import unittest import sys import os import math from itertools import islice import numpy as np import copy import ctypes import galsim import yaml from astropy.io import fits from observation_sim.instruments import Chip, Filter, FilterParam, FocalPlane from observation_sim.instruments.chip import chip_utils from observation_sim.instruments.chip.libCTI.CTI_modeling import CTI_sim try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 'importlib_resources' import importlib_resources as pkg_resources # test FUNCTION --- START # def add_brighter_fatter(img): # Inital dynamic lib try: with pkg_resources.files('observation_sim.instruments.chip.libBF').joinpath("libmoduleBF.so") as lib_path: lib_bf = ctypes.CDLL(lib_path) except AttributeError: with pkg_resources.path('observation_sim.instruments.chip.libBF', "libmoduleBF.so") as lib_path: lib_bf = ctypes.CDLL(lib_path) lib_bf.addEffects.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER( ctypes.c_float), ctypes.POINTER(ctypes.c_float), ctypes.c_int] # Set bit flag bit_flag = 1 bit_flag = bit_flag | (1 << 2) nx, ny = img.array.shape nn = nx * ny arr_ima = (ctypes.c_float*nn)() arr_imc = (ctypes.c_float*nn)() arr_ima[:] = img.array.reshape(nn) arr_imc[:] = np.zeros(nn) lib_bf.addEffects(nx, ny, arr_ima, arr_imc, bit_flag) img.array[:, :] = np.reshape(arr_imc, [nx, ny]) del arr_ima, arr_imc return img # test FUNCTION --- END # def defineCCD(iccd, config_file): with open(config_file, "r") as stream: try: config = yaml.safe_load(stream) # for key, value in config.items(): # print (key + " : " + str(value)) except yaml.YAMLError as exc: print(exc) chip = Chip(chipID=iccd, config=config) # galsim.ImageF(chip.npix_x, chip.npix_y) chip.img = galsim.ImageF(400, 200) focal_plane = FocalPlane(chip_list=[iccd]) chip.img.wcs = focal_plane.getTanWCS( 192.8595, 27.1283, -113.4333*galsim.degrees, chip.pix_scale) return chip def defineFilt(chip): filter_param = FilterParam() filter_id, filter_type = chip.getChipFilter() filt = Filter( filter_id=filter_id, filter_type=filter_type, filter_param=filter_param, ccd_bandpass=chip.effCurve) bandpass_list = filt.bandpass_sub_list return filt class detModule_coverage(unittest.TestCase): def __init__(self, methodName='runTest'): super(detModule_coverage, self).__init__(methodName) # self.dataPath = "/public/home/chengliang/CSSOSDataProductsSims/csst-simulation/tests/UNIT_TEST_DATA" ##os.path.join(os.getenv('UNIT_TEST_DATA_ROOT'), 'csst_fz_gc1') self.dataPath = os.path.join( os.getenv('UNIT_TEST_DATA_ROOT'), 'csst_msc_sim/csst_fz_msc') self.iccd = 1 def test_add_brighter_fatter(self): config_file = os.path.join(self.dataPath, 'config_test.yaml') chip = defineCCD(self.iccd, config_file) filt = defineFilt(chip) print(chip.chipID) print(chip.cen_pix_x, chip.cen_pix_y) # objA-lowSFB obj = galsim.Gaussian(sigma=0.2, flux=1000) arr = obj.drawImage(nx=64, ny=64, scale=0.074).array chip.img.array[(100-32):(100+32), (200-32):(200+32)] = arr[:, :] img_old = copy.deepcopy(chip.img) img_new = add_brighter_fatter(img=chip.img) arr1 = img_old.array arr2 = img_new.array deltaA_max = np.max(np.abs(arr2-arr1)) print('deltaA-max:', np.max(np.abs(arr2-arr1))) print('deltaA-min:', np.min(np.abs(arr2-arr1))) # objB-highSFB obj = galsim.Gaussian(sigma=0.2, flux=10000) arr = obj.drawImage(nx=64, ny=64, scale=0.074).array chip.img.array[(100-32):(100+32), (200-32):(200+32)] = arr[:, :] img_old = copy.deepcopy(chip.img) img_new = add_brighter_fatter(img=chip.img) arr3 = img_old.array arr4 = img_new.array deltaB_max = np.max(np.abs(arr4-arr3)) print('deltaB-max:', np.max(np.abs(arr4-arr3))) print('deltaB-min:', np.min(np.abs(arr4-arr3))) self.assertTrue(deltaB_max > deltaA_max) def test_apply_CTE(self): config_file = os.path.join(self.dataPath, 'config_test.yaml') chip = defineCCD(self.iccd, config_file) filt = defineFilt(chip) print(chip.chipID) print(chip.cen_pix_x, chip.cen_pix_y) print(" Apply CTE Effect") nx, ny, noverscan, nsp, nmax = 4608, 4616, 84, 3, 10 ntotal = 4700 beta, w, c = 0.478, 84700, 0 t = np.array([0.74, 7.7, 37], dtype=np.float32) rho_trap = np.array([0.6, 1.6, 1.4], dtype=np.float32) trap_seeds = np.array([0, 100, 1000], dtype=np.int32) release_seed = 500 image = fits.getdata(os.path.join( self.dataPath, "testCTE_image_before.fits")).astype(np.int32) # get_trap_map(trap_seeds,nx,ny,nmax,rho_trap,beta,c,".") # bin2fits("trap.bin",".",nsp,nx,ny,nmax) image_cti = CTI_sim(image, nx, ny, noverscan, nsp, nmax, beta, w, c, t, rho_trap, trap_seeds, release_seed) fits.writeto(os.path.join( self.dataPath, "testCTE_image_after.fits"), data=image_cti, overwrite=True) if __name__ == '__main__': unittest.main()