Commit bd7943ce authored by Fang Yuedong's avatar Fang Yuedong
Browse files

add a test run case

parent 96abee7b
import os
import galsim
import random
import numpy as np
import h5py as h5
import healpy as hp
import astropy.constants as cons
import traceback
from astropy.coordinates import spherical_to_cartesian
from astropy.table import Table
from scipy import interpolate
from datetime import datetime
from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar
from ObservationSim.MockObject._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist
from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position
# (TEST)
from astropy.cosmology import FlatLambdaCDM
from astropy import constants
from astropy import units as U
try:
import importlib.resources as pkg_resources
except ImportError:
# Try backported to PY<37 'importlib_resources'
import importlib_resources as pkg_resources
NSIDE = 128
def get_bundleIndex(healpixID_ring, bundleOrder=4, healpixOrder=7):
assert NSIDE == 2**healpixOrder
shift = healpixOrder - bundleOrder
shift = 2*shift
nside_bundle = 2**bundleOrder
nside_healpix= 2**healpixOrder
healpixID_nest= hp.ring2nest(nside_healpix, healpixID_ring)
bundleID_nest = (healpixID_nest >> shift)
bundleID_ring = hp.nest2ring(nside_bundle, bundleID_nest)
return bundleID_ring
class Catalog(CatalogBase):
def __init__(self, config, chip, pointing, chip_output, filt, **kwargs):
super().__init__()
self.cat_dir = os.path.join(config["data_dir"], config["catalog_options"]["input_path"]["cat_dir"])
self.seed_Av = config["catalog_options"]["seed_Av"]
self.cosmo = FlatLambdaCDM(H0=67.66, Om0=0.3111)
self.chip_output = chip_output
self.filt = filt
self.logger = chip_output.logger
with pkg_resources.path('Catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
self.normF_star = Table.read(str(filter_path))
self.config = config
self.chip = chip
self.pointing = pointing
self.max_size = 0.
if "star_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["star_cat"] and not config["catalog_options"]["galaxy_only"]:
star_file = config["catalog_options"]["input_path"]["star_cat"]
star_SED_file = config["catalog_options"]["SED_templates_path"]["star_SED"]
self.star_path = os.path.join(self.cat_dir, star_file)
self.star_SED_path = os.path.join(config["data_dir"], star_SED_file)
self._load_SED_lib_star()
if "galaxy_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["galaxy_cat"] and not config["catalog_options"]["star_only"]:
galaxy_dir = config["catalog_options"]["input_path"]["galaxy_cat"]
self.galaxy_path = os.path.join(self.cat_dir, galaxy_dir)
self.galaxy_SED_path = os.path.join(config["data_dir"], config["catalog_options"]["SED_templates_path"]["galaxy_SED"])
self._load_SED_lib_gals()
if "AGN_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["AGN_cat"] and not config["catalog_options"]["star_only"]:
AGN_dir = config["catalog_options"]["input_path"]["AGN_cat"]
self.AGN_path = os.path.join(config["data_dir"], config["catalog_options"]["input_path"]["AGN_cat"])
self.AGN_SED_path = os.path.join(config["data_dir"], config["catalog_options"]["SED_templates_path"]["AGN_SED"])
self.AGN_SED_wave_path = os.path.join(config['data_dir'], config["catalog_options"]["SED_templates_path"]["AGN_SED_WAVE"])
self._load_SED_lib_AGN()
if "rotateEll" in config["catalog_options"]:
self.rotation = float(int(config["catalog_options"]["rotateEll"]/45.))
else:
self.rotation = 0.
# Update output .cat header with catalog specific output columns
self._add_output_columns_header()
self._get_healpix_list()
self._load()
def _add_output_columns_header(self):
self.add_hdr = " model_tag teff logg feh"
self.add_hdr += " bulgemass diskmass detA e1 e2 kappa g1 g2 size galType veldisp "
self.add_fmt = " %10s %8.4f %8.4f %8.4f"
self.add_fmt += " %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %4d %8.4f "
self.chip_output.update_ouptut_header(additional_column_names=self.add_hdr)
def _get_healpix_list(self):
self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2)
ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
# vertices = spherical_to_cartesian(1., dec, ra)
self.pix_list = hp.query_polygon(
NSIDE,
hp.ang2vec(np.radians(90.) - dec, ra),
inclusive=True
)
if self.logger is not None:
msg = str(("HEALPix List: ", self.pix_list))
self.logger.info(msg)
else:
print("HEALPix List: ", self.pix_list)
def load_norm_filt(self, obj):
if obj.type == "star":
return self.normF_star
elif obj.type == "galaxy" or obj.type == "quasar":
# return self.normF_galaxy
return None
else:
return None
def _load_SED_lib_star(self):
self.tempSED_star = h5.File(self.star_SED_path,'r')
def _load_SED_lib_gals(self):
pcs = h5.File(os.path.join(self.galaxy_SED_path, "pcs.h5"), "r")
lamb = h5.File(os.path.join(self.galaxy_SED_path, "lamb.h5"), "r")
self.lamb_gal = lamb['lamb'][()]
self.pcs = pcs['pcs'][()]
def _load_SED_lib_AGN(self):
from astropy.io import fits
self.SED_AGN = fits.open(self.AGN_SED_path)[0].data
self.lamb_AGN = np.load(self.AGN_SED_wave_path)
def _load_gals(self, gals, pix_id=None, cat_id=0):
ngals = len(gals['ra'])
# Apply astrometric modeling
# in C3 case only aberration
ra_arr = gals['ra'][:]
dec_arr = gals['dec'][:]
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist()
pmra_list = np.zeros(ngals).tolist()
pmdec_list = np.zeros(ngals).tolist()
rv_list = np.zeros(ngals).tolist()
parallax_list = [1e-9] * ngals
dt = datetime.utcfromtimestamp(self.pointing.timestamp)
date_str = dt.date().isoformat()
time_str = dt.time().isoformat()
ra_arr, dec_arr = on_orbit_obs_position(
input_ra_list=ra_list,
input_dec_list=dec_list,
input_pmra_list=pmra_list,
input_pmdec_list=pmdec_list,
input_rv_list=rv_list,
input_parallax_list=parallax_list,
input_nstars=ngals,
input_x=self.pointing.sat_x,
input_y=self.pointing.sat_y,
input_z=self.pointing.sat_z,
input_vx=self.pointing.sat_vx,
input_vy=self.pointing.sat_vy,
input_vz=self.pointing.sat_vz,
input_epoch="J2000",
input_date_str=date_str,
input_time_str=time_str
)
# for igals in range(ngals):
for igals in range(0, ngals, 5):
# # (TEST)
# if igals > 1000:
# break
param = self.initialize_param()
param['ra'] = ra_arr[igals]
param['dec'] = dec_arr[igals]
param['ra_orig'] = gals['ra'][igals]
param['dec_orig'] = gals['dec'][igals]
# param['mag_use_normal'] = gals['mag_csst_%s'%(self.filt.filter_type)][igals]
param['mag_use_normal'] = 20.
if self.filt.is_too_dim(mag=param['mag_use_normal'], margin=self.config["obs_setting"]["mag_lim_margin"]):
continue
param['z'] = gals['redshift'][igals]
param['model_tag'] = 'None'
# param['g1'] = gals['shear'][igals][0]
# param['g2'] = gals['shear'][igals][1]
param['g1'] = 0.
param['g2'] = 0.
param['kappa'] = gals['kappa'][igals]
param['e1'] = gals['ellipticity_true'][igals][0]
param['e2'] = gals['ellipticity_true'][igals][1]
# For shape calculation
param['ell_total'] = np.sqrt(param['e1']**2 + param['e2']**2)
if param['ell_total'] > 0.9:
continue
# param['e1_disk'] = param['e1']
# param['e2_disk'] = param['e2']
# param['e1_bulge'] = param['e1']
# param['e2_bulge'] = param['e2']
param['e1_disk'] = 0.
param['e2_disk'] = 0.
param['e1_bulge'] = 0.
param['e2_bulge'] = 0.
param['delta_ra'] = 0
param['delta_dec'] = 0
# Masses
param['bulgemass'] = gals['bulgemass'][igals]
param['diskmass'] = gals['diskmass'][igals]
# param['size'] = gals['size'][igals]
param['size'] = 1.
if param['size'] > self.max_size:
self.max_size = param['size']
# Sersic index
param['disk_sersic_idx'] = 1.
param['bulge_sersic_idx'] = 4.
# Sizes
# param['bfrac'] = param['bulgemass']/(param['bulgemass'] + param['diskmass'])
param['bfrac'] = 0.
if param['bfrac'] >= 0.6:
param['hlr_bulge'] = param['size']
param['hlr_disk'] = param['size'] * (1. - param['bfrac'])
else:
param['hlr_disk'] = param['size']
param['hlr_bulge'] = param['size'] * param['bfrac']
# SED coefficients
param['coeff'] = gals['coeff'][igals]
param['detA'] = gals['detA'][igals]
# Others
param['galType'] = gals['type'][igals]
param['veldisp'] = gals['veldisp'][igals]
# TEST no redening and no extinction
param['av'] = 0.0
param['redden'] = 0
param['star'] = 0 # Galaxy
# NOTE: this cut cannot be put before the SED type has been assigned
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
# TEMP
self.ids += 1
# param['id'] = self.ids
param['id'] = '%06d'%(int(pix_id)) + '%06d'%(cat_id) + '%08d'%(igals)
if param['star'] == 0:
obj = Galaxy(param, self.rotation, logger=self.logger)
# Need to deal with additional output columns
obj.additional_output_str = self.add_fmt%("n", 0., 0., 0.,
param['bulgemass'], param['diskmass'], param['detA'],
param['e1'], param['e2'], param['kappa'], param['g1'], param['g2'], param['size'],
param['galType'], param['veldisp'])
self.objs.append(obj)
def _load_stars(self, stars, pix_id=None):
nstars = len(stars['sourceID'])
# Apply astrometric modeling
ra_arr = stars["RA"][:]
dec_arr = stars["Dec"][:]
pmra_arr = stars['pmra'][:]
pmdec_arr = stars['pmdec'][:]
rv_arr = stars['RV'][:]
parallax_arr = stars['parallax'][:]
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist()
pmra_list = pmra_arr.tolist()
pmdec_list = pmdec_arr.tolist()
rv_list = rv_arr.tolist()
parallax_list = parallax_arr.tolist()
dt = datetime.utcfromtimestamp(self.pointing.timestamp)
date_str = dt.date().isoformat()
time_str = dt.time().isoformat()
ra_arr, dec_arr = on_orbit_obs_position(
input_ra_list=ra_list,
input_dec_list=dec_list,
input_pmra_list=pmra_list,
input_pmdec_list=pmdec_list,
input_rv_list=rv_list,
input_parallax_list=parallax_list,
input_nstars=nstars,
input_x=self.pointing.sat_x,
input_y=self.pointing.sat_y,
input_z=self.pointing.sat_z,
input_vx=self.pointing.sat_vx,
input_vy=self.pointing.sat_vy,
input_vz=self.pointing.sat_vz,
input_epoch="J2000",
input_date_str=date_str,
input_time_str=time_str
)
for istars in range(nstars):
# # (TEST)
# if istars > 100:
# break
param = self.initialize_param()
param['ra'] = ra_arr[istars]
param['dec'] = dec_arr[istars]
param['ra_orig'] = stars["RA"][istars]
param['dec_orig'] = stars["Dec"][istars]
param['pmra'] = pmra_arr[istars]
param['pmdec'] = pmdec_arr[istars]
param['rv'] = rv_arr[istars]
param['parallax'] = parallax_arr[istars]
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
param['mag_use_normal'] = stars['app_sdss_g'][istars]
# if param['mag_use_normal'] >= 26.5:
# continue
self.ids += 1
param['id'] = stars['sourceID'][istars]
param['sed_type'] = stars['sourceID'][istars]
param['model_tag'] = stars['model_tag'][istars]
param['teff'] = stars['teff'][istars]
param['logg'] = stars['grav'][istars]
param['feh'] = stars['feh'][istars]
param['z'] = 0.0
param['star'] = 1 # Star
obj = Star(param, logger=self.logger)
# Append additional output columns to the .cat file
obj.additional_output_str = self.add_fmt%(param["model_tag"], param['teff'], param['logg'], param['feh'],
0., 0., 0., 0., 0., 0., 0., 0., 0., -1, 0.)
self.objs.append(obj)
def _load_AGNs(self):
data = Table.read(self.AGN_path)
ra_arr = data['ra']
dec_arr = data['dec']
nAGNs = len(data)
if self.config["obs_setting"]["enable_astrometric_model"]:
ra_list = ra_arr.tolist()
dec_list = dec_arr.tolist()
pmra_list = np.zeros(nAGNs).tolist()
pmdec_list = np.zeros(nAGNs).tolist()
rv_list = np.zeros(nAGNs).tolist()
parallax_list = [1e-9] * nAGNs
dt = datetime.utcfromtimestamp(self.pointing.timestamp)
date_str = dt.date().isoformat()
time_str = dt.time().isoformat()
ra_arr, dec_arr = on_orbit_obs_position(
input_ra_list=ra_list,
input_dec_list=dec_list,
input_pmra_list=pmra_list,
input_pmdec_list=pmdec_list,
input_rv_list=rv_list,
input_parallax_list=parallax_list,
input_nstars=nAGNs,
input_x=self.pointing.sat_x,
input_y=self.pointing.sat_y,
input_z=self.pointing.sat_z,
input_vx=self.pointing.sat_vx,
input_vy=self.pointing.sat_vy,
input_vz=self.pointing.sat_vz,
input_epoch="J2000",
input_date_str=date_str,
input_time_str=time_str
)
for iAGNs in range(nAGNs):
param = self.initialize_param()
param['ra'] = ra_arr[iAGNs]
param['dec'] = dec_arr[iAGNs]
param['ra_orig'] = data['ra'][iAGNs]
param['dec_orig'] = data['dec'][iAGNs]
param['z'] = data['z'][iAGNs]
param['appMag'] = data['appMag'][iAGNs]
param['absMag'] = data['absMag'][iAGNs]
# NOTE: this cut cannot be put before the SED type has been assigned
if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
continue
# TEST no redening and no extinction
param['av'] = 0.0
param['redden'] = 0
param['star'] = 2 # Quasar
param['id'] = data['igmlos'][iAGNs]
if param['star'] == 2:
obj = Quasar(param, logger=self.logger)
# Append additional output columns to the .cat file
obj.additional_output_str = self.add_fmt%("n", 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., -1, 0.)
self.objs.append(obj)
def _load(self, **kwargs):
self.objs = []
self.ids = 0
if "star_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["star_cat"] and not self.config["catalog_options"]["galaxy_only"]:
star_cat = h5.File(self.star_path, 'r')['catalog']
for pix in self.pix_list:
try:
stars = star_cat[str(pix)]
self._load_stars(stars, pix_id=pix)
del stars
except Exception as e:
self.logger.error(str(e))
print(e)
if "galaxy_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["galaxy_cat"] and not self.config["catalog_options"]["star_only"]:
for pix in self.pix_list:
try:
bundleID = get_bundleIndex(pix)
file_path = os.path.join(self.galaxy_path, "galaxies_C6_bundle{:06}.h5".format(bundleID))
gals_cat = h5.File(file_path, 'r')['galaxies']
gals = gals_cat[str(pix)]
self._load_gals(gals, pix_id=pix, cat_id=bundleID)
del gals
except Exception as e:
traceback.print_exc()
self.logger.error(str(e))
print(e)
if "AGN_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["AGN_cat"] and not self.config["catalog_options"]["star_only"]:
try:
self._load_AGNs()
except Exception as e:
traceback.print_exc()
self.logger.error(str(e))
print(e)
if self.logger is not None:
self.logger.info("maximum galaxy size: %.4f"%(self.max_size))
self.logger.info("number of objects in catalog: %d"%(len(self.objs)))
else:
print("number of objects in catalog: ", len(self.objs))
def load_sed(self, obj, **kwargs):
if obj.type == 'star':
_, wave, flux = tag_sed(
h5file=self.tempSED_star,
model_tag=obj.param['model_tag'],
teff=obj.param['teff'],
logg=obj.param['logg'],
feh=obj.param['feh']
)
elif obj.type == 'galaxy' or obj.type == 'quasar':
factor = 10**(-.4 * self.cosmo.distmod(obj.z).value)
if obj.type == 'galaxy':
flux = np.matmul(self.pcs, obj.coeff) * factor
# if np.any(flux < 0):
# raise ValueError("Glaxy %s: negative SED fluxes"%obj.id)
flux[flux < 0] = 0.
sedcat = np.vstack((self.lamb_gal, flux)).T
sed_data = getObservedSED(
sedCat=sedcat,
redshift=obj.z,
av=obj.param["av"],
redden=obj.param["redden"]
)
wave, flux = sed_data[0], sed_data[1]
elif obj.type == 'quasar':
flux = self.SED_AGN[int(obj.id)] * 1e-17
# if np.any(flux < 0):
# raise ValueError("Glaxy %s: negative SED fluxes"%obj.id)
flux[flux < 0] = 0.
# sedcat = np.vstack((self.lamb_AGN, flux)).T
wave = self.lamb_AGN
# print("sed (erg/s/cm2/A) = ", sed_data)
# np.savetxt(os.path.join(self.config["work_dir"], "%s_sed.txt"%(obj.id)), sedcat)
else:
raise ValueError("Object type not known")
speci = interpolate.interp1d(wave, flux)
lamb = np.arange(2000, 11001+0.5, 0.5)
y = speci(lamb)
# erg/s/cm2/A --> photon/s/m2/A
all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))
if obj.type == 'quasar':
# integrate to get the magnitudes
sed_photon = np.array([sed['WAVELENGTH'], sed['FLUX']]).T
sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest')
sed_photon = galsim.SED(sed_photon, wave_type='A', flux_type='1', fast=False)
interFlux = integrate_sed_bandpass(sed=sed_photon, bandpass=self.filt.bandpass_full)
obj.param['mag_use_normal'] = getABMAG(interFlux, self.filt.bandpass_full)
# if obj.param['mag_use_normal'] >= 30:
# print("obj ID = %d"%obj.id)
# print("mag_use_normal = %.3f"%obj.param['mag_use_normal'])
# print("integrated flux = %.7f"%(interFlux))
# print("app mag = %.3f"%obj.param['appMag'])
# np.savetxt('./AGN_SED_test/sed_objID_%d.txt'%obj.id, np.transpose([self.lamb_AGN, self.SED_AGN[int(obj.id)]]))
# print("obj ID = %d"%obj.id)
# print("mag_use_normal = %.3f"%obj.param['mag_use_normal'])
# print("integrated flux = %.7f"%(interFlux))
# print("app mag = %.3f"%obj.param['appMag'])
# print("abs mag = %.3f"%obj.param['absMag'])
# mag = getABMAG(interFlux, self.filt.bandpass_full)
# print("mag diff = %.3f"%(mag - obj.param['mag_use_normal']))
del wave
del flux
return sed
---
###############################################
#
# Configuration file for CSST simulation
# CSST-Sim Group, 2023/04/25
#
###############################################
# Base diretories and naming setup
# Can add some of the command-line arguments here as well;
# OK to pass either way or both, as long as they are consistent
work_dir: "/share/home/fangyuedong/sim_v2/csst-simulation/workplace/"
data_dir: "/share/simudata/CSSOSDataProductsSims/data/"
run_name: "fd_test_C6_phi_0"
# Whether to use MPI
run_option:
use_mpi: NO
# NOTE: "n_threads" paramters is currently not used in the backend
# simulation codes. It should be implemented later in the web frontend
# in order to config the number of threads to request from NAOC cluster
n_threads: 80
# Output catalog only?
# If yes, no imaging simulation will run
out_cat_only: NO
###############################################
# Catalog setting
###############################################
# Configure your catalog: options to be implemented
# in the corresponding (user defined) 'Catalog' class
catalog_options:
input_path:
cat_dir: "Catalog_C6_20221212"
star_cat: "C6_MMW_GGC_Astrometry_healpix.hdf5"
galaxy_cat: "cat2CSSTSim_bundle/"
AGN_cat: "AGN_C6_ross13_rand_pos_rmax-1.3.fits"
SED_templates_path:
star_SED: "Catalog_20210126/SpecLib.hdf5"
galaxy_SED: "Catalog_C6_20221212/sedlibs/"
AGN_SED: "quickspeclib_ross13.fits"
AGN_SED_WAVE: "wave_ross13.npy"
# Only simulate stars?
star_only: NO
# Only simulate galaxies?
galaxy_only: YES
# rotate galaxy ellipticity
rotateEll: 0. # [degree]
seed_Av: 121212 # Seed for generating random intrinsic extinction
###############################################
# Observation setting
###############################################
obs_setting:
# Options for survey types:
# "Photometric": simulate photometric chips only
# "Spectroscopic": simulate slitless spectroscopic chips only
# "FGS": simulate FGS chips only (31-42)
# "All": simulate full focal plane
survey_type: "Photometric"
# Exposure time [seconds]
exp_time: 150.
# Observation starting date & time
date_obs: "210525" # [yymmdd]
time_obs: "120000" # [hhmmss]
# Default Pointing [degrees]
# Note: NOT valid when a pointing list file is specified
ra_center: 192.8595
dec_center: 27.1283
# Image rotation [degree]
image_rot: -113.4333
# (Optional) a file of point list
# if you just want to run default pointing:
# - pointing_dir: null
# - pointing_file: null
pointing_dir: "/share/simudata/CSSOSDataProductsSims/data/"
pointing_file: "pointing_radec_246.5_40.dat"
# Number of calibration pointings
np_cal: 0
# Run specific pointing(s):
# - give a list of indexes of pointings: [ip_1, ip_2...]
# - run all pointings: null
# Note: only valid when a pointing list is specified
run_pointings: [0]
# Run specific chip(s):
# - give a list of indexes of chips: [ip_1, ip_2...]
# - run all chips: null
# Note: for all pointings
run_chips: [9]
# Whether to enable astrometric modeling
enable_astrometric_model: True
# Cut by saturation magnitude in which band?
cut_in_band: "z"
# saturation magnitude margin
mag_sat_margin: -2.5
# limiting magnitude margin
mag_lim_margin: +1.0
###############################################
# PSF setting
###############################################
psf_setting:
# Which PSF model to use:
# "Gauss": simple gaussian profile
# "Interp": Interpolated PSF from sampled ray-tracing data
psf_model: "Interp"
# PSF size [arcseconds]
# radius of 80% energy encircled
# NOTE: only valid for "Gauss" PSF
psf_rcont: 0.15
# path to PSF data
# NOTE: only valid for "Interp" PSF
psf_dir: "/share/simudata/CSSOSDataProductsSims/data/psfCube1"
###############################################
# Shear setting
###############################################
shear_setting:
# Options to generate mock shear field:
# "constant": all galaxies are assigned a constant reduced shear
# "catalog": from catalog
# "extra": from seprate file
shear_type: "catalog"
# For constant shear filed
reduced_g1: 0.
reduced_g2: 0.
# Extra shear catalog
# (currently not used)
# shear_cat: "mockShear.cat"
###############################################
# Instrumental effects setting
###############################################
ins_effects:
# switches
# Note: bias_16channel, gain_16channel, and shutter_effect
# is currently not applicable to "FGS" observations
field_dist: ON # Whether to add field distortions
add_back: NO # Whether to add sky background
add_dark: NO # Whether to add dark noise
add_readout: NO # Whether to add read-out (Gaussian) noise
add_bias: ON # Whether to add bias-level to images
bias_16channel: NO # Whether to add different biases for 16 channels
gain_16channel: NO # Whether to make different gains for 16 channels
shutter_effect: NO # Whether to add shutter effect
flat_fielding: ON # Whether to add flat-fielding effect
prnu_effect: NO # Whether to add PRNU effect
non_linear: NO # Whether to add non-linearity
cosmic_ray: NO # Whether to add cosmic-ray
cray_differ: NO # Whether to generate different cosmic ray maps CAL and MS output
cte_trail: NO # Whether to simulate CTE trails
saturbloom: ON # Whether to simulate Saturation & Blooming
add_badcolumns: NO # Whether to add bad columns
add_hotpixels: NO # Whether to add hot pixels
add_deadpixels: NO # Whether to add dead(dark) pixels
bright_fatter: NO # Whether to simulate Brighter-Fatter (also diffusion) effect
# Values:
# default values have been defined individually for each chip in:
# ObservationSim/Instrument/data/ccd/chip_definition.json
# Set them here will override the default values
# dark_exptime: 300 # Exposure time for dark current frames [seconds]
# flat_exptime: 150 # Exposure time for flat-fielding frames [seconds]
# readout_time: 40 # The read-out time for each channel [seconds]
# df_strength: 2.3 # Sillicon sensor diffusion strength
# bias_level: 500 # bias level [e-/pixel]
# gain: 1.1 # Gain
# full_well: 90000 # Full well depth [e-]
###############################################
# Output options (for calibration pointings only)
###############################################
output_setting:
readout16: OFF # Whether to export as 16 channels (subimages) with pre- and over-scan
shutter_output: OFF # Whether to export shutter effect 16-bit image
bias_output: ON # Whether to export bias frames
dark_output: ON # Whether to export the combined dark current files
flat_output: ON # Whether to export the combined flat-fielding files
prnu_output: OFF # Whether to export the PRNU (pixel-to-pixel flat-fielding) files
NBias: 1 # Number of bias frames to be exported for each exposure
NDark: 1 # Number of dark frames to be exported for each exposure
NFlat: 1 # Number of flat frames to be exported for each exposure
###############################################
# Random seeds
###############################################
random_seeds:
seed_poisson: 20210601 # Seed for Poisson noise
seed_CR: 20210317 # Seed for generating random cosmic ray maps
seed_flat: 20210101 # Seed for generating random flat fields
seed_prnu: 20210102 # Seed for photo-response non-uniformity
seed_gainNonUniform: 20210202 # Seed for gain nonuniformity
seed_biasNonUniform: 20210203 # Seed for bias nonuniformity
seed_rnNonUniform: 20210204 # Seed for readout-noise nonuniformity
seed_badcolumns: 20240309 # Seed for bad columns
seed_defective: 20210304 # Seed for defective (bad) pixels
seed_readout: 20210601 # Seed for read-out gaussian noise
...
\ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment