Skip to content
target.py 22.7 KiB
Newer Older
GZhao's avatar
GZhao committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
import os, re, json, yaml
from typing import Union
import numpy as np
from scipy import constants
from astropy.io import fits
from astropy.coordinates import SkyCoord

from .config import S  # pysynphot
from .config import config
from .optics import filter_throughput
from .io import log
from pysynphot.renorm import StdRenorm


PLANK_H = constants.h  # ~6.62607015e-34
LIGHT_SPEED = constants.c  # ~3e8
DEG2RAD = np.pi / 180
R_JUPITER_METER = 6.99e4
AU_METER = 1.49e8

DEFAULT_FILTER_FILE = config['default_band']
HYBRID_MODEL_FILE = config['hybrid_model']
BCC_MODEL_FOLDER = config['bcc_model']
MAG_SYSTEM = config['mag_system']
CATALOG_CACHE = {}

class AlbedoCat(S.spectrum.TabularSpectralElement, S.catalog.Icat):
    """Generate albedo spectrum from the planet reflection model in Batalha et al. 2018
    
    Parameters
    ----------
    phase : float
        [degree], The phase angle of the planet, range from 0 to 180.
    metallicity : float
        The metallicity of the planet. log(Z/Zsun), range from 0 to 2.
    f_sed : float
        The sedimentation efficiency of the cloud. log(f_sed), range from -2 to 2. 2 is for cloud free case.

    Notes
    -----
    f_sed is only reliable between -2 and log10(6) and the cloud free case (2).
    Values between log10(6) and 2 are interpolated from the cloud free case (2) and log10(6).

    Reference
    ---------
    Color Classification of Extrasolar Giant Planets: Prospects and Cautions
    Natasha E. Batalha et al 2018 AJ 156 158
    
    """
    
    def __init__(self, 
                phase: float, 
                metallicity: float,
                f_sed: float,
            ):
        catname = 'BCCalbedo'
        self.isAnalytic=False
        self.name = f"{catname}_{phase}_{metallicity}_{f_sed}"
        self.parameter_names = ['phase', 'metallicity', 'f_sed']
        self.catalog_folder = BCC_MODEL_FOLDER
        filename = os.path.join(self.catalog_folder, 'catalog.fits')

        if filename in CATALOG_CACHE:
            indices = CATALOG_CACHE[filename]
        else:
            with fits.open(filename) as table:
                indexList = table[1].data.field('INDEX')
                filenameList = table[1].data.field('FILENAME')
            
            indices = self._getArgs(indexList, filenameList)
            CATALOG_CACHE[filename] = indices

        list0,list1 = self._breakList(indices, 0, phase)

        list2,list3 = self._breakList(list0, 1, metallicity)
        list4,list5 = self._breakList(list1, 1, metallicity)

        list6,list7   = self._breakList(list2, 2, f_sed)
        list8,list9   = self._breakList(list3, 2, f_sed)
        list10,list11 = self._breakList(list4, 2, f_sed)
        list12,list13 = self._breakList(list5, 2, f_sed)

        sp1, wave, waveunits = self._getSpectrum(list6[0],  catname, wave_output=True)
        sp2 = self._getSpectrum(list7[0],  catname)
        sp3 = self._getSpectrum(list8[0],  catname)
        sp4 = self._getSpectrum(list9[0],  catname)
        sp5 = self._getSpectrum(list10[0], catname)
        sp6 = self._getSpectrum(list11[0], catname)
        sp7 = self._getSpectrum(list12[0], catname)
        sp8 = self._getSpectrum(list13[0], catname)

        spa1 = self._interpolateSpectrum(sp1, sp2, f_sed)
        spa2 = self._interpolateSpectrum(sp3, sp4, f_sed)
        spa3 = self._interpolateSpectrum(sp5, sp6, f_sed)
        spa4 = self._interpolateSpectrum(sp7, sp8, f_sed)

        spa5 = self._interpolateSpectrum(spa1, spa2, metallicity)
        spa6 = self._interpolateSpectrum(spa3, spa4, metallicity)

        spa7 = self._interpolateSpectrum(spa5, spa6, phase)

        sp = spa7[0]

        self._wavetable = wave * 1e4
        self._throughputtable = sp
        self.waveunits = S.units.Units(waveunits.lower())
        self.warnings = {}

    def _getSpectrum(self, parlist, catdir, wave_output=False):
        name = parlist[3]

        filename = name.split('[')[0]
        column = name.split('[')[1][:-1]

        filename = f"{self.catalog_folder}/{filename}"
        
        # sp = S.spectrum.TabularSpectralElement(filename, thrucol=column)

        with fits.open(filename) as td:
            sp = td[1].data.field(column)
            wave = td[1].data.field('wavelength')
            # waveunits = td[1].header['tunit1']
            waveunits = 'micron'

        result = []
        for member in parlist:
            result.append(member)

        result.pop()
        result.append(sp)

        if wave_output:
            return result, wave, waveunits

        return result


def _sptype2num(
        spectral_type: str) -> tuple:
    """
    convert spectral type string to number, for interpretation

    case0: normal case
    - M1V: 6.1, 5
    - O5IV: 0.5, 4
    - F3V: 3.3, 5
    - K4.5II: 5.45, 2

    case 1: star type or subtype missing
    zero or V will return
    - M1: 6.1, 5
    - M: 6.0, 5

    case 2: spectral type + subtype
    subtype will be ignored
    - K3Vvar: 5.3, 5
    - F6Vbwvar: 3.6, 5
    - K0IV SB: 5.0, 4
    - F5V+: 3.5, 5

    case 3: multi spectral type
    only the first sptype is used
    - G5IV/V +K1IV: 4.5, 4
    - F7IV-V: 3.7, 4
    - O4/O5IV: 0.4, 0
    - G3/G5V: 4.3, 0

    case 4: illegal input
    ValueError will be raised
    """
    obafgkm = 'OBAFGKML'
    spectral_type = spectral_type.upper()
    # match spectral type such as M1V, O5IV, F3V, K4.5II
    matched = re.match(
        RF'^([{obafgkm}])([0-9]\d*\.?\d*)*([IV]*)', spectral_type)

    if not matched:
        raise ValueError(f"illegal spectral type input: {spectral_type}")

    shorttype = obafgkm.find(matched.group(1))

    subtype = 0.0
    if matched.group(2):
        subtype = float(matched.group(2))

    stlist = ['O', 'I', 'II', 'III', 'IV', 'V']
    startype = dict(zip(stlist, range(len(stlist)))).get(matched.group(3), 5)

    return shorttype + subtype / 10, startype


def _spnum2teff(
        spn: int,
        stn: int) -> tuple:
    """
    interpret of spectral number (by __sptype2num) to get t_eff and log_g
    look up table from the document of ck04model
    """
    with open(config['sp2teff_model'], 'r') as fid:
        sptype_teff_lut = json.load(fid)

    def _interp(spn, stn):
        lut = sptype_teff_lut[f'{stn}']
        teff = np.interp(spn, lut[0], lut[1])
        logg = np.interp(spn, lut[0], lut[2])
        return teff, logg

    stn = 5 if stn not in [1, 2, 3, 4, 5] else stn

    if stn in [1, 3, 5]:
        return _interp(spn, stn)
    else:
        teff_low, logg_low = _interp(spn, stn-1)
        teff_high, logg_high = _interp(spn, stn+1)
        return (teff_high + teff_low)/2, (logg_high + logg_low)/2


def star_photlam(
        magnitude: float,
        sptype: str,
        is_blackbody: bool = False,
        mag_input_band: str = 'f661') -> S.ArraySpectrum:
    """
    genrate flux spectrum of a star by its observal magnitude and spectral type

    Parameters
    ----------
    magnitude: float
        magnitude of the star
    sptype: str
        spectral type of the star
    is_blackbody: bool
        if True, use blackbody spectrum instead of ck04model
    mag_input_band: str
        bandpass of the input magnitude, default is f661

    Returns
    -------
    pysynphot.spectrum.ArraySpectrum
        spectrum of the star in photlam unit
    """
    spn, stn = _sptype2num(sptype)
    t_eff, log_g = _spnum2teff(spn, stn)

    log.debug(f"{sptype} star => [{t_eff=:}, {log_g=:}]; {is_blackbody=:}")
    filter = filter_throughput(mag_input_band)

    if not is_blackbody:
        METALLICITY = 0
        spectrum = S.Icat('ck04models', t_eff, METALLICITY, log_g)
    else:
        spectrum = S.BlackBody(t_eff)

    star_sp = spectrum.renorm(magnitude, MAG_SYSTEM, filter)
    star_sp.convert('photlam')
    return star_sp

def standard_spectrum(
        magnitude: float) -> S.ArraySpectrum:
    """Standard spectrum of magnitude system. 
    For example, the standard_spectrum of vega megnitude is vega spectrum. 
    The standard spectrum of ab magnitude is a flat spectrum.

    Parameters
    -----------
    magnitude : float
        magnitude of the standard spectrum
    
    Returns
    ----------
    star_sp : S.spectrum.Spectrum
    
    """
    inner_std = S.units.Units(MAG_SYSTEM).StdSpectrum
    std_spectrum = S.ArraySpectrum(
        inner_std.wave,
        inner_std.flux,
        inner_std.waveunits,
        inner_std.fluxunits
    )
    filter = filter_throughput(DEFAULT_FILTER_FILE)
    std_spectrum = StdRenorm(std_spectrum, filter, magnitude, MAG_SYSTEM)
    std_spectrum.convert('photlam')
    return std_spectrum
    
def bcc_spectrum(
        coe_cloud: float,
        coe_metalicity: float) -> S.spectrum.ArraySpectralElement:
    """Albedo spectrum of planet using BCC model (Batalha et al. 2018),

    Parameters
    ----------
    coe_cloud: float
        The sedimentation efficiency of the cloud. log(f_sed), range from -2 to 2. 2 is for cloud free case.
    coe_metalicity: float
        The metallicity of the planet. log(Z/Zsun), range from 0 to 2.

    Returns
    -------
    pysynphot.spectrum.ArrayBandpass
        albedo spectrum of the planet
    """

    spec = AlbedoCat(0, coe_metalicity, coe_cloud)
    spec.convert('angstrom')
    return spec


def hybrid_albedo_spectrum(
        coe_b: float,
        coe_r: float) -> S.spectrum.ArraySpectralElement:
    """Albedo spectrum of planet using hybrid-jupiter-neptune model (Lacy et al. 2018)
    jupiter and neptune spectrum is from Karkoschka’s 1994

    Parameters
    ----------
    coe_b: float
        coefficient of blue spectrum, 1 for jupiter, 0 for neptune
    coe_r: float
        coefficient of red spectrum, 1 for jupiter, 0 for neptune

    Returns
    -------
    pysynphot.spectrum.ArrayBandpass
        albedo spectrum of the planet
    """
    log.debug(f"planet hybrid spectrum with {coe_b=:}, {coe_r=:}")
    model = fits.getdata(HYBRID_MODEL_FILE)
    spec = model[1, :] * coe_r
    spec += model[2, :] * coe_b
    spec += model[3, :] * (1 - coe_r)
    spec += model[4, :] * (1 - coe_b)

    albedo = S.ArrayBandpass(
        wave=model[0, :],
        throughput=spec,
        waveunits='nm'
    )
    albedo.convert('angstrom')
    return albedo


def extract_target_x_y(
        target: dict,
        ra0: str = None,
        dec0: str = None) -> tuple:
    """
    extract x, y of target from target dict

    Parameters
    ----------
    target: dict
        target dict. must contain either (ra, dec) or (pangle, spearation)
    ra0: str
        ra of center star. must be provided if (ra, dec) of target is used
    dec0: str
        dec of center star. must be provided if (ra, dec) of target is used

    Returns
    -------
    x, y: float
        x, y of target in arcsec

    Raises
    ------
    ValueError
        if (ra, dec) of target is used but (ra, dec) of center star is not provided.

    ValueError
        one of (ra, dec) or (pangle, spearation) is not provided.
    """

    def _pa2xy(p_angle, separation):
        p_angle_rad = p_angle * DEG2RAD
        x = separation * np.sin(p_angle_rad)
        y = separation * np.cos(p_angle_rad)
        log.debug(f"({p_angle=:}, {separation=:}) => ({x=:}, {y=:})")
        return x, y

    if 'pangle' in target.keys() and 'separation' in target.keys():
        return _pa2xy(target['pangle'], target['separation'])

    if 'ra' not in target.keys() or 'dec' not in target.keys():
        raise ValueError(
            'either (ra, dec) or (pangle, separation) needed in target dict')

    if ra0 is None or dec0 is None:
        raise ValueError(
            '(ra, dec) of center star must be provided if (ra, dec) of bkstar is used'
        )

    ra, dec = target['ra'], target['dec']
    log.debug(f"target: {ra=:}, {dec=:}, center star: {ra0=:}, {dec0=:}")
    cstar = SkyCoord(ra0, dec0)
    bkstar = SkyCoord(ra, dec)
    separation = cstar.separation(bkstar).arcsec
    p_angle = cstar.position_angle(bkstar).degree
    x, y = _pa2xy(p_angle, separation)

    return x, y


def detect_template_path(template: str) -> str:
    """Find template file in catalog folder or current folder.

    Parameters
    ----------
    template: str
        template file name
    
    Returns
    -------
    str
        absolute path of template file

    """

    if os.path.isfile(template):
        return os.path.abspath(template)
    
    catalog = config['catalog_folder']
    cat_temp = os.path.join(catalog, template)
    if os.path.isfile(cat_temp):
        return cat_temp

    raise FileExistsError(f'cant find {template} in ./ or catalog folder')
    

class TargetOjbect(object):
    """A helper class to generate target spectrum and albedo spectrum

    Attributes
    ----------
    x: float
        x of target in arcsec
    y: fload
        y of target in arcsec
    ra: str
        ra string for center star, such as '15d23m05s'
    dec: str
        dec string for center star
    distance: float
        distance of center star in pc
    image: 2d np.array
        image of the target
    spectrum: pysynphot.spectrum.Spectrum
        spectrum of the target
    """

    def __init__(self, info, cstar=None):
        """Initialize a target object

        Parameters
        ----------
        info: dict
            target info, see Example for more details
        cstar: TargetOjbect or None
            center star object bounded, if None, means the target is the center star itself
            center star object is used to calculate the projection x, y of each target according to its ra and dec
            also center star's distance is used to calculate seperation of planet

        Examples: 
        --------

        cstar = {
            'magnitude': 0,
            'ra': '120d',
            'dec': '40d',
            'distance': 10,
            'sptype': 'G0III'
            'sp_model': 'star'
        }
             
        stars = {
            'magnitude': 15,
            'ra': '120.001d',
            'dec': '40.001d',
            'sptype': 'F0III',
            'sp_model': 'blackbody'
        }
            
        planets = {
            'radius': 2,
            'pangle': 60,
            'coe_cloud': 0.3,
            'coe_metal': 0.7,
            'separation': 0.5,
            'phase_angle': 90,                 
            'sp_model': 'hybrid_planet',
            'image': 'extend_planet.fits'
        }

        # planet using input costum albedo spectrum!
        # Note that the albedo spectrum is not normalized! 
        # so the contrast of the planet sould be considered in the input file by user!
        # The input file is in pysynphot.FileSpectralElement format.
        # See the documentation of pysynphot for details. 

        planets = {
            'pangle': 60,
            'separation': 0.5,              
            'sp_spectrum': 'template_planet',
            'template': 'planet_albedo.fits'
        }
        """
        self.sp_model = info.get('sp_model', 'star')
        if cstar is None:
            self.x, self.y = 0, 0
            self.ra = info['ra']
            self.dec = info['dec']
            self.distance = info.get('distance', None)
        else:
            self.x, self.y = extract_target_x_y(info, cstar.ra, cstar.dec)

        self.image = None
        if 'image' in info.keys():
            self.image = fits.getdata(detect_template_path(info['image']))

        if self.sp_model == 'blackbody':
            self.spectrum = star_photlam(
                info['magnitude'],
                info['sptype'],
                is_blackbody=True,
                mag_input_band=info.get('mag_input_band', 'f661')
            )

        if self.sp_model == 'reference':
            self.spectrum = standard_spectrum(info['magnitude'])

        if self.sp_model == 'template_star':
            self.spectrum = S.FileSpectrum(detect_template_path(info['template']))

        if self.sp_model == 'star':
            self.spectrum = star_photlam(
                info['magnitude'],
                info['sptype'],
                is_blackbody=False,
                mag_input_band=info.get('mag_input_band', 'f661')
            )

        if self.sp_model in ['hybrid_planet', 'bcc_planet', 'template_planet']:
            planet = info
            phase_angle = planet.get('phase_angle', 90)
            sp_model = self.sp_model

            radius = planet.get('radius', 1)
            if cstar.distance is None:
                raise ValueError('distance of center star must be provided if planet is added')

            if planet.get('contrast', None) is not None:
                contrast = planet['contrast']
            else:
                contrast = planet_contrast(
                    self.x * cstar.distance,
                    self.y * cstar.distance,
                    phase_angle,
                    radius,
                )
           
            if sp_model == 'hybrid_planet':
                coe_blue, coe_red = planet.get('coe_b', 1), planet.get('coe_r', 1)
                albedo_spect = hybrid_albedo_spectrum(coe_blue, coe_red)
            elif sp_model == 'bcc_planet':
                coe_c, coe_m = planet.get('coe_cloud', 2), planet.get('coe_metal', 0)
                albedo_spect = bcc_spectrum(coe_c, coe_m)
            else: #sp_model == 'template_planet'
                albedo_spect = S.FileBandpass(detect_template_path(planet['template']))
                contrast = 1

            self.spectrum = cstar.spectrum * albedo_spect * contrast

def planet_contrast(
        planet_x_au: float,
        planet_y_au: float,
        phase_angle: float,
        radius: float) -> float:
    """
    calculate the contrast of a planet

    Parameters
    ----------
    planet_x_au: float
        x position of the planet in au
    planet_y_au: float
        y position of the planet in au
    phase_angle: float
        phase angle of the planet in degree
    radius: float
        radius of the planet in jupiter radius

    Returns
    -------
    contrast: float
        contrast of the planet
    """
    separation = np.sqrt(planet_x_au**2 + planet_y_au**2)
    phase_angle = phase_angle * DEG2RAD

    if np.sin(phase_angle) < 1e-9:
        raise ValueError('sin(phase_angle) can not be 0')

    sep_3d = separation / np.sin(phase_angle)

    # Lambert Scattering phase function
    # from Madhusudhan and Burrows 2012 equation 33.
    phase = (np.sin(phase_angle) + (np.pi - phase_angle)
             * np.cos(phase_angle)) / np.pi
    log.debug(f'alpha: {phase_angle/np.pi*180} {phase=}')

    contrast = (radius / sep_3d * R_JUPITER_METER / AU_METER)**2 * phase
    return contrast

def spectrum_generator(
        targets: dict) -> list:
    """
    generate the spectrum due to the input target list

    Parameters
    ----------
    targets: dict
        target dictionary which contains keyword 'cstar' (necessary), 'stars'(optional), 'planets' (optional).
        The values are: 
        - cstar: dict
            - center star information. must contain keywords ra, dec, distance, magnitude, sptype
        - objects: list of dict, optional, recommended! V2.0 new!
            - list of targets. each dict must contain ra, dec, magnitude, sptype

    Returns
    -------
    obj_sp_list: list
        list of [x, y, spectrum, image] of each target
    """

    cstar = targets['cstar']
    objects = targets.get('objects', [])

    obj_sp_list = []

    cstar_obj = TargetOjbect(cstar)
    obj_sp_list.append([cstar_obj.x, cstar_obj.y, cstar_obj.spectrum, cstar_obj.image])

    for target in objects:
        target_obj = TargetOjbect(target, cstar=cstar_obj)
        obj_sp_list.append([target_obj.x, target_obj.y, target_obj.spectrum, target_obj.image])

    return obj_sp_list


def target_file_load(
        target: Union[dict, str]) -> dict:
    """Generate target dict from file, string or dict.

    Parameters
    ----------
    target: Union[dict, str]
        target file name, formated string or target dict.
    
    Outputs
    --------
    target: dict
        dictionary of target. Format of input 

    Note
    -------
    If target is a string start with *, it will be treated as a formatted string.
    e.g. "*5.1/25.3(1.3,1.5)/22.1(2.3,-4.5)" which means a central object
    with magnitude 5.1, and two substellar with magnitude 25.3 and 22.1, respectively. 
    The spectrum of each object is standard refernece spectrum of ABmag.
    The first number in the parenthesis is the x position in arcsec, and the second is the y position.

    If target is a string without *, it will be treated as file name. And find the file in catalog folder.
    The file need to be in yaml format.
    And end with .yaml (note .yml not work). If not .yaml will be added.

    If target is a dict, it will be returned directly.

    If all the above conditions are not met, an empty dict will be returned.
    """
    if isinstance(target, dict):
        return target

    if not target: # None or empty string
        return {}
    
    if isinstance(target, str): #filename or formatted string
        target = target.strip()
        if not target:
            return {}
        
        catalog_folder = config['catalog_folder']
        target_file = target
        target_file += '.yaml' if target_file[-5:].lower() != '.yaml' else ""
        target_name = os.path.basename(target_file)[:-5]
        file_search = [target_file, os.path.join(catalog_folder, target_file)]
        
        for file in file_search:
            if os.path.isfile(file):
                with open(file) as fid:
                    target = yaml.load(fid, Loader=yaml.FullLoader)
                    target['name'] = target_name
                    return target

        target_str = target
        if (target_str[0] == '*'):
            objects = target_str[1:].split('/')
            cstar_mag = float(objects[0])
            cstar = {
                'magnitude': cstar_mag,
                'ra': '0d',
                'dec': '0d',
                'sp_model': 'reference',
                'distance': 10,
            }

            stars = []
            for sub_stellar in objects[1:]:
                float_regex = R"[+-]?\d+(?:\.\d+)?"
                match = re.match(
                    rf"({float_regex})\(({float_regex}),({float_regex})\)", sub_stellar)
                if not match:
                    log.error(f'Wrong format for sub stellar: {sub_stellar}, Skip it')
                    continue
                mag = float(match.group(1))
                x = float(match.group(2))
                y = float(match.group(3))
                pangle = np.arctan2(x, y) * 180 / np.pi
                separation = np.sqrt(x**2 + y**2)
                stars.append({
                    'magnitude': mag,
                    'pangle': pangle,
                    'separation': separation,
                    'sp_model': 'reference',
                })
            target_dict = {
                'name': target_str[1:],
                'cstar': cstar,
                'objects': stars,
            }
            return target_dict

    log.error(f'Wrong format for target: {target}, using blank target instead')
    return {}