import os import galsim import random import numpy as np import h5py as h5 import healpy as hp import astropy.constants as cons import traceback from astropy.coordinates import spherical_to_cartesian from astropy.table import Table from scipy import interpolate from datetime import datetime from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar from ObservationSim.MockObject._util import tag_sed, getObservedSED, getABMAG, integrate_sed_bandpass, comoving_dist from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position # (TEST) from astropy.cosmology import FlatLambdaCDM from astropy import constants from astropy import units as U from astropy.coordinates import SkyCoord from astropy.io import fits try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 'importlib_resources' import importlib_resources as pkg_resources NSIDE = 128 bundle_file_list = ['galaxies_C6_bundle000199.h5','galaxies_C6_bundle000200.h5','galaxies_C6_bundle000241.h5','galaxies_C6_bundle000242.h5','galaxies_C6_bundle000287.h5','galaxies_C6_bundle000288.h5','galaxies_C6_bundle000714.h5','galaxies_C6_bundle000715.h5','galaxies_C6_bundle000778.h5','galaxies_C6_bundle000779.h5','galaxies_C6_bundle000842.h5','galaxies_C6_bundle000843.h5','galaxies_C6_bundle002046.h5','galaxies_C6_bundle002110.h5','galaxies_C6_bundle002111.h5','galaxies_C6_bundle002173.h5','galaxies_C6_bundle002174.h5','galaxies_C6_bundle002238.h5','galaxies_C6_bundle002596.h5','galaxies_C6_bundle002597.h5','galaxies_C6_bundle002656.h5','galaxies_C6_bundle002657.h5','galaxies_C6_bundle002711.h5','galaxies_C6_bundle002712.h5','galaxies_C6_bundle002844.h5','galaxies_C6_bundle002845.h5','galaxies_C6_bundle002884.h5','galaxies_C6_bundle002885.h5','galaxies_C6_bundle002921.h5','galaxies_C6_bundle002922.h5'] qsosed_file_list = ['quickspeclib_interp1d_run1.fits','quickspeclib_interp1d_run2.fits','quickspeclib_interp1d_run3.fits','quickspeclib_interp1d_run4.fits','quickspeclib_interp1d_run5.fits','quickspeclib_interp1d_run6.fits','quickspeclib_interp1d_run7.fits','quickspeclib_interp1d_run8.fits','quickspeclib_interp1d_run9.fits','quickspeclib_interp1d_run10.fits','quickspeclib_interp1d_run11.fits','quickspeclib_interp1d_run12.fits','quickspeclib_interp1d_run13.fits','quickspeclib_interp1d_run14.fits','quickspeclib_interp1d_run15.fits','quickspeclib_interp1d_run16.fits','quickspeclib_interp1d_run17.fits','quickspeclib_interp1d_run18.fits','quickspeclib_interp1d_run19.fits','quickspeclib_interp1d_run20.fits','quickspeclib_interp1d_run21.fits','quickspeclib_interp1d_run22.fits','quickspeclib_interp1d_run23.fits','quickspeclib_interp1d_run24.fits','quickspeclib_interp1d_run25.fits','quickspeclib_interp1d_run26.fits','quickspeclib_interp1d_run27.fits','quickspeclib_interp1d_run28.fits','quickspeclib_interp1d_run29.fits','quickspeclib_interp1d_run30.fits'] star_file_list = ['C7_Gaia_Galaxia_RA170DECm23_healpix.hdf5', 'C7_Gaia_Galaxia_RA180DECp60_healpix.hdf5', 'C7_Gaia_Galaxia_RA240DECp30_healpix.hdf5', 'C7_Gaia_Galaxia_RA300DECm60_healpix.hdf5', 'C7_Gaia_Galaxia_RA30DECm48_healpix.hdf5'] star_center_list = [(170., -23.), (180., 60.), (240., 30.), (300., -60.), (30., -48.)] def get_bundleIndex(healpixID_ring, bundleOrder=4, healpixOrder=7): assert NSIDE == 2**healpixOrder shift = healpixOrder - bundleOrder shift = 2*shift nside_bundle = 2**bundleOrder nside_healpix= 2**healpixOrder healpixID_nest= hp.ring2nest(nside_healpix, healpixID_ring) bundleID_nest = (healpixID_nest >> shift) bundleID_ring = hp.nest2ring(nside_bundle, bundleID_nest) return bundleID_ring def get_agnsed_file(bundle_file_name): return qsosed_file_list[bundle_file_list.index(bundle_file_name)] def get_star_cat(ra_pointing, dec_pointing): pointing_c = SkyCoord(ra=ra_pointing*U.deg, dec=dec_pointing*U.deg) max_dist = 10 return_star_path = None for star_file, center in zip(star_file_list, star_center_list): center_c = SkyCoord(ra=center[0]*U.deg, dec=center[1]*U.deg) dist = pointing_c.separation(center_c).to(U.deg).value if dist < max_dist: return_star_path = star_file max_dist = dist return return_star_path class Catalog(CatalogBase): def __init__(self, config, chip, pointing, chip_output, filt, **kwargs): super().__init__() self.cat_dir = os.path.join(config["data_dir"], config["catalog_options"]["input_path"]["cat_dir"]) self.seed_Av = config["catalog_options"]["seed_Av"] self.cosmo = FlatLambdaCDM(H0=67.66, Om0=0.3111) self.chip_output = chip_output self.filt = filt self.logger = chip_output.logger with pkg_resources.path('Catalog.data', 'SLOAN_SDSS.g.fits') as filter_path: self.normF_star = Table.read(str(filter_path)) self.config = config self.chip = chip self.pointing = pointing self.max_size = 0. if "star_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["star_cat"] and not config["catalog_options"]["galaxy_only"]: # Get the cloest star catalog file star_file_name = get_star_cat(ra_pointing=self.pointing.ra, dec_pointing=self.pointing.dec) star_path = os.path.join(config["catalog_options"]["input_path"]["star_cat"], star_file_name) star_SED_file = config["catalog_options"]["SED_templates_path"]["star_SED"] self.star_path = os.path.join(self.cat_dir, star_path) self.star_SED_path = os.path.join(config["data_dir"], star_SED_file) self._load_SED_lib_star() if "galaxy_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["galaxy_cat"] and not config["catalog_options"]["star_only"]: galaxy_dir = config["catalog_options"]["input_path"]["galaxy_cat"] self.galaxy_path = os.path.join(self.cat_dir, galaxy_dir) self.galaxy_SED_path = os.path.join(config["data_dir"], config["catalog_options"]["SED_templates_path"]["galaxy_SED"]) self._load_SED_lib_gals() self.agn_seds = {} if "AGN_SED" in config["catalog_options"]["SED_templates_path"] and not config["catalog_options"]["star_only"]: self.AGN_SED_path = os.path.join(config["data_dir"], config["catalog_options"]["SED_templates_path"]["AGN_SED"]) if "rotateEll" in config["catalog_options"]: self.rotation = np.radians(float(config["catalog_options"]["rotateEll"])) else: self.rotation = 0. # Update output .cat header with catalog specific output columns self._add_output_columns_header() self._get_healpix_list() self._load() def _add_output_columns_header(self): self.add_hdr = " model_tag teff logg feh" self.add_hdr += " bulgemass diskmass detA e1 e2 kappa g1 g2 size galType veldisp " self.add_fmt = " %10s %8.4f %8.4f %8.4f" self.add_fmt += " %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %8.4f %4d %8.4f " self.chip_output.update_ouptut_header(additional_column_names=self.add_hdr) def _get_healpix_list(self): self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2) ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min])) dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min])) self.pix_list = hp.query_polygon( NSIDE, hp.ang2vec(np.radians(90.) - dec, ra), inclusive=True ) if self.logger is not None: msg = str(("HEALPix List: ", self.pix_list)) self.logger.info(msg) else: print("HEALPix List: ", self.pix_list) def load_norm_filt(self, obj): if obj.type == "star": return self.normF_star elif obj.type == "galaxy" or obj.type == "quasar": # return self.normF_galaxy return None else: return None def _load_SED_lib_star(self): self.tempSED_star = h5.File(self.star_SED_path,'r') def _load_SED_lib_gals(self): pcs = h5.File(os.path.join(self.galaxy_SED_path, "pcs.h5"), "r") lamb = h5.File(os.path.join(self.galaxy_SED_path, "lamb.h5"), "r") self.lamb_gal = lamb['lamb'][()] self.pcs = pcs['pcs'][()] def _load_gals(self, gals, pix_id=None, cat_id=0, agnsed_file=""): ngals = len(gals['ra']) # Apply astrometric modeling ra_arr = gals['ra'][:] dec_arr = gals['dec'][:] if self.config["obs_setting"]["enable_astrometric_model"]: ra_list = ra_arr.tolist() dec_list = dec_arr.tolist() pmra_list = np.zeros(ngals).tolist() pmdec_list = np.zeros(ngals).tolist() rv_list = np.zeros(ngals).tolist() parallax_list = [1e-9] * ngals dt = datetime.utcfromtimestamp(self.pointing.timestamp) date_str = dt.date().isoformat() time_str = dt.time().isoformat() ra_arr, dec_arr = on_orbit_obs_position( input_ra_list=ra_list, input_dec_list=dec_list, input_pmra_list=pmra_list, input_pmdec_list=pmdec_list, input_rv_list=rv_list, input_parallax_list=parallax_list, input_nstars=ngals, input_x=self.pointing.sat_x, input_y=self.pointing.sat_y, input_z=self.pointing.sat_z, input_vx=self.pointing.sat_vx, input_vy=self.pointing.sat_vy, input_vz=self.pointing.sat_vz, input_epoch="J2000", input_date_str=date_str, input_time_str=time_str ) for igals in range(ngals): # # (TEST) # if igals > 100: # break param = self.initialize_param() param['ra'] = ra_arr[igals] param['dec'] = dec_arr[igals] param['ra_orig'] = gals['ra'][igals] param['dec_orig'] = gals['dec'][igals] # param['mag_use_normal'] = gals['mag_csst_%s'%(self.filt.filter_type)][igals] if self.filt.filter_type == 'NUV': param['mag_use_normal'] = gals['mag_csst_nuv'][igals] else: param['mag_use_normal'] = gals['mag_csst_%s'%(self.filt.filter_type)][igals] if self.filt.is_too_dim(mag=param['mag_use_normal'], margin=self.config["obs_setting"]["mag_lim_margin"]): continue param['z'] = gals['redshift'][igals] param['model_tag'] = 'None' param['g1'] = gals['shear'][igals][0] param['g2'] = gals['shear'][igals][1] param['kappa'] = gals['kappa'][igals] param['e1'] = gals['ellipticity_true'][igals][0] param['e2'] = gals['ellipticity_true'][igals][1] # For shape calculation param['e1'], param['e2'], param['ell_total'] = self.rotate_ellipticity( e1=gals['ellipticity_true'][igals][0], e2=gals['ellipticity_true'][igals][1], rotation=self.rotation, unit='radians') # param['ell_total'] = np.sqrt(param['e1']**2 + param['e2']**2) if param['ell_total'] > 0.9: continue # phi_e = cmath.phase(complex(param['e1'], param['e2'])) # param['e1'] = param['ell_total'] * np.cos(phi_e + 2*self.rotation) # param['e2'] = param['ell_total'] * np.sin(phi_e + 2*self.rotation) param['e1_disk'] = param['e1'] param['e2_disk'] = param['e2'] param['e1_bulge'] = param['e1'] param['e2_bulge'] = param['e2'] param['delta_ra'] = 0 param['delta_dec'] = 0 # Masses param['bulgemass'] = gals['bulgemass'][igals] param['diskmass'] = gals['diskmass'][igals] param['size'] = gals['size'][igals] if param['size'] > self.max_size: self.max_size = param['size'] # Sersic index param['disk_sersic_idx'] = 1. param['bulge_sersic_idx'] = 4. # Sizes param['bfrac'] = param['bulgemass']/(param['bulgemass'] + param['diskmass']) if param['bfrac'] >= 0.6: param['hlr_bulge'] = param['size'] param['hlr_disk'] = param['size'] * (1. - param['bfrac']) else: param['hlr_disk'] = param['size'] param['hlr_bulge'] = param['size'] * param['bfrac'] # SED coefficients param['coeff'] = gals['coeff'][igals] param['detA'] = gals['detA'][igals] # Others param['galType'] = gals['type'][igals] param['veldisp'] = gals['veldisp'][igals] # TEST no redening and no extinction param['av'] = 0.0 param['redden'] = 0 # Is this an Quasar? param['qsoindex'] = gals['qsoindex'][igals] if param['qsoindex'] == -1: param['star'] = 0 # Galaxy param['agnsed_file'] = "" else: param['star'] = 2 # Quasar param['agnsed_file'] = agnsed_file # NOTE: this cut cannot be put before the SED type has been assigned if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200): continue # TEMP self.ids += 1 param['id'] = '%06d'%(int(pix_id)) + '%06d'%(cat_id) + '%08d'%(igals) if param['star'] == 0: obj = Galaxy(param, logger=self.logger) elif param['star'] == 2: obj = Quasar(param, logger=self.logger) # Need to deal with additional output columns obj.additional_output_str = self.add_fmt%("n", 0., 0., 0., param['bulgemass'], param['diskmass'], param['detA'], param['e1'], param['e2'], param['kappa'], param['g1'], param['g2'], param['size'], param['galType'], param['veldisp']) self.objs.append(obj) def _load_stars(self, stars, pix_id=None): nstars = len(stars['sourceID']) # Apply astrometric modeling ra_arr = stars["RA"][:] dec_arr = stars["Dec"][:] pmra_arr = stars['pmra'][:] pmdec_arr = stars['pmdec'][:] rv_arr = stars['RV'][:] parallax_arr = stars['parallax'][:] if self.config["obs_setting"]["enable_astrometric_model"]: ra_list = ra_arr.tolist() dec_list = dec_arr.tolist() pmra_list = pmra_arr.tolist() pmdec_list = pmdec_arr.tolist() rv_list = rv_arr.tolist() parallax_list = parallax_arr.tolist() dt = datetime.utcfromtimestamp(self.pointing.timestamp) date_str = dt.date().isoformat() time_str = dt.time().isoformat() ra_arr, dec_arr = on_orbit_obs_position( input_ra_list=ra_list, input_dec_list=dec_list, input_pmra_list=pmra_list, input_pmdec_list=pmdec_list, input_rv_list=rv_list, input_parallax_list=parallax_list, input_nstars=nstars, input_x=self.pointing.sat_x, input_y=self.pointing.sat_y, input_z=self.pointing.sat_z, input_vx=self.pointing.sat_vx, input_vy=self.pointing.sat_vy, input_vz=self.pointing.sat_vz, input_epoch="J2000", input_date_str=date_str, input_time_str=time_str ) for istars in range(nstars): # # (TEST) # if istars > 100: # break param = self.initialize_param() param['ra'] = ra_arr[istars] param['dec'] = dec_arr[istars] param['ra_orig'] = stars["RA"][istars] param['dec_orig'] = stars["Dec"][istars] param['pmra'] = pmra_arr[istars] param['pmdec'] = pmdec_arr[istars] param['rv'] = rv_arr[istars] param['parallax'] = parallax_arr[istars] if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200): continue param['mag_use_normal'] = stars['app_sdss_g'][istars] self.ids += 1 param['id'] = stars['sourceID'][istars] param['sed_type'] = stars['sourceID'][istars] param['model_tag'] = stars['model_tag'][istars] param['teff'] = stars['teff'][istars] param['logg'] = stars['grav'][istars] param['feh'] = stars['feh'][istars] param['z'] = 0.0 param['star'] = 1 # Star obj = Star(param, logger=self.logger) # Append additional output columns to the .cat file obj.additional_output_str = self.add_fmt%(param["model_tag"], param['teff'], param['logg'], param['feh'], 0., 0., 0., 0., 0., 0., 0., 0., 0., -1, 0.) self.objs.append(obj) def _load(self, **kwargs): self.objs = [] self.ids = 0 if "star_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["star_cat"] and not self.config["catalog_options"]["galaxy_only"]: star_cat = h5.File(self.star_path, 'r')['catalog'] for pix in self.pix_list: try: stars = star_cat[str(pix)] self._load_stars(stars, pix_id=pix) del stars except Exception as e: self.logger.error(str(e)) print(e) if "galaxy_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["galaxy_cat"] and not self.config["catalog_options"]["star_only"]: for pix in self.pix_list: try: bundleID = get_bundleIndex(pix) bundle_file = "galaxies_C6_bundle{:06}.h5".format(bundleID) file_path = os.path.join(self.galaxy_path, bundle_file) gals_cat = h5.File(file_path, 'r')['galaxies'] gals = gals_cat[str(pix)] # Get corresponding AGN SED file agnsed_file = get_agnsed_file(bundle_file) agnsed_path = os.path.join(self.AGN_SED_path, agnsed_file) self.agn_seds[agnsed_file] = fits.open(agnsed_path)[0].data self._load_gals(gals, pix_id=pix, cat_id=bundleID, agnsed_file=agnsed_file) del gals except Exception as e: traceback.print_exc() self.logger.error(str(e)) print(e) if self.logger is not None: self.logger.info("maximum galaxy size: %.4f"%(self.max_size)) self.logger.info("number of objects in catalog: %d"%(len(self.objs))) else: print("number of objects in catalog: ", len(self.objs)) def load_sed(self, obj, **kwargs): if obj.type == 'star': _, wave, flux = tag_sed( h5file=self.tempSED_star, model_tag=obj.param['model_tag'], teff=obj.param['teff'], logg=obj.param['logg'], feh=obj.param['feh'] ) elif obj.type == 'galaxy' or obj.type == 'quasar': factor = 10**(-.4 * self.cosmo.distmod(obj.z).value) if obj.type == 'galaxy': flux = np.matmul(self.pcs, obj.coeff) * factor # if np.any(flux < 0): # raise ValueError("Glaxy %s: negative SED fluxes"%obj.id) flux[flux < 0] = 0. sedcat = np.vstack((self.lamb_gal, flux)).T sed_data = getObservedSED( sedCat=sedcat, redshift=obj.z, av=obj.param["av"], redden=obj.param["redden"] ) wave, flux = sed_data[0], sed_data[1] elif obj.type == 'quasar': flux = self.agn_seds[obj.agnsed_file][int(obj.qsoindex)] * 1e-17 flux[flux < 0] = 0. wave = self.lamb_gal else: raise ValueError("Object type not known") speci = interpolate.interp1d(wave, flux) lamb = np.arange(2000, 11001+0.5, 0.5) y = speci(lamb) # erg/s/cm2/A --> photon/s/m2/A all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13 sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX')) if obj.type == 'quasar': # integrate to get the magnitudes sed_photon = np.array([sed['WAVELENGTH'], sed['FLUX']]).T sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest') sed_photon = galsim.SED(sed_photon, wave_type='A', flux_type='1', fast=False) interFlux = integrate_sed_bandpass(sed=sed_photon, bandpass=self.filt.bandpass_full) obj.param['mag_use_normal'] = getABMAG(interFlux, self.filt.bandpass_full) # mag = getABMAG(interFlux, self.filt.bandpass_full) # print("mag diff = %.3f"%(mag - obj.param['mag_use_normal'])) del wave del flux return sed