(wcs=chip_wcs_local, offset=offset) stamp = gal.drawImage(method='no_pixel', wcs=chip_wcs_local, offset=offset)
if np.sum(np.isnan(stamp.array)) > 0: if np.sum(np.isnan(stamp.array)) > 0:
# ERROR happens # ERROR happens
return 2, pos_shear return 2, pos_shear
......
...@@ -13,6 +13,7 @@ import galsim ...@@ -13,6 +13,7 @@ import galsim
import h5py import h5py
from observation_sim.psf.PSFModel import PSFModel from observation_sim.psf.PSFModel import PSFModel
from observation_sim.psf._util import psf_extrapolate
NPSF = 900 # ***# 30*30 NPSF = 900 # ***# 30*30
...@@ -324,7 +325,7 @@ class PSFInterp(PSFModel): ...@@ -324,7 +325,7 @@ class PSFInterp(PSFModel):
return twave return twave
return -1 return -1
def get_PSF(self, chip, pos_img, bandpass, galsimGSObject=True, findNeighMode='treeFind', folding_threshold=5.e-3, pointing_pa=0.0): def get_PSF(self, chip, pos_img, bandpass, galsimGSObject=True, findNeighMode='treeFind', folding_threshold=5.e-3, pointing_pa=0.0, extrapolate=False, ngg=2048):
""" """
Get the PSF at a given image position Get the PSF at a given image position
...@@ -358,20 +359,18 @@ class PSFInterp(PSFModel): ...@@ -358,20 +359,18 @@ class PSFInterp(PSFModel):
imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True, imPSF = psfMaker_IDW(px, py, PSFMat, cen_col, cen_row, IDWindex=2, OnlyNeighbors=True,
hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True) hoc=self.hoc[twave], hoclist=self.hoclist[twave], PSFCentroidWgt=True)
''' if extrapolate is True:
############TEST: START ccdList = [6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25]
TestGaussian = False rr_trim_list = [72, 64, 96, 88, 64, 72, 72, 76, 72, 72, 76, 72, 72, 64, 88, 96, 64, 72]
if TestGaussian: imPSF = psf_extrapolate(imPSF, rr_trim=rr_trim_list[ccdList.index(chip.chipID)], ngg=ngg)
gsx = galsim.Gaussian(sigma=0.04)
#pointing_pa = -23.433333
imPSF= gsx.shear(g1=0.8, g2=0.).rotate(0.*galsim.degrees).drawImage(nx = 256, ny=256, scale=pixSize).array
############TEST: END
'''
if galsimGSObject: if galsimGSObject:
if extrapolate is True:
imPSFt = np.zeros([ngg+1, ngg+1])
imPSFt[:-1, :-1] = imPSF
else:
imPSFt = np.zeros([257, 257]) imPSFt = np.zeros([257, 257])
imPSFt[0:256, 0:256] = imPSF imPSFt[0:256, 0:256] = imPSF
# imPSFt[120:130, 0:256] = 1.
img = galsim.ImageF(imPSFt, scale=pixSize) img = galsim.ImageF(imPSFt, scale=pixSize)
gsp = galsim.GSParams(folding_threshold=folding_threshold) gsp = galsim.GSParams(folding_threshold=folding_threshold)
......
import numpy as np
from scipy.interpolate import interp1d
def binningPSF(img, ngg):
imgX = img.reshape(ngg, img.shape[0]//ngg, ngg, img.shape[1]//ngg).mean(-1).mean(1)
return imgX
def radial_average_at_pixel(image, center_x, center_y, dr=10):
# Get coordinates relative to the specified center pixel (x, y)
y, x = np.indices(image.shape)
r = np.sqrt((x - center_x)**2 + (y - center_y)**2)
# Set up bins
max_radius = int(r.max()) # Maximum distance from the center pixel
radial_bins = np.arange(0, max_radius, dr)
# Compute average value in each bin
radial_means = []
for i in range(len(radial_bins) - 1):
mask = (r >= radial_bins[i]) & (r < radial_bins[i + 1])
if np.any(mask):
radial_means.append(image[mask].mean())
else:
radial_means.append(0) # In case no pixels are in the bin
return radial_bins[:-1], radial_means # Exclude last bin since no mean calculated
def psf_extrapolate(psf, rr_trim=64, ngg=256):
# ngg = 256
# extrapolate PSF
if True:
xim = np.arange(256)-128
xim, yim = np.meshgrid(xim, xim)
rim = np.sqrt(xim**2 + yim**2)
# rr_trim = 96
psf_temp = psf
psf_temp[rim > rr_trim] = 0
radii, means = radial_average_at_pixel(psf_temp, 128, 128, dr=4)
radii_log = np.log(radii[1:])
means_log = np.log(means[1:])
finite_mask = np.isfinite(means_log)
f_interp = interp1d(radii_log[finite_mask][:-1], means_log[finite_mask][:-1], kind='linear', fill_value="extrapolate")
# ngg = 1024
xim = np.arange(ngg)-int(ngg/2)
xim, yim = np.meshgrid(xim, xim)
rim = np.sqrt(xim**2 + yim**2)
rim[int(ngg/2), int(ngg/2)] = np.finfo(float).eps # 1e-7
rim_log = np.log(rim)
y_new = f_interp(rim_log)
arr = np.zeros([ngg, ngg])
arr[int(ngg/2-128):int(ngg/2+128), int(ngg/2-128):int(ngg/2+128)] = np.log(psf_temp + np.finfo(float).eps)
arr[rim > rr_trim] = 0
arr[arr == 0] = y_new[arr == 0]
psf = np.exp(arr)
psf[rim > int(ngg/2)] = 0
imPSF = psf # binningPSF(psf, int(ngg/2))
imPSF = imPSF/np.nansum(imPSF)
return imPSF
...@@ -238,11 +238,12 @@ def add_objects(self, chip, filt, tel, pointing, catalog, obs_param): ...@@ -238,11 +238,12 @@ def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):
self.chip_output.Log_error("obj id: %s" % (obj.param['id'])) self.chip_output.Log_error("obj id: %s" % (obj.param['id']))
self.chip_output.Log_error(" e1: %.5f\n e2: %.5f\n size: %f\n bfrac: %f\n detA: %f\n g1: %.5f\n g2: %.5f\n" % ( self.chip_output.Log_error(" e1: %.5f\n e2: %.5f\n size: %f\n bfrac: %f\n detA: %f\n g1: %.5f\n g2: %.5f\n" % (
obj.param['e1'], obj.param['e2'], obj.param['size'], obj.param['bfrac'], obj.param['detA'], obj.param['g1'], obj.param['g2'])) obj.param['e1'], obj.param['e2'], obj.param['size'], obj.param['bfrac'], obj.param['detA'], obj.param['g1'], obj.param['g2']))
# Unload SED: # Unload SED:
obj.unload_SED() obj.unload_SED()
del obj del obj
# gc.collect() # gc.collect()
cat.starDDL.freeGlobeData()
del cat.starDDL
if chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"] and chip.slsPSFOptim: if chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"] and chip.slsPSFOptim:
# from observation_sim.instruments.chip import chip_utils as chip_utils # from observation_sim.instruments.chip import chip_utils as chip_utils
......
from flask import Flask, render_template, request, redirect
import yaml
import ast
app = Flask(__name__)
key_type_map = {
'obs_type': str,
'obs_type_code': str,
'obs_id': str,
'run_chips': list,
'call_sequence': {
'scie_obs': {
'shutter_effect': bool,
'flat_fielding': bool,
'field_dist': bool,
},
'sky_background': {
'shutter_effect': bool,
'flat_fielding': bool,
'enable_straylight_model': bool,
'flat_level': None,
'flat_level_filt': None,
},
'PRNU_effect': {},
'cosmic_rays': {
'save_cosmic_img': bool,
},
'poisson_and_dark': {
'add_dark': bool,
},
'bright_fatter': {},
'detector_defects': {
'hot_pixels': bool,
'dead_pixels': bool,
'bad_columns': bool,
},
'nonlinearity': {},
'blooming': {},
'prescan_overscan': {
'add_dark': bool,
},
'bias': {
'bias_16channel': bool,
},
'readout_noise': {},
'gain': {
'gain_16channel': bool,
},
'quantization_and_output': {
'format_output': bool,
},
},
}
def convert_dict_values(d, key_type_map):
for key, value in d.items():
if isinstance(value, dict):
convert_dict_values(value, key_type_map[key])
elif key in key_type_map:
if key_type_map[key] is int:
d[key] = int(value)
if key_type_map[key] is float:
d[key] = float(value)
if key_type_map[key] is bool:
if d[key].lower() == 'yes' or d[key].lower() == 'true':
d[key] = True
else:
d[key] = False
if key_type_map[key] is str:
d[key] = str(value)
if key_type_map[key] is list:
d[key] = ast.literal_eval(value)
if key_type_map[key] is None:
d[key] = None
def load_yaml():
with open('templates/obs_config_SCI.yaml', 'r') as file:
return yaml.safe_load(file)
def save_yaml(data):
convert_dict_values(data, key_type_map)
with open('config_reset/obs_config_SCI_reset.yaml', 'w') as file:
yaml.dump(data, file, default_flow_style=False, sort_keys=False)
def render_form(data, parent_key=''):
form_html = ''
for key, value in data.items():
full_key = f"{parent_key}.{key}" if parent_key else key
if isinstance(value, dict): # 处理字典
form_html += f"<div class='block'><h2>{key}</h2>{render_form(value, full_key)}</div>"
else:
form_html += f"<label for='{full_key}'>{key}:</label>"
form_html += f"<input type='text' id='{full_key}' name='{full_key}' value='{value}'><br>"
return form_html
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
data = load_yaml()
for key in request.form:
keys = key.split('.')
temp = data
for k in keys[:-1]:
temp = temp[k]
temp[keys[-1]] = request.form[key]
save_yaml(data)
return redirect('/')
data = load_yaml()
form_html = render_form(data)
return render_template('index_obs.html', form_html=form_html)
if __name__ == '__main__':
app.run(debug=True)
from flask import Flask, render_template, request, redirect
import yaml
import ast
app = Flask(__name__)
key_type_map = {
'work_dir': str,
'run_name': str,
'project_cycle': int,
'run_counter': int,
'run_option': {
'out_cat_only': bool,
},
'catalog_options': {
'input_path': {
'cat_dir': str,
'star_cat': str,
'galaxy_cat': str,
},
'SED_templates_path': {
'star_SED': str,
'galaxy_SED': str,
'AGN_SED': str,
},
'star_only': bool,
'galaxy_only': bool,
'rotateEll': float,
'enable_mw_ext_gal': bool,
'planck_ebv_map': str,
},
'obs_setting': {
'pointing_file': str,
'obs_config_file': str,
'run_pointings': list,
'enable_astrometric_model': bool,
'cut_in_band': str,
'mag_sat_margin': float,
'mag_lim_margin': float,
},
'psf_setting': {
'psf_model': str,
'psf_pho_dir': str,
'psf_sls_dir': str,
},
'shear_setting': {
'shear_type': str,
'reduced_g1': float,
'reduced_g2': float,
},
'output_setting': {
'output_format': str,
'shutter_output': bool,
'prnu_output': bool,
},
'random_seeds': {
'seed_poisson': int,
'seed_CR': int,
'seed_flat': int,
'seed_prnu': int,
'seed_gainNonUniform': int,
'seed_biasNonUniform': int,
'seed_rnNonUniform': int,
'seed_badcolumns': int,
'seed_defective': int,
'seed_readout': int,
},
}
def convert_dict_values(d, key_type_map):
for key, value in d.items():
if isinstance(value, dict):
convert_dict_values(value, key_type_map[key])
elif key in key_type_map:
if key_type_map[key] is int:
d[key] = int(value)
if key_type_map[key] is float:
d[key] = float(value)
if key_type_map[key] is bool:
if d[key].lower() == 'yes' or d[key].lower() == 'true':
d[key] = True
else:
d[key] = False
if key_type_map[key] is str:
d[key] = str(value)
if key_type_map[key] is list:
d[key] = ast.literal_eval(value)
def load_yaml():
with open('templates/config_overall.yaml', 'r') as file:
return yaml.safe_load(file)
def save_yaml(data):
convert_dict_values(data, key_type_map)
with open('config_reset/config_overall_reset.yaml', 'w') as file:
yaml.dump(data, file, default_flow_style=False, sort_keys=False)
def render_form(data, parent_key=''):
form_html = ''
for key, value in data.items():
full_key = f"{parent_key}.{key}" if parent_key else key
if isinstance(value, dict): # 处理字典
form_html += f"<div class='block'><h2>{key}</h2>{render_form(value, full_key)}</div>"
else:
form_html += f"<label for='{full_key}'>{key}:</label>"
form_html += f"<input type='text' id='{full_key}' name='{full_key}' value='{value}'><br>"
return form_html
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
data = load_yaml()
for key in request.form:
keys = key.split('.')
temp = data
for k in keys[:-1]:
temp = temp[k]
temp[keys[-1]] = request.form[key]
save_yaml(data)
return redirect('/')
data = load_yaml()
form_html = render_form(data)
return render_template('index_overall.html', form_html=form_html)
if __name__ == '__main__':
app.run(debug=True)
---
###############################################
#
# Configuration file for CSST simulation
# Overall settings
# CSST-Sim Group, 2024/01/08
#
###############################################
# Base diretories and naming setup
# can add some of the command-line arguments here as well;
# ok to pass either way or both, as long as they are consistent
work_dir: "/public/home/fangyuedong/project/workplace/"
run_name: "ext_on"
# Project cycle and run counter are used to name the outputs
project_cycle: 9
run_counter: 1
# Run options
run_option:
# Output catalog only?
# If yes, no imaging simulation will be run. Only the catalogs
# of corresponding footprints will be generated.
out_cat_only: NO
###############################################
# Catalog setting
###############################################
# Configure the input catalog: options should be implemented
# in the corresponding (user defined) 'Catalog' class
catalog_options:
input_path:
cat_dir: "/public/share/yangxuliu/CSSOSDataProductsSims/data_50sqDeg/"
star_cat: "starcat_C9/"
galaxy_cat: "qsocat/cat2CSSTSim_bundle-50sqDeg/"
SED_templates_path:
star_SED: "/public/share/yangxuliu/CSSOSDataProductsSims/data_50sqDeg/starcat_C9/"
galaxy_SED: "/public/share/yangxuliu/CSSOSDataProductsSims/data_50sqDeg/sedlibs/"
AGN_SED: "/public/share/yangxuliu/CSSOSDataProductsSims/data_50sqDeg/qsocat/qsosed/"
# Only simulate stars?
star_only: NO
# Only simulate galaxies?
galaxy_only: NO
# rotate galaxy ellipticity
rotateEll: 0. # [degree]
# Whether to apply milky way extinction to galaxies
enable_mw_ext_gal: YES
planck_ebv_map: "/public/home/fangyuedong/project/ext_maps/planck/HFI_CompMap_ThermalDustModel_2048_R1.20.fits"
###############################################
# Observation setting
###############################################
obs_setting:
# (Optional) a file of point list
# if you just want to run default pointing:
# - pointing_dir: null
# - pointing_file: null
pointing_file: "/public/share/yangxuliu/CSSOSDataProductsSims/data_50sqDeg/pointing50_C9/pointing_50_1_n.dat"
obs_config_file: "/public/home/fangyuedong/project/csst_msc_sim/config/obs_config_SCI.yaml"
# Run specific pointing(s):
# - give a list of indexes of pointings: [ip_1, ip_2...]
# - run all pointings: null
# Note: only valid when a pointing list is specified
run_pointings: [0, 1, 2, 3, 4]
# Whether to enable astrometric modeling
enable_astrometric_model: YES
# Cut by saturation magnitude in which band?
cut_in_band: "z"
# saturation magnitude margin
mag_sat_margin: -2.5
# mag_sat_margin: -15.
# limiting magnitude margin
mag_lim_margin: +1.0
###############################################
# PSF setting
###############################################
psf_setting:
# Which PSF model to use:
# "Gauss": simple gaussian profile
# "Interp": Interpolated PSF from sampled ray-tracing data
psf_model: "Interp"
# PSF size [arcseconds]
# radius of 80% energy encircled
# NOTE: only valid for "Gauss" PSF
# psf_rcont: 0.15
# path to PSF data
# NOTE: only valid for "Interp" PSF
# PSF models for photometry survey simulation
psf_pho_dir: "/public/share/yangxuliu/CSSOSDataProductsSims/dataC6/psfCube1"
# PSF models for slitless spectrum survey simulation
psf_sls_dir: "/public/share/yangxuliu/CSSOSDataProductsSims/data_50sqDeg/SLS_PSF_PCA_fp/"
###############################################
# Shear setting
###############################################
shear_setting:
# Options to generate mock shear field:
# "constant": all galaxies are assigned a constant reduced shear
# "catalog": get shear values from catalog
shear_type: "constant"
# For constant shear field
reduced_g1: 0.
reduced_g2: 0.
###############################################
# Output options
###############################################
output_setting:
output_format: "channels" # Whether to export as 16 channels (subimages) with pre- and over-scan ("image"/"channels")
shutter_output: NO # Whether to export shutter effect 16-bit image
prnu_output: NO # Whether to export the PRNU (pixel-to-pixel flat-fielding) files
###############################################
# Random seeds
###############################################
random_seeds:
seed_poisson: 20210601 # Seed for Poisson noise
seed_CR: 20210317 # Seed for generating random cosmic ray maps
seed_flat: 20210101 # Seed for generating random flat fields
seed_prnu: 20210102 # Seed for photo-response non-uniformity
seed_gainNonUniform: 20210202 # Seed for gain nonuniformity
seed_biasNonUniform: 20210203 # Seed for bias nonuniformity
seed_rnNonUniform: 20210204 # Seed for readout-noise nonuniformity
seed_badcolumns: 20240309 # Seed for bad columns
seed_defective: 20210304 # Seed for defective (bad) pixels
seed_readout: 20210601 # Seed for read-out gaussian noise
...
\ No newline at end of file
<!DOCTYPE html>
<html lang="zh">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>csst_msc_sim_CONF</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css" rel="stylesheet">
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 20px;
background-color: #f4f4f4;
color: #333;
}
h1 {
text-align: center;
color: #4CAF50;
}
.container {
max-width: 800px;
margin: 0 auto;
background: #fff;
padding: 20px;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}
.block {
margin-bottom: 20px;
border: 1px solid #ccc;
border-radius: 4px;
padding: 10px;
background-color: #fafafa;
}
h2 {
color: #4CAF50;
font-size: 1.2em;
margin-bottom: 10px;
}
label {
display: block;
margin: 5px 0;
}
input[type="text"] {
width: calc(100% - 22px);
padding: 10px;
border: 1px solid #ccc;
border-radius: 4px;
margin-bottom: 10px;
transition: border 0.3s;
}
input[type="text"]:focus {
border-color: #4CAF50;
outline: none;
}
input[type="submit"] {
background-color: #4CAF50;
color: white;
border: none;
padding: 10px 15px;
border-radius: 4px;
cursor: pointer;
font-size: 1em;
transition: background-color 0.3s;
}
input[type="submit"]:hover {
background-color: #45a049;
}
table {
width: 100%;
border: 1px solid #ddd;
border-radius: 8px; /* 圆角 */
overflow: hidden; /* 隐藏超出表格的内容 */
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* 添加阴影 */
}
th, td {
border-bottom: 1px solid #ddd; /* 单元格底部边框 */
padding: 12px; /* 内边距 */
text-align: left;
}
tr:hover {
background-color: #ADD8E6; /* 悬停时背景颜色 */
}
</style>
</head>
<body>
<div class="container">
<h1>配置obs_config_SCI.yaml</h1>
<p><strong>说明:</strong>
1,该脚本可用于生成CSST主巡天成像仿真的参数文件,相关参数说明见本页脚注;2,用户必须修改相关路径参数,其他参数可参考默认值
.
</p>
<hr style="border: 2px solid green;">
<form method="POST">
{{ form_html | safe }}
<input type="submit" value="保存">
</form>
</div>
<footer class="mt-4">
<p class="text-center">这是一个有用的网页</p>
<table>
<tr>
<th>KEYS</th>
<th>VALUES</th>
<th>COMMENTS</th>
</tr>
<tr>
<th>obs_type</th>
<td>"SCI", [str]</td>
<td>仿真图像类型</td>
</tr>
<tr>
<th>obs_type_code</th>
<td>"101", [str]</td>
<td>数据系统内部标号</td>
</tr>
<tr>
<th>obs_id</th>
<td>"00000001", [str]</td>
<td>this setting will only be used if pointing list file is not given</td>
</tr>
<tr>
<th>run_chips</th>
<td>[7,8,9], [list]</td>
<td>Define list of chips</td>
</tr>
<tr>
<th>scie_obs:<span style="font-weight: normal;">shutter_effect</span></th>
<td>YES, [bool]</td>
<td>是否应用快门效应</td>
</tr>
<tr>
<th>scie_obs:<span style="font-weight: normal;">flat_fielding</span></th>
<td>YES, [bool]</td>
<td>是否应用平场模块</td>
</tr>
<tr>
<th>scie_obs:<span style="font-weight: normal;">field_dist</span></th>
<td>YES, [bool]</td>
<td> </td>
</tr>
<tr>
<th>sky_background:<span style="font-weight: normal;">shutter_effect</span></th>
<td>YES, [bool]</td>
<td>是否应用快门效应</td>
</tr>
<tr>
<th>sky_background:<span style="font-weight: normal;">flat_fielding</span></th>
<td>YES, [bool]</td>
<td>是否应用平场模块</td>
</tr>
<tr>
<th>sky_background:<span style="font-weight: normal;">enable_straylight_model</span></th>
<td>YES, [bool]</td>
<td>是否应用杂散光模块</td>
</tr>
<tr>
<th>sky_background:<span style="font-weight: normal;">flat_level</span></th>
<td>null [null or int]</td>
<td>set the total skybackground value (e-) in the exptime,if none,set null, or delete the key</td>
</tr>
<tr>
<th>sky_background:<span style="font-weight: normal;">flat_level_filt</span></th>
<td>null, [str]</td>
<td>the vale of "flat_level" is in the filter "flat_level_filt", can set NUV, u, g, r, i, z, y, if none,set null,or delete the key</td>
</tr>
<tr>
<th>PRNU_effect<span style="font-weight: normal;"></span></th>
<td>---</td>
<td>应用像素间不均匀响应模块;如果需关闭,请在生成的yaml文件中直接注释</td>
</tr>
<tr>
<th>cosmic_rays:<span style="font-weight: normal;">save_cosmic_img</span></th>
<td>YES, [bool]</td>
<td>是否保存宇宙线图像</td>
</tr>
<tr>
<th>poisson_and_dark:<span style="font-weight: normal;">add_dark</span></th>
<td>YES, [bool]</td>
<td>是否添加暗电流</td>
</tr>
<tr>
<th>bright_fatter<span style="font-weight: normal;"></span></th>
<td>YES, [bool]</td>
<td>应用亮胖效应模块;如果需关闭,请在生成的yaml文件中直接注释</td>
</tr>
<tr>
<th>detector_defects:<span style="font-weight: normal;">hot_pixels</span></th>
<td>YES, [bool]</td>
<td>是否添加热像元</td>
</tr>
<tr>
<th>detector_defects:<span style="font-weight: normal;">dead_pixels</span></th>
<td>YES, [bool]</td>
<td>是否添加坏像元</td>
</tr>
<tr>
<th>detector_defects:<span style="font-weight: normal;">bad_columns</span></th>
<td>YES, [bool]</td>
<td>是否添加坏像列</td>
</tr>
<tr>
<th>nonlinearity<span style="font-weight: normal;"></span></th>
<td>---</td>
<td>应用非线性响应模块;如果需关闭,请在生成的yaml文件中直接注释</td>
</tr>
<tr>
<th>blooming<span style="font-weight: normal;"></span></th>
<td>---</td>
<td>是否应用饱和溢出模块;如果需关闭,请在生成的yaml文件中直接注释</td>
</tr>
<tr>
<th>prescan_overscan:<span style="font-weight: normal;">add_dark</span></th>
<td>YES, [bool]</td>
<td> 是否在pre/over-scan区域添加暗电流/</td>
</tr>
<tr>
<th>bias:<span style="font-weight: normal;">bias_16channel</span></th>
<td>YES, [bool]</td>
<td>是否添加16通道的偏置电压</td>
</tr>
<tr>
<th>readout_noise<span style="font-weight: normal;"></span></th>
<td>---</td>
<td>添加读出噪声;如果需关闭,请在生成的yaml文件中直接注释</td>
</tr>
<tr>
<th>gain:<span style="font-weight: normal;">gain_16channel</span></th>
<td>YES, [bool]</td>
<td>是否应用增益</td>
</tr>
<tr>
<th>quantization_and_output:<span style="font-weight: normal;">format_output</span></th>
<td>YES, [bool]</td>
<td>是否按0级数据格式定义输出图像</td>
</tr>
</table>
</footer>
</body>
</html>
<!DOCTYPE html>
<html lang="zh">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>csst_msc_sim_CONF</title>
<link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css" rel="stylesheet">
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 20px;
background-color: #f4f4f4;
color: #333;
}
h1 {
text-align: center;
color: #4CAF50;
}
.container {
max-width: 800px;
margin: 0 auto;
background: #fff;
padding: 20px;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}
.block {
margin-bottom: 20px;
border: 1px solid #ccc;
border-radius: 4px;
padding: 10px;
background-color: #fafafa;
}
h2 {
color: #4CAF50;
font-size: 1.2em;
margin-bottom: 10px;
}
label {
display: block;
margin: 5px 0;
}
input[type="text"] {
width: calc(100% - 22px);
padding: 10px;
border: 1px solid #ccc;
border-radius: 4px;
margin-bottom: 10px;
transition: border 0.3s;
}
input[type="text"]:focus {
border-color: #4CAF50;
outline: none;
}
input[type="submit"] {
background-color: #4CAF50;
color: white;
border: none;
padding: 10px 15px;
border-radius: 4px;
cursor: pointer;
font-size: 1em;
transition: background-color 0.3s;
}
input[type="submit"]:hover {
background-color: #45a049;
}
table {
width: 100%;
border: 1px solid #ddd;
border-radius: 8px; /* 圆角 */
overflow: hidden; /* 隐藏超出表格的内容 */
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* 添加阴影 */
}
th, td {
border-bottom: 1px solid #ddd; /* 单元格底部边框 */
padding: 12px; /* 内边距 */
text-align: left;
}
tr:hover {
background-color: #ADD8E6; /* 悬停时背景颜色 */
}
</style>
</head>
<body>
<div class="container">
<h1>配置config_overall.yaml</h1>
<p><strong>说明:</strong>
1,该脚本可用于生成CSST主巡天成像仿真的参数文件,相关参数说明见本页脚注;2,用户必须修改相关路径参数,其他参数可参考默认值.
</p>
<hr style="border: 2px solid green;">
<form method="POST">
{{ form_html | safe }}
<input type="submit" value="保存">
</form>
</div>
<footer class="mt-4">
<p class="text-center">这是一个有用的网页</p>
<table>
<tr>
<th>KEYS</th>
<th>VALUES</th>
<th>COMMENTS</th>
</tr>
<tr>
<th>work_dir</th>
<td>/localpath, [str]</td>
<td>工作目录-仿真输出的文件路径</td>
</tr>
<tr>
<th>run_name</th>
<td>testRun, [str]</td>
<td>当前仿真目录</td>
</tr>
<tr>
<th>project_cycle</th>
<td>10, [int]</td>
<td>CSST数据系统开发阶段-C10</td>
</tr>
<tr>
<th>project_cycle</th>
<td>0, [int]</td>
<td>仿真次数标号-0</td>
</tr>
<tr>
<th>run_option:<span style="font-weight: normal;">out_cat_only</span></th>
<td>NO, [bool]</td>
<td>是否仅输出星表-YES,不产生开展成像仿真,直接输出星表文件;NO,开展成像仿真</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">input_path</span></th>
<td>/localpath, [str]</td>
<td>"cat_dir": 输入星表路径, "star_cat": 恒星星表目录, "galaxy_cat": 星系星表目录</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">SED_templates_path</span></th>
<td>/localpath, [str]</td>
<td>"star_SED": 恒星SED路径,"galaxy_SED": 星系SED路径,"AGN_SED": 类星体SED路径</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">star_only</span></th>
<td>NO, [bool]</td>
<td>YES,只对恒星成像;NO,包含其他天体成像</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">galaxy_only</span></th>
<td>NO, [bool]</td>
<td>YES,只对星系成像;NO,包含其他天体成像</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">rotateEll</span></th>
<td>0.0, [float]</td>
<td>旋转星系指向(度)</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">enable_mw_ext_gal</span></th>
<td>NO, [bool]</td>
<td>是否应用银河系消光</td>
</tr>
<tr>
<th>catalog_options:<span style="font-weight: normal;">planck_ebv_map</span></th>
<td>/localpath, [str]</td>
<td>消光模型</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">pointing_file</span></th>
<td>/localpath, [str]</td>
<td>曝光指向文件路径</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">obs_config_file</span></th>
<td>/localpath, [str]</td>
<td>观测配置文件路径</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">run_pointings</span></th>
<td>[0], [int]</td>
<td>give a list of indexes of pointings</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">enable_astrometric_model</span></th>
<td>YES, [bool]</td>
<td>是否应用天测模块</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">cut_in_band</span></th>
<td>"z", [str]</td>
<td>Cut by saturation magnitude in which band</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">mag_sat_margin</span></th>
<td>-2.5, [float]</td>
<td>saturation magnitude margin</td>
</tr>
<tr>
<th>obs_setting:<span style="font-weight: normal;">mag_lim_margin</span></th>
<td>+1.0, [float]</td>
<td>limiting magnitude margin</td>
</tr>
<tr>
<th>psf_setting:<span style="font-weight: normal;">psf_model</span></th>
<td>"Interp", [str]</td>
<td>Interp-Interpolated PSF from sampled ray-tracing data; Gauss-simple gaussian profile</td>
</tr>
<tr>
<th>psf_setting:<span style="font-weight: normal;">psf_pho_dir</span></th>
<td>/localpath, [str]</td>
<td>多色成像PSF数据库路径</td>
</tr>
<tr>
<th>psf_setting:<span style="font-weight: normal;">psf_sls_dir</span></th>
<td>/localpath, [str]</td>
<td>无缝光谱PSF数据库路径</td>
</tr>
<tr>
<th>shear_setting:<span style="font-weight: normal;">shear_type</span></th>
<td>constant, [str]</td>
<td>constant-all galaxies are assigned a constant reduced shear; catalog-get shear values from catalog</td>
</tr>
<tr>
<th>shear_setting:<span style="font-weight: normal;">reduced_g1</span></th>
<td>0.0, [float]</td>
<td>weak lensing shear, gamma_1</td>
</tr>
<tr>
<th>shear_setting:<span style="font-weight: normal;"></span>reduced_g1</th>
<td>0.0, [float]</td>
<td>weak lensing shear, gamma_2</td>
</tr>
<tr>
<th>output_setting:<span style="font-weight: normal;">output_format</span></th>
<td>channels, [str]</td>
<td>Whether to export as 16 channels (subimages) with pre- and over-scan (\"image\"/\"channels\")</td>
</tr>
<tr>
<th>output_setting:<span style="font-weight: normal;">shutter_output</span></th>
<td>NO, [bool]</td>
<td>Whether to export shutter effect 16-bit image</td>
</tr>
<tr>
<th>output_setting:<span style="font-weight: normal;">prnu_output</span></th>
<td>NO, [bool]</td>
<td>Whether to export the PRNU (pixel-to-pixel flat-fielding) files</td>
</tr>
<tr>
<th>random_seeds</th>
<td>[int]</td>
<td>设置随机数种子</td>
</tr>
</table>
</footer>
</body>
</html>
---
###############################################
#
# Configuration file for CSST simulation
# For single exposure type:
# SCI-WIDE
# CSST-Sim Group, 2024/01/08
#
###############################################
# Observation type
obs_type: "SCI"
obs_type_code: "101"
obs_id: "00000001" # this setting will only be used if pointing list file is not given
# Define list of chips
# run_chips: [6,7,8,9,11,12,13,14,15,16,17,18,19,20,22,23,24,25] # Photometric chips
#run_chips: [1,2,3,4,5,10,21,26,27,28,29,30] # Spectroscopic chips
run_chips: [17, 22]
# Define observation sequence
call_sequence:
# Accumulate fluxes from objects
scie_obs:
# [Optional]: exposure time of the pointing will be used as default.
# Set it here is you want to override the default
# exptime: 150. # [s]
shutter_effect: YES
flat_fielding: YES
field_dist: YES
# Accumulate fluxes from sky background
sky_background:
# [Optional]: exposure time of the pointing will be used as default.
# Set it here is you want to override the default
# exptime: 150. # [s]
shutter_effect: YES
flat_fielding: YES
enable_straylight_model: YES
# flat_level: set the total skybackground value (e-) in the exptime,if none,set null, or delete the key
# flat_level_filt: the vale of "flat_level" is in the filter "flat_level_filt", can set NUV, u, g, r, i, z, y, if
# none,set null,or delete the key
flat_level: null
flat_level_filt: null
# Apply PRNU to accumulated photons
PRNU_effect: {}
# Accumulate photons caused by cosmic rays
cosmic_rays:
# [Optional]: exposure time of the pointing will be used as default.
# Set it here is you want to override the default
# exptime: 150. # [s]
save_cosmic_img: YES # # Whether to export cosmic ray image
# Add Poission noise and dark current
poisson_and_dark:
# [Optional]: exposure time of the pointing will be used as default.
# Set it here is you want to override the default
# exptime: 150. # [s]
add_dark: YES
# Simulate brighter fatter effects
bright_fatter: {}
# Add detector defects: hot/warm pixels, bad columns
detector_defects:
hot_pixels: YES
dead_pixels: YES
bad_columns: YES
# Apply response nonlinearity
nonlinearity: {}
# Apply CCD Saturation & Blooming
blooming: {}
# Run CTE simulation
# CTE_effect: {}
# Add prescan and overscan
prescan_overscan:
add_dark: YES
# Add bias
bias:
bias_16channel: YES
# Add readout noise
readout_noise: {}
# Apply gain
gain:
gain_16channel: YES
# Output the final image
quantization_and_output:
format_output: YES
...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment