Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_msc_sim
Commits
b8b5bed9
Commit
b8b5bed9
authored
Oct 26, 2024
by
Wei Chengliang
Browse files
update codestyle-PEP8
parent
ab1521fe
Pipeline
#7101
failed with stage
in 0 seconds
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
observation_sim/instruments/chip/effects.py
View file @
b8b5bed9
...
...
@@ -22,7 +22,7 @@ def AddOverscan(GSImage, overscan=1000, gain=1, widthl=27, widthr=27, widtht=8,
NoiseOS
=
galsim
.
GaussianNoise
(
rng
,
sigma
=
read_noise
)
newimg
.
addNoise
(
NoiseOS
)
newimg
=
(
newimg
+
overscan
)
/
gain
newimg
.
array
[
widtht
:(
widtht
+
imgshape
[
0
]),
widthl
:(
widthl
+
imgshape
[
1
])]
=
GSImage
.
array
newimg
.
array
[
widtht
:(
widtht
+
imgshape
[
0
]),
widthl
:(
widthl
+
imgshape
[
1
])]
=
GSImage
.
array
newimg
.
wcs
=
GSImage
.
wcs
# if GSImage.wcs is not None:
# newwcs = GSImage.wcs.withOrigin(galsim.PositionD(widthl,widtht))
...
...
@@ -37,11 +37,11 @@ def DefectivePixels(GSImage, IfHotPix=True, IfDeadPix=True, fraction=1E-4, seed=
# Hot Pixel > 20e-/s
# Dead Pixel < 70%*Mean
rgf
=
Generator
(
PCG64
(
int
(
seed
*
1.1
)))
if
IfHotPix
==
True
and
IfDeadPix
==
True
:
if
IfHotPix
is
True
and
IfDeadPix
is
True
:
HotFraction
=
rgf
.
random
()
# fraction in total bad pixels
elif
IfHotPix
==
False
and
IfDeadPix
==
False
:
elif
IfHotPix
is
False
and
IfDeadPix
is
False
:
return
GSImage
elif
IfHotPix
==
True
:
elif
IfHotPix
is
True
:
HotFraction
=
1
else
:
HotFraction
=
0
...
...
@@ -55,23 +55,23 @@ def DefectivePixels(GSImage, IfHotPix=True, IfDeadPix=True, fraction=1E-4, seed=
mean
=
np
.
mean
(
GSImage
.
array
)
rgp
=
Generator
(
PCG64
(
int
(
seed
)))
yxposfrac
=
rgp
.
random
((
NPixBad
,
2
))
YPositHot
=
np
.
array
(
NPix_y
*
yxposfrac
[
0
:
NPixHot
,
0
]).
astype
(
np
.
int32
)
XPositHot
=
np
.
array
(
NPix_x
*
yxposfrac
[
0
:
NPixHot
,
1
]).
astype
(
np
.
int32
)
YPositDead
=
np
.
array
(
NPix_y
*
yxposfrac
[
NPixHot
:,
0
]).
astype
(
np
.
int32
)
XPositDead
=
np
.
array
(
NPix_x
*
yxposfrac
[
NPixHot
:,
1
]).
astype
(
np
.
int32
)
YPositHot
=
np
.
array
(
NPix_y
*
yxposfrac
[
0
:
NPixHot
,
0
]).
astype
(
np
.
int32
)
XPositHot
=
np
.
array
(
NPix_x
*
yxposfrac
[
0
:
NPixHot
,
1
]).
astype
(
np
.
int32
)
YPositDead
=
np
.
array
(
NPix_y
*
yxposfrac
[
NPixHot
:,
0
]).
astype
(
np
.
int32
)
XPositDead
=
np
.
array
(
NPix_x
*
yxposfrac
[
NPixHot
:,
1
]).
astype
(
np
.
int32
)
rgh
=
Generator
(
PCG64
(
int
(
seed
*
1.2
)))
rgd
=
Generator
(
PCG64
(
int
(
seed
*
1.3
)))
if
IfHotPix
==
True
:
GSImage
.
array
[
YPositHot
,
XPositHot
]
+=
rgh
.
gamma
(
2
,
25
*
150
,
size
=
NPixHot
)
if
IfDeadPix
==
True
:
GSImage
.
array
[
YPositDead
,
XPositDead
]
=
rgd
.
random
(
NPixDead
)
*
(
mean
-
biaslevel
)
*
0.7
+
biaslevel
+
rgp
.
standard_normal
()
*
5
if
IfHotPix
is
True
:
GSImage
.
array
[
YPositHot
,
XPositHot
]
+=
rgh
.
gamma
(
2
,
25
*
150
,
size
=
NPixHot
)
if
IfDeadPix
is
True
:
GSImage
.
array
[
YPositDead
,
XPositDead
]
=
rgd
.
random
(
NPixDead
)
*
(
mean
-
biaslevel
)
*
0.7
+
biaslevel
+
rgp
.
standard_normal
()
*
5
return
GSImage
def
BadColumns
(
GSImage
,
seed
=
20240309
,
chipid
=
1
,
logger
=
None
):
# Set bad column values
ysize
,
xsize
=
GSImage
.
array
.
shape
ysize
,
xsize
=
GSImage
.
array
.
shape
subarr
=
GSImage
.
array
[
int
(
ysize
*
0.1
):
int
(
ysize
*
0.12
),
int
(
xsize
*
0.1
):
int
(
xsize
*
0.12
)]
subarr
=
stats
.
sigma_clip
(
subarr
,
sigma
=
4
,
cenfunc
=
'median'
,
maxiters
=
3
,
masked
=
False
)
meanimg
=
np
.
median
(
subarr
)
...
...
@@ -82,8 +82,8 @@ def BadColumns(GSImage, seed=20240309, chipid=1, logger=None):
rgxpos
=
Generator
(
PCG64
(
int
(
seed
*
1.2
)))
rgdn
=
Generator
(
PCG64
(
int
(
seed
*
1.3
)))
nbadsecA
,
nbadsecD
=
rgn
.
integers
(
low
=
1
,
high
=
5
,
size
=
2
)
collen
=
rgcollen
.
integers
(
low
=
int
(
ysize
*
0.1
),
high
=
int
(
ysize
*
0.7
),
size
=
(
nbadsecA
+
nbadsecD
))
nbadsecA
,
nbadsecD
=
rgn
.
integers
(
low
=
1
,
high
=
5
,
size
=
2
)
collen
=
rgcollen
.
integers
(
low
=
int
(
ysize
*
0.1
),
high
=
int
(
ysize
*
0.7
),
size
=
(
nbadsecA
+
nbadsecD
))
xposit
=
rgxpos
.
integers
(
low
=
int
(
xsize
*
0.05
),
high
=
int
(
xsize
*
0.95
),
size
=
(
nbadsecA
+
nbadsecD
))
if
logger
is
not
None
:
logger
.
info
(
xposit
+
1
)
...
...
@@ -91,47 +91,47 @@ def BadColumns(GSImage, seed=20240309, chipid=1, logger=None):
print
(
xposit
+
1
)
# signs = 2*rgdn.integers(0,2,size=(nbadsecA+nbadsecD))-1
# if meanimg>0:
dn
=
rgdn
.
integers
(
low
=
np
.
abs
(
meanimg
)
*
1.3
+
50
,
high
=
np
.
abs
(
meanimg
)
*
2
+
150
,
size
=
(
nbadsecA
+
nbadsecD
))
#
*signs
dn
=
rgdn
.
integers
(
low
=
np
.
abs
(
meanimg
)
*
1.3
+
50
,
high
=
np
.
abs
(
meanimg
)
*
2
+
150
,
size
=
(
nbadsecA
+
nbadsecD
))
#
*signs
# elif meanimg<0:
# dn = rgdn.integers(low=meanimg*2-150, high=meanimg*1.3-50, size=(nbadsecA+nbadsecD)) #*signs
for
badcoli
in
range
(
nbadsecA
):
GSImage
.
array
[(
ysize
-
collen
[
badcoli
]):
ysize
,
xposit
[
badcoli
]:(
xposit
[
badcoli
]
+
1
)]
=
(
np
.
abs
(
np
.
random
.
normal
(
0
,
stdimg
*
2
,
(
collen
[
badcoli
],
1
)))
+
dn
[
badcoli
])
GSImage
.
array
[(
ysize
-
collen
[
badcoli
]):
ysize
,
xposit
[
badcoli
]:(
xposit
[
badcoli
]
+
1
)]
=
(
np
.
abs
(
np
.
random
.
normal
(
0
,
stdimg
*
2
,
(
collen
[
badcoli
],
1
)))
+
dn
[
badcoli
])
for
badcoli
in
range
(
nbadsecD
):
GSImage
.
array
[
0
:
collen
[
badcoli
+
nbadsecA
],
xposit
[
badcoli
+
nbadsecA
]:(
xposit
[
badcoli
+
nbadsecA
]
+
1
)]
=
(
np
.
abs
(
np
.
random
.
normal
(
0
,
stdimg
*
2
,
(
collen
[
badcoli
+
nbadsecA
],
1
)))
+
dn
[
badcoli
+
nbadsecA
])
GSImage
.
array
[
0
:
collen
[
badcoli
+
nbadsecA
],
xposit
[
badcoli
+
nbadsecA
]:(
xposit
[
badcoli
+
nbadsecA
]
+
1
)]
=
(
np
.
abs
(
np
.
random
.
normal
(
0
,
stdimg
*
2
,
(
collen
[
badcoli
+
nbadsecA
],
1
)))
+
dn
[
badcoli
+
nbadsecA
])
return
GSImage
def
AddBiasNonUniform16
(
GSImage
,
bias_level
=
500
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
,
logger
=
None
):
def
AddBiasNonUniform16
(
GSImage
,
bias_level
=
500
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
,
logger
=
None
):
# Generate Bias and its non-uniformity, and add the 16 bias values to the GS-Image
rg
=
Generator
(
PCG64
(
int
(
seed
)))
Random16
=
(
rg
.
random
(
nsecy
*
nsecx
)
-
0.5
)
*
20
if
int
(
bias_level
)
==
0
:
BiasLevel
=
np
.
zeros
((
nsecy
,
nsecx
))
elif
bias_level
>
0
:
if
int
(
bias_level
)
==
0
:
BiasLevel
=
np
.
zeros
((
nsecy
,
nsecx
))
elif
bias_level
>
0
:
BiasLevel
=
Random16
.
reshape
((
nsecy
,
nsecx
))
+
bias_level
if
logger
is
not
None
:
msg
=
str
(
" Biases of 16 channels: "
+
str
(
BiasLevel
))
logger
.
info
(
msg
)
else
:
print
(
" Biases of 16 channels:
\n
"
,
BiasLevel
)
print
(
" Biases of 16 channels:
\n
"
,
BiasLevel
)
arrshape
=
GSImage
.
array
.
shape
secsize_x
=
int
(
arrshape
[
1
]
/
nsecx
)
secsize_y
=
int
(
arrshape
[
0
]
/
nsecy
)
for
rowi
in
range
(
nsecy
):
for
coli
in
range
(
nsecx
):
GSImage
.
array
[
rowi
*
secsize_y
:(
rowi
+
1
)
*
secsize_y
,
coli
*
secsize_x
:(
coli
+
1
)
*
secsize_x
]
+=
BiasLevel
[
rowi
,
coli
]
GSImage
.
array
[
rowi
*
secsize_y
:(
rowi
+
1
)
*
secsize_y
,
coli
*
secsize_x
:(
coli
+
1
)
*
secsize_x
]
+=
BiasLevel
[
rowi
,
coli
]
return
GSImage
def
MakeBiasNcomb
(
npix_x
,
npix_y
,
bias_level
=
500
,
ncombine
=
1
,
read_noise
=
5
,
gain
=
1
,
seed
=
202102
,
logger
=
None
):
# Start with 0 value bias GS-Image
ncombine
=
int
(
ncombine
)
ncombine
=
int
(
ncombine
)
BiasSngImg0
=
galsim
.
Image
(
npix_x
,
npix_y
,
init_value
=
0
)
BiasSngImg
=
AddBiasNonUniform16
(
BiasSngImg0
,
bias_level
=
bias_level
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
int
(
seed
),
logger
=
logger
)
BiasSngImg
=
AddBiasNonUniform16
(
BiasSngImg0
,
bias_level
=
bias_level
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
int
(
seed
),
logger
=
logger
)
BiasCombImg
=
BiasSngImg
*
ncombine
rng
=
galsim
.
UniformDeviate
()
NoiseBias
=
galsim
.
GaussianNoise
(
rng
=
rng
,
sigma
=
read_noise
*
ncombine
**
0.5
)
...
...
@@ -139,7 +139,7 @@ def MakeBiasNcomb(npix_x, npix_y, bias_level=500, ncombine=1, read_noise=5, gain
if
ncombine
==
1
:
BiasTag
=
'Single'
pass
elif
ncombine
>
1
:
elif
ncombine
>
1
:
BiasCombImg
/=
ncombine
BiasTag
=
'Combine'
# BiasCombImg.replaceNegative(replace_value=0)
...
...
@@ -147,32 +147,32 @@ def MakeBiasNcomb(npix_x, npix_y, bias_level=500, ncombine=1, read_noise=5, gain
return
BiasCombImg
,
BiasTag
def
ApplyGainNonUniform16
(
GSImage
,
gain
=
1
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
,
logger
=
None
):
def
ApplyGainNonUniform16
(
GSImage
,
gain
=
1
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
,
logger
=
None
):
# Generate Gain non-uniformity, and multipy the different factors (mean~1 with sigma~1%) to the GS-Image
rg
=
Generator
(
PCG64
(
int
(
seed
)))
Random16
=
(
rg
.
random
(
nsecy
*
nsecx
)
-
0.5
)
*
0.04
+
1
# sigma~1%
Gain16
=
Random16
.
reshape
((
nsecy
,
nsecx
))
/
gain
Gain16
=
Random16
.
reshape
((
nsecy
,
nsecx
))
/
gain
gain_array
=
np
.
ones
(
nsecy
*
nsecx
)
*
gain
if
logger
is
not
None
:
msg
=
str
(
"Gain of 16 channels: "
+
str
(
Gain16
))
logger
.
info
(
msg
)
else
:
print
(
"Gain of 16 channels: "
,
Gain16
)
print
(
"Gain of 16 channels: "
,
Gain16
)
arrshape
=
GSImage
.
array
.
shape
secsize_x
=
int
(
arrshape
[
1
]
/
nsecx
)
secsize_y
=
int
(
arrshape
[
0
]
/
nsecy
)
for
rowi
in
range
(
nsecy
):
for
coli
in
range
(
nsecx
):
GSImage
.
array
[
rowi
*
secsize_y
:(
rowi
+
1
)
*
secsize_y
,
coli
*
secsize_x
:(
coli
+
1
)
*
secsize_x
]
*=
Gain16
[
rowi
,
coli
]
gain_array
[
rowi
*
nsecx
+
coli
]
=
1
/
Gain16
[
rowi
,
coli
]
GSImage
.
array
[
rowi
*
secsize_y
:(
rowi
+
1
)
*
secsize_y
,
coli
*
secsize_x
:(
coli
+
1
)
*
secsize_x
]
*=
Gain16
[
rowi
,
coli
]
gain_array
[
rowi
*
nsecx
+
coli
]
=
1
/
Gain16
[
rowi
,
coli
]
return
GSImage
,
gain_array
def
GainsNonUniform16
(
GSImage
,
gain
=
1
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
,
logger
=
None
):
def
GainsNonUniform16
(
GSImage
,
gain
=
1
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
,
logger
=
None
):
# Generate Gain non-uniformity, and multipy the different factors (mean~1 with sigma~1%) to the GS-Image
rg
=
Generator
(
PCG64
(
int
(
seed
)))
Random16
=
(
rg
.
random
(
nsecy
*
nsecx
)
-
0.5
)
*
0.04
+
1
# sigma~1%
Gain16
=
Random16
.
reshape
((
nsecy
,
nsecx
))
/
gain
Gain16
=
Random16
.
reshape
((
nsecy
,
nsecx
))
/
gain
if
logger
is
not
None
:
msg
=
str
(
seed
-
20210202
,
"Gains of 16 channels: "
+
str
(
Gain16
))
logger
.
info
(
msg
)
...
...
@@ -190,22 +190,22 @@ def GainsNonUniform16(GSImage, gain=1, nsecy = 2, nsecx=8, seed=202102, logger=N
def
MakeFlatSmooth
(
GSBounds
,
seed
):
rg
=
Generator
(
PCG64
(
int
(
seed
)))
r1
,
r2
,
r3
,
r4
=
rg
.
random
(
4
)
r1
,
r2
,
r3
,
r4
=
rg
.
random
(
4
)
a1
=
-
0.5
+
0.2
*
r1
a2
=
-
0.5
+
0.2
*
r2
a3
=
r3
+
5
a4
=
r4
+
5
xmin
,
xmax
,
ymin
,
ymax
=
GSBounds
.
getXMin
(),
GSBounds
.
getXMax
(),
GSBounds
.
getYMin
(),
GSBounds
.
getYMax
()
xmin
,
xmax
,
ymin
,
ymax
=
GSBounds
.
getXMin
(),
GSBounds
.
getXMax
(),
GSBounds
.
getYMin
(),
GSBounds
.
getYMax
()
Flty
,
Fltx
=
np
.
mgrid
[
ymin
:(
ymax
+
1
),
xmin
:(
xmax
+
1
)]
rg
=
Generator
(
PCG64
(
int
(
seed
)))
p1
,
p2
,
bg
=
rg
.
poisson
(
1000
,
3
)
p1
,
p2
,
bg
=
rg
.
poisson
(
1000
,
3
)
Fltz
=
0.6
*
1e-7
*
(
a1
*
(
Fltx
-
p1
)
**
2
+
a2
*
(
Flty
-
p2
)
**
2
-
a3
*
Fltx
-
a4
*
Flty
)
+
bg
*
20
FlatImg
=
galsim
.
ImageF
(
Fltz
)
return
FlatImg
def
MakeFlatNcomb
(
flat_single_image
,
ncombine
=
1
,
read_noise
=
5
,
gain
=
1
,
overscan
=
500
,
biaslevel
=
500
,
seed_bias
=
20210311
,
logger
=
None
):
ncombine
=
int
(
ncombine
)
ncombine
=
int
(
ncombine
)
FlatCombImg
=
flat_single_image
*
ncombine
rng
=
galsim
.
UniformDeviate
()
NoiseFlatPoi
=
galsim
.
PoissonNoise
(
rng
=
rng
,
sky_level
=
0
)
...
...
@@ -215,15 +215,15 @@ def MakeFlatNcomb(flat_single_image, ncombine=1, read_noise=5, gain=1, overscan=
# NoiseFlat = galsim.CCDNoise(rng, gain=gain, read_noise=read_noise*ncombine**0.5, sky_level=0)
for
i
in
range
(
ncombine
):
FlatCombImg
=
AddBiasNonUniform16
(
FlatCombImg
,
bias_level
=
biaslevel
,
nsecy
=
2
,
nsecx
=
8
,
FlatCombImg
,
bias_level
=
biaslevel
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
seed_bias
,
logger
=
logger
)
if
ncombine
==
1
:
FlatTag
=
'Single'
pass
elif
ncombine
>
1
:
elif
ncombine
>
1
:
FlatCombImg
/=
ncombine
FlatTag
=
'Combine'
# FlatCombImg.replaceNegative(replace_value=0)
...
...
@@ -232,7 +232,7 @@ def MakeFlatNcomb(flat_single_image, ncombine=1, read_noise=5, gain=1, overscan=
def
MakeDarkNcomb
(
npix_x
,
npix_y
,
overscan
=
500
,
bias_level
=
500
,
seed_bias
=
202102
,
darkpsec
=
0.02
,
exptime
=
150
,
ncombine
=
10
,
read_noise
=
5
,
gain
=
1
,
logger
=
None
):
ncombine
=
int
(
ncombine
)
ncombine
=
int
(
ncombine
)
darkpix
=
darkpsec
*
exptime
DarkSngImg
=
galsim
.
Image
(
npix_x
,
npix_y
,
init_value
=
darkpix
)
rng
=
galsim
.
UniformDeviate
()
...
...
@@ -243,15 +243,15 @@ def MakeDarkNcomb(npix_x, npix_y, overscan=500, bias_level=500, seed_bias=202102
DarkCombImg
.
addNoise
(
NoiseReadN
)
for
i
in
range
(
ncombine
):
DarkCombImg
=
AddBiasNonUniform16
(
DarkCombImg
,
bias_level
=
bias_level
,
nsecy
=
2
,
nsecx
=
8
,
DarkCombImg
,
bias_level
=
bias_level
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
int
(
seed_bias
),
logger
=
logger
)
if
ncombine
==
1
:
DarkTag
=
'Single'
pass
elif
ncombine
>
1
:
elif
ncombine
>
1
:
DarkCombImg
/=
ncombine
DarkTag
=
'Combine'
# DarkCombImg.replaceNegative(replace_value=0)
...
...
@@ -261,7 +261,7 @@ def MakeDarkNcomb(npix_x, npix_y, overscan=500, bias_level=500, seed_bias=202102
def
PRNU_Img
(
xsize
,
ysize
,
sigma
=
0.01
,
seed
=
202101
):
rg
=
Generator
(
PCG64
(
int
(
seed
)))
prnuarr
=
rg
.
normal
(
1
,
sigma
,
(
ysize
,
xsize
))
prnuarr
=
rg
.
normal
(
1
,
sigma
,
(
ysize
,
xsize
))
prnuimg
=
galsim
.
ImageF
(
prnuarr
)
return
prnuimg
...
...
@@ -272,11 +272,10 @@ def NonLinearity(GSImage, beta1=5E-7, beta2=0):
return
GSImage
######################################## Saturation & Bleeding Start ###############################
#Saturation & Bleeding Start#
def
BleedingTrail
(
aa
,
yy
):
if
aa
<
0.2
:
aa
=
0.2
if
aa
<
0.2
:
aa
=
0.2
else
:
pass
try
:
...
...
@@ -289,77 +288,78 @@ def BleedingTrail(aa, yy):
return
trail_frac
def
MakeTrail
(
imgarr
,
satuyxtuple
,
charge
,
fullwell
=
9e4
,
direction
=
'up'
,
trailcutfrac
=
0.9
):
'''
direction: "up" or "down". For "up", bleeds along Y-decreasing direction; for "down", bleeds along Y-increasing direction.
'''
yi
,
xi
=
satuyxtuple
yi
,
xi
=
satuyxtuple
aa
=
np
.
log
(
charge
/
fullwell
)
**
3
# scale length of the bleeding trail
yy
=
1
while
charge
>
0
:
if
yi
<
0
or
yi
>
imgarr
.
shape
[
0
]
-
1
:
while
charge
>
0
:
if
yi
<
0
or
yi
>
imgarr
.
shape
[
0
]
-
1
:
break
if
yi
==
0
or
yi
==
imgarr
.
shape
[
0
]
-
1
:
imgarr
[
yi
,
xi
]
=
fullwell
if
yi
==
0
or
yi
==
imgarr
.
shape
[
0
]
-
1
:
imgarr
[
yi
,
xi
]
=
fullwell
break
if
direction
==
'up'
:
if
imgarr
[
yi
-
1
,
xi
]
>=
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
if
imgarr
[
yi
-
1
,
xi
]
>=
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
yi
-=
1
continue
elif
direction
==
'down'
:
if
imgarr
[
yi
+
1
,
xi
]
>=
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
yi
+=
1
elif
direction
==
'down'
:
if
imgarr
[
yi
+
1
,
xi
]
>=
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
yi
+=
1
continue
if
aa
<=
1
:
while
imgarr
[
yi
,
xi
]
>=
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
imgarr
[
yi
-
1
,
xi
]
+=
charge
charge
=
imgarr
[
yi
-
1
,
xi
]
-
fullwell
yi
-=
1
if
yi
<
0
:
while
imgarr
[
yi
,
xi
]
>=
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
imgarr
[
yi
-
1
,
xi
]
+=
charge
charge
=
imgarr
[
yi
-
1
,
xi
]
-
fullwell
yi
-=
1
if
yi
<
0
:
break
elif
direction
==
'down'
:
imgarr
[
yi
+
1
,
xi
]
+=
charge
charge
=
imgarr
[
yi
+
1
,
xi
]
-
fullwell
yi
+=
1
if
yi
>
imgarr
.
shape
[
0
]:
elif
direction
==
'down'
:
imgarr
[
yi
+
1
,
xi
]
+=
charge
charge
=
imgarr
[
yi
+
1
,
xi
]
-
fullwell
yi
+=
1
if
yi
>
imgarr
.
shape
[
0
]:
break
else
:
# calculate bleeding trail:
trail_frac
=
BleedingTrail
(
aa
,
yy
)
trail_frac
=
BleedingTrail
(
aa
,
yy
)
# put charge upwards
if
trail_frac
>=
0.99
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
yi
-=
1
elif
direction
==
'down'
:
yi
+=
1
if
trail_frac
>=
0.99
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
yi
-=
1
elif
direction
==
'down'
:
yi
+=
1
yy
+=
1
else
:
if
trail_frac
<
trailcutfrac
:
if
trail_frac
<
trailcutfrac
:
break
charge
=
fullwell
*
trail_frac
imgarr
[
yi
,
xi
]
+=
charge
if
imgarr
[
yi
,
xi
]
>
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
yi
-=
1
elif
direction
==
'down'
:
yi
+=
1
imgarr
[
yi
,
xi
]
+=
charge
if
imgarr
[
yi
,
xi
]
>
fullwell
:
imgarr
[
yi
,
xi
]
=
fullwell
if
direction
==
'up'
:
yi
-=
1
elif
direction
==
'down'
:
yi
+=
1
yy
+=
1
return
imgarr
def
ChargeFlow
(
imgarr
,
fullwell
=
9E4
):
size_y
,
size_x
=
imgarr
.
shape
satupos_y
,
satupos_x
=
np
.
where
(
imgarr
>
fullwell
)
size_y
,
size_x
=
imgarr
.
shape
satupos_y
,
satupos_x
=
np
.
where
(
imgarr
>
fullwell
)
if
satupos_y
.
shape
[
0
]
==
0
:
# make no change for the image array
...
...
@@ -371,12 +371,12 @@ def ChargeFlow(imgarr, fullwell=9E4):
chargedict
=
{}
imgarrorig
=
copy
.
deepcopy
(
imgarr
)
for
yi
,
xi
in
zip
(
satupos_y
,
satupos_x
):
yxidx
=
''
.
join
([
str
(
yi
),
str
(
xi
)])
chargedict
[
yxidx
]
=
imgarrorig
[
yi
,
xi
]
-
fullwell
for
yi
,
xi
in
zip
(
satupos_y
,
satupos_x
):
yxidx
=
''
.
join
([
str
(
yi
),
str
(
xi
)])
chargedict
[
yxidx
]
=
imgarrorig
[
yi
,
xi
]
-
fullwell
for
yi
,
xi
in
zip
(
satupos_y
,
satupos_x
):
yxidx
=
''
.
join
([
str
(
yi
),
str
(
xi
)])
for
yi
,
xi
in
zip
(
satupos_y
,
satupos_x
):
yxidx
=
''
.
join
([
str
(
yi
),
str
(
xi
)])
satcharge
=
chargedict
[
yxidx
]
chargeup
=
((
np
.
random
.
random
()
-
0.5
)
*
0.05
+
0.5
)
*
satcharge
chargedn
=
satcharge
-
chargeup
...
...
@@ -384,11 +384,11 @@ def ChargeFlow(imgarr, fullwell=9E4):
try
:
# Charge Clump moves up
if
yi
>=
0
and
yi
<
imgarr
.
shape
[
0
]:
imgarr
=
MakeTrail
(
imgarr
,
(
yi
,
xi
),
chargeup
,
fullwell
=
9e4
,
direction
=
'up'
,
trailcutfrac
=
0.9
)
imgarr
=
MakeTrail
(
imgarr
,
(
yi
,
xi
),
chargeup
,
fullwell
=
9e4
,
direction
=
'up'
,
trailcutfrac
=
0.9
)
# Charge Clump moves down
imgarr
=
MakeTrail
(
imgarr
,
(
yi
,
xi
),
chargedn
,
fullwell
=
9e4
,
direction
=
'down'
,
trailcutfrac
=
0.9
)
imgarr
=
MakeTrail
(
imgarr
,
(
yi
,
xi
),
chargedn
,
fullwell
=
9e4
,
direction
=
'down'
,
trailcutfrac
=
0.9
)
except
Exception
as
e
:
print
(
e
,
'@pix '
,(
yi
+
1
,
xi
+
1
))
print
(
e
,
'@pix '
,(
yi
+
1
,
xi
+
1
))
return
imgarr
return
imgarr
...
...
@@ -418,7 +418,7 @@ def SaturBloom(GSImage, nsect_x=1, nsect_y=1, fullwell=9e4):
return
GSImage
#
################################ Saturation & Bleeding End ###################################
#
#
Saturation & Bleeding End
#
def
readout16
(
GSImage
,
rowi
=
0
,
coli
=
0
,
overscan_value
=
0
):
...
...
@@ -430,30 +430,30 @@ def readout16(GSImage, rowi=0, coli=0, overscan_value=0):
# 20 21
# ...
# return: GS Image Object
npix_y
,
npix_x
=
GSImage
.
array
.
shape
npix_y
,
npix_x
=
GSImage
.
array
.
shape
subheight
=
int
(
8
+
npix_y
/
2
+
8
)
subwidth
=
int
(
16
+
npix_x
/
8
+
27
)
OutputSubimg
=
galsim
.
ImageUS
(
subwidth
,
subheight
,
init_value
=
overscan_value
)
if
rowi
<
4
and
coli
==
0
:
if
rowi
<
4
and
coli
==
0
:
subbounds
=
galsim
.
BoundsI
(
1
,
int
(
npix_x
/
2
),
int
(
npix_y
/
8
*
rowi
+
1
),
int
(
npix_y
/
8
*
(
rowi
+
1
)))
subbounds
=
subbounds
.
shift
(
galsim
.
PositionI
(
GSImage
.
bounds
.
getXMin
()
-
1
,
GSImage
.
bounds
.
getYMin
()
-
1
))
subimg
=
GSImage
[
subbounds
]
OutputSubimg
.
array
[
27
:
int
(
npix_y
/
8
)
+
27
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
elif
rowi
<
4
and
coli
==
1
:
OutputSubimg
.
array
[
27
:
int
(
npix_y
/
8
)
+
27
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
elif
rowi
<
4
and
coli
==
1
:
subbounds
=
galsim
.
BoundsI
(
npix_x
/
2
+
1
,
npix_x
,
npix_y
/
8
*
rowi
+
1
,
npix_y
/
8
*
(
rowi
+
1
))
subbounds
=
subbounds
.
shift
(
galsim
.
PositionI
(
GSImage
.
bounds
.
getXMin
()
-
1
,
GSImage
.
bounds
.
getYMin
()
-
1
))
subimg
=
GSImage
[
subbounds
]
OutputSubimg
.
array
[
27
:
int
(
npix_y
/
8
)
+
27
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
elif
rowi
>=
4
and
rowi
<
8
and
coli
==
0
:
OutputSubimg
.
array
[
27
:
int
(
npix_y
/
8
)
+
27
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
elif
rowi
>=
4
and
rowi
<
8
and
coli
==
0
:
subbounds
=
galsim
.
BoundsI
(
1
,
npix_x
/
2
,
npix_y
/
8
*
rowi
+
1
,
npix_y
/
8
*
(
rowi
+
1
))
subbounds
=
subbounds
.
shift
(
galsim
.
PositionI
(
GSImage
.
bounds
.
getXMin
()
-
1
,
GSImage
.
bounds
.
getYMin
()
-
1
))
subimg
=
GSImage
[
subbounds
]
OutputSubimg
.
array
[
16
:
int
(
npix_y
/
8
)
+
16
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
elif
rowi
>=
4
and
rowi
<
8
and
coli
==
1
:
OutputSubimg
.
array
[
16
:
int
(
npix_y
/
8
)
+
16
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
elif
rowi
>=
4
and
rowi
<
8
and
coli
==
1
:
subbounds
=
galsim
.
BoundsI
(
npix_x
/
2
+
1
,
npix_x
,
npix_y
/
8
*
rowi
+
1
,
npix_y
/
8
*
(
rowi
+
1
))
subbounds
=
subbounds
.
shift
(
galsim
.
PositionI
(
GSImage
.
bounds
.
getXMin
()
-
1
,
GSImage
.
bounds
.
getYMin
()
-
1
))
subimg
=
GSImage
[
subbounds
]
OutputSubimg
.
array
[
16
:
int
(
npix_y
/
8
)
+
16
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
OutputSubimg
.
array
[
16
:
int
(
npix_y
/
8
)
+
16
,
8
:
int
(
npix_x
/
2
)
+
8
]
=
subimg
.
array
else
:
print
(
"
\n\033
[31mError: "
+
"Wrong rowi or coli assignment. Permitted: 0<=rowi<=7, 0<=coli<=1."
+
"
\033
[0m
\n
"
)
return
OutputSubimg
...
...
@@ -463,16 +463,16 @@ def readout16(GSImage, rowi=0, coli=0, overscan_value=0):
def
CTE_Effect
(
GSImage
,
threshold
=
27
,
direction
=
'column'
):
# Devide the image into 4 sections and apply CTE effect with different trail directions.
# GSImage: a GalSim Image object.
size_y
,
size_x
=
GSImage
.
array
.
shape
size_y
,
size_x
=
GSImage
.
array
.
shape
size_sect_y
=
int
(
size_y
/
2
)
size_sect_x
=
int
(
size_x
/
2
)
imgarr
=
GSImage
.
array
if
direction
==
'column'
:
imgarr
[
0
:
size_sect_y
,:]
=
CTEModelColRow
(
imgarr
[
0
:
size_sect_y
,:],
trail_direction
=
'down'
,
direction
=
'column'
,
threshold
=
threshold
)
imgarr
[
size_sect_y
:
size_y
,:]
=
CTEModelColRow
(
imgarr
[
size_sect_y
:
size_y
,:],
trail_direction
=
'up'
,
direction
=
'column'
,
threshold
=
threshold
)
imgarr
[
0
:
size_sect_y
,
:]
=
CTEModelColRow
(
imgarr
[
0
:
size_sect_y
,
:],
trail_direction
=
'down'
,
direction
=
'column'
,
threshold
=
threshold
)
imgarr
[
size_sect_y
:
size_y
,
:]
=
CTEModelColRow
(
imgarr
[
size_sect_y
:
size_y
,:],
trail_direction
=
'up'
,
direction
=
'column'
,
threshold
=
threshold
)
elif
direction
==
'row'
:
imgarr
[:,
0
:
size_sect_x
]
=
CTEModelColRow
(
imgarr
[:,
0
:
size_sect_x
],
trail_direction
=
'right'
,
direction
=
'row'
,
threshold
=
threshold
)
imgarr
[:,
size_sect_x
:
size_x
]
=
CTEModelColRow
(
imgarr
[:,
size_sect_x
:
size_x
],
trail_direction
=
'left'
,
direction
=
'row'
,
threshold
=
threshold
)
imgarr
[:,
0
:
size_sect_x
]
=
CTEModelColRow
(
imgarr
[:,
0
:
size_sect_x
],
trail_direction
=
'right'
,
direction
=
'row'
,
threshold
=
threshold
)
imgarr
[:,
size_sect_x
:
size_x
]
=
CTEModelColRow
(
imgarr
[:,
size_sect_x
:
size_x
],
trail_direction
=
'left'
,
direction
=
'row'
,
threshold
=
threshold
)
return
GSImage
...
...
@@ -482,50 +482,50 @@ def CTEModelColRow(img, trail_direction = 'up', direction='column', threshold=27
#total trail flux vs (pixel flux)^1/2 is approximately linear
#total trail flux = trail_a * (pixel flux)^1/2 + trail_b
#trail pixel flux = pow(0.5,x)/0.5, normalize to 1
trail_a
=
5.651803799619966
trail_a
=
5.651803799619966
trail_b
=
-
2.671933068990729
sh1
=
img
.
shape
[
0
]
sh2
=
img
.
shape
[
1
]
n_img
=
img
*
0
idx
=
np
.
where
(
img
<
threshold
)
idx
=
np
.
where
(
img
<
threshold
)
if
len
(
idx
[
0
])
==
0
:
pass
elif
len
(
idx
[
0
])
>
0
:
n_img
[
idx
]
=
img
[
idx
]
yidx
,
xidx
=
np
.
where
(
img
>=
threshold
)
yidx
,
xidx
=
np
.
where
(
img
>=
threshold
)
if
len
(
yidx
)
==
0
:
pass
elif
len
(
yidx
)
>
0
:
elif
len
(
yidx
)
>
0
:
# print(index)
for
i
,
j
in
zip
(
yidx
,
xidx
):
f
=
img
[
i
,
j
]
for
i
,
j
in
zip
(
yidx
,
xidx
):
f
=
img
[
i
,
j
]
trail_f
=
(
np
.
sqrt
(
f
)
*
trail_a
+
trail_b
)
*
0.5
# trail_f=5E-5*f**1.5
xy_num
=
10
all_trail
=
np
.
zeros
(
xy_num
)
xy_upstr
=
np
.
arange
(
1
,
xy_num
,
1
)
xy_upstr
=
np
.
arange
(
1
,
xy_num
,
1
)
# all_trail_pix = np.sum(pow(0.5,xy_upstr)/0.5)
all_trail_pix
=
0
for
m
in
xy_upstr
:
a1
=
12.97059491
b1
=
0.54286652
c1
=
0.69093105
a2
=
2.77298856
b2
=
0.11231055
c2
=
-
0.01038675
a1
=
12.97059491
b1
=
0.54286652
c1
=
0.69093105
a2
=
2.77298856
b2
=
0.11231055
c2
=
-
0.01038675
# t_pow = 0
am
=
1
bm
=
1
am
=
1
bm
=
1
t_pow
=
am
*
np
.
exp
(
-
bm
*
m
)
# if m < 5:
# t_pow = a1*np.exp(-b1*m)+c1
# else:
# t_pow = a2*np.exp(-b2*m)+c2
if
t_pow
<
0
:
if
t_pow
<
0
:
t_pow
=
0
all_trail_pix
+=
t_pow
...
...
@@ -538,23 +538,23 @@ def CTEModelColRow(img, trail_direction = 'up', direction='column', threshold=27
all_trail
[
0
]
=
f
-
trail_f
for
m
in
np
.
arange
(
0
,
xy_num
,
1
):
for
m
in
np
.
arange
(
0
,
xy_num
,
1
):
if
direction
==
'column'
:
if
trail_direction
==
'down'
:
y_pos
=
i
+
m
elif
trail_direction
==
'up'
:
y_pos
=
i
-
m
if
y_pos
<
0
or
y_pos
>=
sh1
:
if
y_pos
<
0
or
y_pos
>=
sh1
:
break
n_img
[
y_pos
,
j
]
=
n_img
[
y_pos
,
j
]
+
all_trail
[
m
]
n_img
[
y_pos
,
j
]
=
n_img
[
y_pos
,
j
]
+
all_trail
[
m
]
elif
direction
==
'row'
:
if
trail_direction
==
'left'
:
x_pos
=
j
-
m
elif
trail_direction
==
'right'
:
x_pos
=
j
+
m
if
x_pos
<
0
or
x_pos
>=
sh2
:
if
x_pos
<
0
or
x_pos
>=
sh2
:
break
n_img
[
i
,
x_pos
]
=
n_img
[
i
,
x_pos
]
+
all_trail
[
m
]
n_img
[
i
,
x_pos
]
=
n_img
[
i
,
x_pos
]
+
all_trail
[
m
]
return
n_img
...
...
@@ -566,7 +566,7 @@ def CTEModelColRow(img, trail_direction = 'up', direction='column', threshold=27
def
getYValue
(
collection
,
x
):
index
=
0
;
if
(
collection
.
shape
[
1
]
==
2
):
while
(
x
>
collection
[
index
,
0
]
and
index
<
collection
.
shape
[
0
]):
while
(
x
>
collection
[
index
,
0
]
and
index
<
collection
.
shape
[
0
]):
index
=
index
+
1
;
if
(
index
==
collection
.
shape
[
0
]
or
index
==
0
):
return
0
;
...
...
@@ -578,11 +578,11 @@ def getYValue(collection, x):
return
(
collection
[
index
,
1
]
+
collection
[
index
-
1
,
1
])
/
2.0
else
:
a
=
deltY
/
deltX
;
return
a
*
(
x
-
collection
[
index
-
1
,
0
])
+
collection
[
index
-
1
,
1
];
return
a
*
(
x
-
collection
[
index
-
1
,
0
])
+
collection
[
index
-
1
,
1
];
return
0
;
def
selectCosmicRayCollection
(
attachedSizes
,
xLen
,
yLen
,
cr_pixelRatio
,
CR_max_size
):
def
selectCosmicRayCollection
(
attachedSizes
,
xLen
,
yLen
,
cr_pixelRatio
,
CR_max_size
):
normalRay
=
0.90
nnormalRay
=
1
-
normalRay
...
...
@@ -591,7 +591,7 @@ def selectCosmicRayCollection(attachedSizes, xLen, yLen,cr_pixelRatio,CR_max_siz
pixelNum_n
=
int
(
xLen
*
yLen
*
cr_pixelRatio
*
nnormalRay
)
CRPixelNum
=
0
;
maxValue
=
max
(
attachedSizes
[:,
1
])
maxValue
=
max
(
attachedSizes
[:,
1
])
maxValue
+=
0.1
;
cr_event_num
=
0
;
...
...
@@ -613,7 +613,7 @@ def selectCosmicRayCollection(attachedSizes, xLen, yLen,cr_pixelRatio,CR_max_siz
return
CRs
[
0
:
cr_event_num
];
def
defineEnergyForCR
(
cr_event_size
,
seed
=
12345
):
def
defineEnergyForCR
(
cr_event_size
,
seed
=
12345
):
import
random
sigma
=
0.6
/
2.355
;
mean
=
3.3
;
...
...
@@ -637,7 +637,7 @@ def convCR(CRmap=None, addPSF=None, sp_n = 4):
if
CRmap
[
i
,
j
]
==
0
:
continue
j_st
=
sp_n
*
j
pix_v1
=
CRmap
[
i
,
j
]
*
pix_v0
pix_v1
=
CRmap
[
i
,
j
]
*
pix_v0
for
m
in
np
.
arange
(
sp_n
):
for
n
in
np
.
arange
(
sp_n
):
subCRmap
[
i_st
+
m
,
j_st
+
n
]
=
pix_v1
...
...
@@ -648,9 +648,9 @@ def convCR(CRmap=None, addPSF=None, sp_n = 4):
for
i
in
np
.
arange
(
subCRmap
.
shape
[
0
]):
for
j
in
np
.
arange
(
subCRmap
.
shape
[
1
]):
if
subCRmap
[
i
,
j
]
>
0
:
convPix
=
addPSF
*
subCRmap
[
i
,
j
]
subCRmap_n
[
i
:
i
+
m_size
,
j
:
j
+
m_size
]
+=
convPix
if
subCRmap
[
i
,
j
]
>
0
:
convPix
=
addPSF
*
subCRmap
[
i
,
j
]
subCRmap_n
[
i
:
i
+
m_size
,
j
:
j
+
m_size
]
+=
convPix
CRmap_n
=
np
.
zeros
((
np
.
array
(
subCRmap_n
.
shape
)
/
sp_n
).
astype
(
np
.
int32
))
sh_n
=
CRmap_n
.
shape
...
...
@@ -664,7 +664,7 @@ def convCR(CRmap=None, addPSF=None, sp_n = 4):
for
n
in
np
.
arange
(
sp_n
):
p_v
+=
subCRmap_n
[
i_st
+
m
,
j_st
+
n
]
CRmap_n
[
i
,
j
]
=
p_v
CRmap_n
[
i
,
j
]
=
p_v
return
CRmap_n
...
...
@@ -681,7 +681,7 @@ def produceCR_Map(xLen, yLen, exTime, cr_pixelRatio, gain, attachedSizes, seed=2
CRmap
=
np
.
zeros
([
yLen
,
xLen
]);
#
#
produce conv kernel
# produce conv kernel
from
astropy.modeling.models
import
Gaussian2D
o_size
=
4
sp_n
=
8
...
...
@@ -694,7 +694,7 @@ def produceCR_Map(xLen, yLen, exTime, cr_pixelRatio, gain, attachedSizes, seed=2
addPSF
=
addPSF_
(
xp
,
yp
)
convKernel
=
addPSF
/
addPSF
.
sum
()
#
################################
#
---------------------------------
for
i
in
np
.
arange
(
cr_event_size
):
...
...
@@ -713,9 +713,9 @@ def produceCR_Map(xLen, yLen, exTime, cr_pixelRatio, gain, attachedSizes, seed=2
if
x_n
<
0
:
x_n
=
x_n
+
cr_lens
+
1
y_n
=
int
(
np
.
sin
(
pos_angle
)
*
j
+
np
.
cos
(
pos_angle
)
*
0
);
if
x_n
<
0
or
x_n
>
cr_lens
or
y_n
<
0
or
y_n
>
cr_lens
:
if
x_n
<
0
or
x_n
>
cr_lens
or
y_n
<
0
or
y_n
>
cr_lens
:
continue
;
crMatrix
[
y_n
,
x_n
]
=
pix_energy
;
crMatrix
[
y_n
,
x_n
]
=
pix_energy
;
crMatrix_n
=
convCR
(
crMatrix
,
convKernel
,
sp_n
)
# crMatrix_n = crMatrix
...
...
@@ -729,9 +729,7 @@ def produceCR_Map(xLen, yLen, exTime, cr_pixelRatio, gain, attachedSizes, seed=2
sly
=
slice
(
ypix
[
oky
].
min
(),
ypix
[
oky
].
max
()
+
1
)
slx
=
slice
(
xpix
[
okx
].
min
(),
xpix
[
okx
].
max
()
+
1
)
CRmap
[
sly
,
slx
]
+=
crMatrix_n
[
oky
,:][:,
okx
]
CRmap
[
sly
,
slx
]
+=
crMatrix_n
[
oky
,
:][:,
okx
]
return
CRmap
.
astype
(
np
.
int32
),
cr_event_size
...
...
@@ -770,9 +768,9 @@ def ShutterEffectArr(GSImage, t_exp=150, t_shutter=1.3, dist_bearing=735, dt=1E-
s2
[
i
]
=
dist_bearing
-
DistHalf
*
np
.
cos
(
theta
[
i
])
s1idx
[
i
]
=
int
(
s1
[
i
]
/
dist_bearing
*
(
SampleNumb
))
s2idx
[
i
]
=
int
(
s2
[
i
]
/
dist_bearing
*
(
SampleNumb
))
brt
[(
idx
>
s1idx
[
i
])
&
(
idx
<
s2idx
[
i
])]
+=
dt
brt
[(
idx
>
s1idx
[
i
])
&
(
idx
<
s2idx
[
i
])]
+=
dt
if
t_exp
>
t_shutter
*
2
:
if
t_exp
>
t_shutter
*
2
:
brt
=
brt
*
2
+
(
t_exp
-
t_shutter
*
2
)
else
:
brt
=
brt
*
2
...
...
@@ -785,16 +783,16 @@ def ShutterEffectArr(GSImage, t_exp=150, t_shutter=1.3, dist_bearing=735, dt=1E-
xmax
=
GSImage
.
bounds
.
getXMax
()
ymin
=
GSImage
.
bounds
.
getYMin
()
ymax
=
GSImage
.
bounds
.
getYMax
()
if
xmin
<
np
.
min
(
x
)
or
xmax
>
np
.
max
(
x
):
if
xmin
<
np
.
min
(
x
)
or
xmax
>
np
.
max
(
x
):
raise
LookupError
(
"Out of focal-plane bounds in X-direction."
)
if
ymin
<
-
25331
or
ymax
>
25331
:
if
ymin
<
-
25331
or
ymax
>
25331
:
raise
LookupError
(
"Out of focal-plane bounds in Y-direction."
)
sizex
=
xmax
-
xmin
+
1
sizey
=
ymax
-
ymin
+
1
xnewgrid
=
np
.
mgrid
[
xmin
:(
xmin
+
sizex
)]
expeffect
=
interpolate
.
splev
(
xnewgrid
,
intp
,
der
=
0
)
expeffect
/=
t_exp
exparrnormal
=
np
.
tile
(
expeffect
,
(
sizey
,
1
))
exparrnormal
=
np
.
tile
(
expeffect
,
(
sizey
,
1
))
# GSImage *= exparrnormal
return
exparrnormal
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment