Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_msc_sim
Commits
df15b1ac
Commit
df15b1ac
authored
Jun 17, 2024
by
Zhang Xin
Browse files
modify sls convolve psf method
parent
21c0174d
Changes
4
Show whitespace changes
Inline
Side-by-side
observation_sim/ObservationSim.py
View file @
df15b1ac
...
...
@@ -23,7 +23,7 @@ class Observation(object):
self
.
filter_param
=
FilterParam
()
self
.
Catalog
=
Catalog
def
prepare_chip_for_exposure
(
self
,
chip
,
ra_cen
,
dec_cen
,
pointing
,
wcs_fp
=
None
):
def
prepare_chip_for_exposure
(
self
,
chip
,
ra_cen
,
dec_cen
,
pointing
,
wcs_fp
=
None
,
slsPSFOptim
=
False
):
# Get WCS for the focal plane
if
wcs_fp
==
None
:
wcs_fp
=
self
.
focal_plane
.
getTanWCS
(
...
...
@@ -34,6 +34,26 @@ class Observation(object):
chip
.
img
.
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
chip
.
img
.
wcs
=
wcs_fp
chip
.
slsPSFOptim
=
slsPSFOptim
if
chip
.
chipID
in
[
1
,
2
,
3
,
4
,
5
,
10
,
21
,
26
,
27
,
28
,
29
,
30
]
and
slsPSFOptim
:
chip
.
img_stack
=
{}
for
id1
in
np
.
arange
(
2
):
gn
=
chip_utils
.
getChipSLSGratingID
(
chip
.
chipID
)[
id1
]
orders
=
{}
# for id2 in ['-2','-1','0','1','2']:
for
id2
in
[
'0'
,
'1'
]:
o_n
=
"order"
+
id2
allbands
=
{}
for
id3
in
[
'1'
,
'2'
,
'3'
,
'4'
]:
w_n
=
"w"
+
id3
allbands
[
w_n
]
=
galsim
.
ImageF
(
chip
.
npix_x
,
chip
.
npix_y
)
allbands
[
w_n
].
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
allbands
[
w_n
].
wcs
=
wcs_fp
orders
[
o_n
]
=
allbands
chip
.
img_stack
[
gn
]
=
orders
else
:
chip
.
img_stack
=
{}
# Get random generators for this chip
chip
.
rng_poisson
,
chip
.
poisson_noise
=
chip_utils
.
get_poisson
(
seed
=
int
(
self
.
config
[
"random_seeds"
][
"seed_poisson"
])
+
pointing
.
id
*
30
+
chip
.
chipID
,
sky_level
=
0.
)
...
...
@@ -96,8 +116,9 @@ class Observation(object):
ra_cen
=
pointing
.
ra
dec_cen
=
pointing
.
dec
slsPSFOpt
=
True
# Prepare necessary chip properties for simulation
chip
=
self
.
prepare_chip_for_exposure
(
chip
,
ra_cen
,
dec_cen
,
pointing
)
chip
=
self
.
prepare_chip_for_exposure
(
chip
,
ra_cen
,
dec_cen
,
pointing
,
slsPSFOptim
=
slsPSFOpt
)
# Initialize SimSteps
sim_steps
=
SimSteps
(
overall_config
=
self
.
config
,
...
...
observation_sim/mock_objects/MockObject.py
View file @
df15b1ac
...
...
@@ -11,6 +11,8 @@ from observation_sim.mock_objects._util import integrate_sed_bandpass, getNormFa
getABMAG
from
observation_sim.mock_objects.SpecDisperser
import
SpecDisperser
from
observation_sim.instruments.chip
import
chip_utils
class
MockObject
(
object
):
def
__init__
(
self
,
param
,
logger
=
None
):
...
...
@@ -239,6 +241,44 @@ class MockObject(object):
def
addSLStoChipImageWithPSF
(
self
,
sdp
=
None
,
chip
=
None
,
pos_img_local
=
[
1
,
1
],
psf_model
=
None
,
bandNo
=
1
,
grating_split_pos
=
3685
,
local_wcs
=
None
,
pos_img
=
None
):
spec_orders
=
sdp
.
compute_spec_orders
()
if
chip
.
slsPSFOptim
:
for
k
,
v
in
spec_orders
.
items
():
img_s
=
v
[
0
]
pos_shear
=
galsim
.
Shear
(
e
=
0.
,
beta
=
(
np
.
pi
/
2
)
*
galsim
.
radians
)
nan_ids
=
np
.
isnan
(
img_s
)
if
img_s
[
nan_ids
].
shape
[
0
]
>
0
:
img_s
[
nan_ids
]
=
0
print
(
"DEBUG: specImg nan num is"
,
img_s
[
nan_ids
].
shape
[
0
])
#########################################################
# img_s, orig_off = convolveImg(img_s, psf_img_m)
orig_off
=
[
0
,
0
]
origin_order_x
=
v
[
1
]
-
orig_off
[
0
]
origin_order_y
=
v
[
2
]
-
orig_off
[
1
]
specImg
=
galsim
.
ImageF
(
img_s
)
specImg
.
wcs
=
local_wcs
specImg
.
setOrigin
(
origin_order_x
,
origin_order_y
)
bounds
=
specImg
.
bounds
&
galsim
.
BoundsI
(
0
,
chip
.
npix_x
-
1
,
0
,
chip
.
npix_y
-
1
)
if
bounds
.
area
()
==
0
:
continue
# orders = {'A': 'order1', 'B': 'order0', 'C': 'order2', 'D': 'order-1', 'E': 'order-2'}
orders
=
{
'A'
:
'order1'
,
'B'
:
'order0'
,
'C'
:
'order0'
,
'D'
:
'order0'
,
'E'
:
'order0'
}
gratingN
=
chip_utils
.
getChipSLSGratingID
(
chip
.
chipID
)[
1
]
if
pos_img_local
[
0
]
<
grating_split_pos
:
gratingN
=
chip_utils
.
getChipSLSGratingID
(
chip
.
chipID
)[
0
]
chip
.
img_stack
[
gratingN
][
orders
[
k
]][
'w'
+
str
(
bandNo
)].
setOrigin
(
0
,
0
)
chip
.
img_stack
[
gratingN
][
orders
[
k
]][
'w'
+
str
(
bandNo
)][
bounds
]
=
chip
.
img_stack
[
gratingN
][
orders
[
k
]][
'w'
+
str
(
bandNo
)][
bounds
]
+
specImg
[
bounds
]
chip
.
img_stack
[
gratingN
][
orders
[
k
]][
'w'
+
str
(
bandNo
)].
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
else
:
for
k
,
v
in
spec_orders
.
items
():
img_s
=
v
[
0
]
# print(bandNo,k)
...
...
observation_sim/psf/PSFInterpSLS.py
View file @
df15b1ac
...
...
@@ -20,8 +20,10 @@ import os
from
astropy.io
import
fits
from
astropy.modeling.models
import
Gaussian2D
from
scipy
import
signal
from
scipy
import
signal
,
interpolate
import
datetime
import
gc
from
jax
import
numpy
as
jnp
LOG_DEBUG
=
False
# ***#
NPSF
=
900
# ***# 30*30
...
...
@@ -479,6 +481,106 @@ class PSFInterpSLS(PSFModel):
return
PSF_int_trans
,
PSF_int
def
convolveFullImgWithPCAPSF
(
self
,
chip
,
folding_threshold
=
5.e-3
):
keys_L1
=
chip_utils
.
getChipSLSGratingID
(
chip
.
chipID
)
# keys_L2 = ['order-2','order-1','order0','order1','order2']
keys_L2
=
[
'order0'
,
'order1'
]
keys_L3
=
[
'w1'
,
'w2'
,
'w3'
,
'w4'
]
npca
=
10
x_start
=
chip
.
x_cen
/
chip
.
pix_size
-
chip
.
npix_x
/
2.
y_start
=
chip
.
y_cen
/
chip
.
pix_size
-
chip
.
npix_y
/
2.
for
i
,
gt
in
enumerate
(
keys_L1
):
psfCo
=
self
.
grating1_data
if
i
>
0
:
psfCo
=
self
.
grating2_data
for
od
in
keys_L2
:
psfCo_L2
=
psfCo
[
'order1'
]
if
od
in
[
'order-2'
,
'order-1'
,
'order0'
,
'order2'
]:
psfCo_L2
=
psfCo
[
'order0'
]
for
w
in
keys_L3
:
img
=
chip
.
img_stack
[
gt
][
od
][
w
]
pcs
=
psfCo_L2
[
'band'
+
w
[
1
]][
'band_data'
][
0
].
data
pos_p
=
psfCo_L2
[
'band'
+
w
[
1
]][
'band_data'
][
1
].
data
/
chip
.
pix_size
-
np
.
array
([
y_start
,
x_start
])
pc_coeff
=
psfCo_L2
[
'band'
+
w
[
1
]][
'band_data'
][
2
].
data
# print("DEBUG-----------",np.max(pos_p[:,1]),np.min(pos_p[:,1]), np.max(pos_p[:,0]),np.min(pos_p[:,0]))
sum_img
=
np
.
sum
(
img
.
array
)
# coeff_mat = np.zeros([npca, chip.npix_y, chip.npix_x])
# for m in np.arange(chip.npix_y):
# for n in np.arange(chip.npix_x):
# px = n
# py = m
# dist2 = (pos_p[:, 1] - px)*(pos_p[:, 1] - px) + (pos_p[:, 0] - py)*(pos_p[:, 0] - py)
# temp_sort_dist = np.zeros([dist2.shape[0], 2])
# temp_sort_dist[:, 0] = np.arange(0, dist2.shape[0], 1)
# temp_sort_dist[:, 1] = dist2
# # print(temp_sort_dist)
# dits2_sortlist = sorted(temp_sort_dist, key=lambda x: x[1])
# # print(dits2_sortlist)
# nearest4p = np.zeros([4, 3])
# pc_coeff_4p = np.zeros([npca, 4])
# for i in np.arange(4):
# smaller_ids = int(dits2_sortlist[i][0])
# nearest4p[i, 0] = pos_p[smaller_ids, 1]
# nearest4p[i, 1] = pos_p[smaller_ids, 0]
# # print(pos_p[smaller_ids, 1],pos_p[smaller_ids, 0])
# nearest4p[i, 2] = dits2_sortlist[i][1]
# pc_coeff_4p[:, i] = pc_coeff[npca, smaller_ids]
# # idw_dist = 1/(np.sqrt((px-nearest4p[:, 0]) * (px-nearest4p[:, 0]) + (
# # py-nearest4p[:, 1]) * (py-nearest4p[:, 1])))
# idw_dist = 1/(np.sqrt(nearest4p[:, 2]))
# coeff_int = np.zeros(npca)
# for i in np.arange(4):
# coeff_int = coeff_int + pc_coeff_4p[:, i]*idw_dist[i]
# coeff_mat[:, m, n] = coeff_int
m_size
=
int
(
pcs
.
shape
[
0
]
**
0.5
)
tmp_img
=
np
.
zeros_like
(
img
.
array
,
dtype
=
np
.
float32
)
for
j
in
np
.
arange
(
npca
):
print
(
gt
,
od
,
w
,
j
)
X_
=
jnp
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
Z_
=
(
pc_coeff
[
j
].
astype
(
np
.
float32
)).
flatten
()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
sub_size
=
4
cx_len
=
int
(
chip
.
npix_x
/
sub_size
)
cy_len
=
int
(
chip
.
npix_y
/
sub_size
)
n_x
=
jnp
.
arange
(
0
,
cx_len
,
1
,
dtype
=
int
)
n_y
=
jnp
.
arange
(
0
,
cy_len
,
1
,
dtype
=
int
)
M
,
N
=
jnp
.
meshgrid
(
n_x
,
n_y
)
t1
=
datetime
.
datetime
.
now
()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
U1
=
interpolate
.
griddata
(
X_
,
Z_
,
(
M
[
0
:
cy_len
,
0
:
cx_len
],
N
[
0
:
cy_len
,
0
:
cx_len
]),
method
=
'nearest'
,
fill_value
=
1.0
)
U
=
np
.
zeros_like
(
chip
.
img
.
array
,
dtype
=
np
.
float32
)
for
mi
in
np
.
arange
(
cx_len
):
for
mj
in
np
.
arange
(
cx_len
):
U
[
mi
*
sub_size
:(
mi
+
1
)
*
sub_size
,
mj
*
sub_size
:(
mj
+
1
)
*
sub_size
]
=
U1
[
mi
,
mj
]
t2
=
datetime
.
datetime
.
now
()
print
(
"time interpolate:"
,
t2
-
t1
)
img_tmp
=
img
.
array
*
U
psf
=
pcs
[:,
j
].
reshape
(
m_size
,
m_size
)
tmp_img
=
tmp_img
+
signal
.
fftconvolve
(
img_tmp
,
psf
,
mode
=
'same'
,
axes
=
None
)
t3
=
datetime
.
datetime
.
now
()
print
(
"time convole:"
,
t3
-
t2
)
del
U
del
U1
chip
.
img
=
chip
.
img
+
tmp_img
*
sum_img
/
np
.
sum
(
tmp_img
)
del
tmp_img
gc
.
collect
()
# pixSize = np.rad2deg(self.pixsize*1e-3/28)*3600 #set psf pixsize
#
# # assert self.iccd == int(chip.getChipLabel(chipID=chip.chipID)), 'ERROR: self.iccd != chip.chipID'
...
...
observation_sim/sim_steps/add_objects.py
View file @
df15b1ac
...
...
@@ -217,6 +217,28 @@ def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):
obj
.
unload_SED
()
del
obj
gc
.
collect
()
if
chip
.
survey_type
==
"spectroscopic"
and
not
self
.
overall_config
[
"run_option"
][
"out_cat_only"
]
and
chip
.
slsPSFOptim
:
# from observation_sim.instruments.chip import chip_utils as chip_utils
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[0]
# img1 = np.zeros([2,chip.img.array.shape[0],chip.img.array.shape[1]])
# for id1 in np.arange(2):
# gn = chip_utils.getChipSLSGratingID(chip.chipID)[id1]
# img_i = 0
# for id2 in ['0','1']:
# o_n = "order"+id2
# for id3 in ['1','2','3','4']:
# w_n = "w"+id3
# img1[img_i] = img1[img_i] + chip.img_stack[gn][o_n][w_n].array
# img_i = img_i + 1
# from astropy.io import fits
# fits.writeto('order0.fits',img1[0],overwrite=True)
# fits.writeto('order1.fits',img1[1],overwrite=True)
psf_model
.
convolveFullImgWithPCAPSF
(
chip
)
del
psf_model
gc
.
collect
()
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment