Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
csst-sims
csst_msc_sim
Commits
edffea7b
Commit
edffea7b
authored
Aug 01, 2024
by
Zhang Xin
Browse files
delete jax lib
parent
5634e275
Pipeline
#6492
passed with stage
in 0 seconds
Changes
1
Pipelines
1
Show whitespace changes
Inline
Side-by-side
observation_sim/psf/PSFInterpSLS.py
View file @
edffea7b
...
...
@@ -23,7 +23,7 @@ from astropy.modeling.models import Gaussian2D
from
scipy
import
signal
,
interpolate
import
datetime
import
gc
from
jax
import
numpy
as
jnp
#
from jax import numpy as jnp
LOG_DEBUG
=
False
# ***#
NPSF
=
900
# ***# 30*30
...
...
@@ -537,14 +537,14 @@ class PSFInterpSLS(PSFModel):
sumImg
=
np
.
sum
(
cutImg
.
array
)
tmp_img
=
cutImg
*
0
for
j
in
np
.
arange
(
npc
):
X_
=
j
np
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
X_
=
np
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
Z_
=
(
pc_coeff
[
j
].
astype
(
np
.
float32
)).
flatten
()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
cx_len
=
int
(
chip
.
npix_x
)
cy_len
=
int
(
chip
.
npix_y
)
n_x
=
j
np
.
arange
(
0
,
cx_len
,
1
,
dtype
=
int
)
n_y
=
j
np
.
arange
(
0
,
cy_len
,
1
,
dtype
=
int
)
M
,
N
=
j
np
.
meshgrid
(
n_x
,
n_y
)
n_x
=
np
.
arange
(
0
,
cx_len
,
1
,
dtype
=
int
)
n_y
=
np
.
arange
(
0
,
cy_len
,
1
,
dtype
=
int
)
M
,
N
=
np
.
meshgrid
(
n_x
,
n_y
)
# t1=datetime.datetime.now()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
...
...
@@ -663,16 +663,16 @@ class PSFInterpSLS(PSFModel):
tmp_img
=
np
.
zeros_like
(
img
.
array
,
dtype
=
np
.
float32
)
for
j
in
np
.
arange
(
npca
):
print
(
gt
,
od
,
w
,
j
)
X_
=
j
np
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
X_
=
np
.
hstack
((
pos_p
[:,
1
].
flatten
()[:,
None
],
pos_p
[:,
0
].
flatten
()[:,
None
]),
dtype
=
np
.
float32
)
Z_
=
(
pc_coeff
[
j
].
astype
(
np
.
float32
)).
flatten
()
# print(pc_coeff[j].shape[0], pos_p[:,1].shape[0], pos_p[:,0].shape[0])
sub_size
=
4
cx_len
=
int
(
chip
.
npix_x
/
sub_size
)
cy_len
=
int
(
chip
.
npix_y
/
sub_size
)
n_x
=
j
np
.
arange
(
0
,
chip
.
npix_x
,
sub_size
,
dtype
=
int
)
n_y
=
j
np
.
arange
(
0
,
chip
.
npix_y
,
sub_size
,
dtype
=
int
)
n_x
=
np
.
arange
(
0
,
chip
.
npix_x
,
sub_size
,
dtype
=
int
)
n_y
=
np
.
arange
(
0
,
chip
.
npix_y
,
sub_size
,
dtype
=
int
)
M
,
N
=
j
np
.
meshgrid
(
n_x
,
n_y
)
M
,
N
=
np
.
meshgrid
(
n_x
,
n_y
)
t1
=
datetime
.
datetime
.
now
()
# U = interpolate.griddata(X_, Z_, (M[0:cy_len, 0:cx_len],N[0:cy_len, 0:cx_len]),
# method='nearest',fill_value=1.0)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment