diff --git a/config/config_injection.yaml b/config/config_injection.yaml index a25b31a8fc526811997493ec142fe921b4b7a190..7c98edb4dfee7d3e5ac2aaaf7c8504e8d5d72a29 100644 --- a/config/config_injection.yaml +++ b/config/config_injection.yaml @@ -8,16 +8,16 @@ # n_objects: 500 rotate_objs: NO use_mpi: YES -run_name: "test_20230509" +run_name: "test_20230517" pos_sampling: # type: "HexGrid" # type: "RectGrid" # grid_spacing: 18.5 # arcsec (~250 pixels) type: "uniform" - object_density: 50 # arcmin^-2 + object_density: 37 # arcmin^-2 -output_img_dir: "./workspace" +output_img_dir: "/share/home/fangyuedong/injection_pipeline/workspace" input_img_list: "/share/home/fangyuedong/injection_pipeline/input_L1_img_MSC_0000000.list" ############################################### @@ -79,4 +79,18 @@ ins_effects: # Random seeds ############################################### random_seeds: - seed_Av: 121212 # Seed for generating random intrinsic extinction \ No newline at end of file + seed_Av: 121212 # Seed for generating random intrinsic extinction + +############################################### +# Measurement setting +############################################### +measurement_setting: + input_img_list: "/share/home/fangyuedong/injection_pipeline/injected_L1_img_MSC_0000000.list" + # input_img_list: "/share/home/fangyuedong/injection_pipeline/input_L1_img_MSC_0000000.list" + input_wht_list: "/share/home/fangyuedong/injection_pipeline/L1_wht_img_MSC_0000000.list" + input_flg_list: "/share/home/fangyuedong/injection_pipeline/L1_flg_img_MSC_0000000.list" + input_psf_list: "/share/home/fangyuedong/injection_pipeline/psf_img_MSC_0000000.list" + sex_config: "/share/home/fangyuedong/injection_pipeline/config/default.config" + sex_param: "/share/home/fangyuedong/injection_pipeline/config/default.param" + n_jobs: 8 + output_dir: "/share/home/fangyuedong/injection_pipeline/workspace" \ No newline at end of file diff --git a/evaluation/__init__.py b/evaluation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/evaluation/aperture_noise.py b/evaluation/aperture_noise.py new file mode 100644 index 0000000000000000000000000000000000000000..f85d803b2f836adb67f427b2fccddeeb7b23834e --- /dev/null +++ b/evaluation/aperture_noise.py @@ -0,0 +1,174 @@ +import argparse +import numpy as np +import os +from astropy.io import fits +from astropy.stats import sigma_clip +from astropy.stats import median_absolute_deviation +from astropy.stats import mad_std + +def get_all_stats(values_arrays): + """ + """ + stats = {} + + stats['mean'] = np.mean(values_arrays) + stats['median'] = np.median(values_arrays) + stats['std'] = np.std(values_arrays) + stats['mad'] = mad_std(values_arrays) + + return stats + +def define_options(): + parser = argparse.ArgumentParser() + parser.add_argument('--data_image', dest='data_image', type=str, required=True, + help='Name of the data image: (default: "%(default)s"') + parser.add_argument('--seg_image', dest='seg_image', type=str, required=True, + help='Name of the mask / segmentation image: (default: "%(default)s"') + parser.add_argument('--flag_image', dest='flag_image', type=str, required=False, + default=None, help='Name of the flag image (default: "%(default)s"') + parser.add_argument('--sky_image', dest='sky_image', type=str, required=False, + default=None, help='Name of the sky image (default: "%(default)s"') + parser.add_argument('--aper_min', dest='aper_min', type=int, required=False, + default=5, help='Minimum no. of pixels at level: (default: "%(default)s"') + parser.add_argument('--aper_max', dest='aper_max', type=int, required=False, + default=20, help='Maximum no. of pixels at level: (default: "%(default)s"') + parser.add_argument('--aper_sampling', dest='aper_sampling', type=int, required=False, + default=1, help='Minimum no. of pixels at level: (default: "%(default)s"') + parser.add_argument('--n_sample', dest='n_sample', type=int, required=False, + default=500, help='Minimum no. of pixels at level: (default: "%(default)s"') + parser.add_argument('--out_basename', dest='out_basename', type=str, required=False, + default="aper", help='Base name for the output names: (default: "%(default)s"') + parser.add_argument('--output_dir', dest='output_dir', type=str, required=False, + default="./workspace", help='dir path for the output : (default: "%(default)s"') + return parser + +def create_circular_mask(h, w, center=None, radius=None): + if center is None: # use the middle of the image + center = [int(w / 2), int(h / 2)] + if radius is None: # use the smallest distance between the center and image walls + radius = min(center[0], center[1], w - center[0], h - center[1]) + + Y, X = np.ogrid[:h, :w] + dist_from_center = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2) + + mask = dist_from_center <= radius + return mask + +def sampling(image_data, seg_data, flag_data, aperture, Nsample): + wx, wy = np.where( (image_data != 0) & (seg_data == 0) & (flag_data == 0)) + Nx, Ny = image_data.shape + + flux_average = np.zeros(Nsample) + flux_median = np.zeros(Nsample) + x_position = np.zeros(Nsample) + y_position = np.zeros(Nsample) + i = 0 + i_iter = 0 + while i < Nsample: + if i_iter > 100*Nsample: + print('# Not enough background pixels for image depth analysis!') + break + i_iter += 1 + + idx = np.random.randint(len(wx)) + stmpsize = aperture+1 + + if wx[idx]+stmpsize >= Nx: + continue + if wy[idx]+stmpsize >= Ny: + continue + + img_stmp = image_data[ wx[idx]:wx[idx]+stmpsize, wy[idx]:wy[idx]+stmpsize ] + seg_stmp = seg_data[ wx[idx]:wx[idx]+stmpsize, wy[idx]:wy[idx]+stmpsize ] + flag_stmp = flag_data[ wx[idx]:wx[idx]+stmpsize, wy[idx]:wy[idx]+stmpsize ] + + mask = create_circular_mask(stmpsize, stmpsize, center=[stmpsize//2,stmpsize//2], radius=aperture//2) + area = np.pi*(aperture/2)**2 + area_sum = len(mask[mask==True]) + ratio = area/area_sum + + ss = np.sum(seg_stmp[mask]) + if ss != 0: + continue + fs = np.sum(flag_stmp[mask]) + if fs != 0: + continue + flux_average[i] = np.average(img_stmp[mask]) + flux_median[i] = np.median(img_stmp[mask]) + x_position[i] = (wx[idx]+wx[idx]+stmpsize)/2.0 + y_position[i] = (wy[idx]+wy[idx]+stmpsize)/2.0 + + i += 1 + + print('Needed %i tries for %i samples!'%(i_iter, Nsample)) + + return flux_average, flux_median, x_position, y_position + +def noise_statistics_aperture(fitsname, segname, flagname=None, sky_image=None, aperture_min=1, aperture_max=10, aperture_step=1, seed=None, Nsample=100, sigma_cl=10., base_name="aper", output_dir='./'): + f = fits.open(fitsname) + fseg = fits.open(segname) + # image_data = f[1].data + image_data = f[1].data * f[1].header["GAIN1"] + seg_data = fseg[0].data + + f.close() + fseg.close() + + if flagname: + fflag = fits.open(flagname) + flag_data = fflag[1].data + fflag.close() + else: + flag_data = np.zeros(image_data.shape) + + if sky_image: + hdu = fits.open(sky_image) + sky_data = hdu[0].data * hdu[0].header["GAIN1"] + image_data -= sky_data + + if seed != None: + np.random.seed(seed) + + if not os.path.exists(output_dir): + os.makedirs(output_dir) + + im = image_data + im[seg_data > 0] = 0. + hist_data = im[im != 0.].flatten() + + aperture_list = np.arange(aperture_min, aperture_max+1, aperture_step, dtype=int) + sigma_output = np.zeros(len(aperture_list)) + mad_output = np.zeros(len(aperture_list)) + mad_std_output = np.zeros(len(aperture_list)) + + for j, aperture in enumerate(aperture_list): + flux_average, flux_median, x_position, y_position = sampling(image_data, seg_data, flag_data, aperture, Nsample) + + mean_stats = get_all_stats(flux_average) + median_stats = get_all_stats(flux_median) + print("Mean: %e += %e +- %e"%(mean_stats['median'], mean_stats['mad'], mean_stats['std'])) + print("Median: %e += %e +- %e"%(median_stats['median'], median_stats['mad'], median_stats['std'])) + + aper_file = '%s_%03i.txt'%(base_name, aperture) + aper_file = os.path.join(output_dir, aper_file) + print('Aperture file: %s'%aper_file) + with open(aper_file, "w+") as aper_out: + for one_value in zip(flux_average, flux_median, x_position, y_position): + one_line = "{:.7f} {:.7f} {:.1f} {:.1f}\n".format(*one_value) + aper_out.write(one_line) + + return aperture_list, sigma_output, mad_output, mad_std_output + +if __name__ == "__main__": + args = define_options().parse_args() + aperture_ap, sigma_ap, mad_ap, nmad_ap = noise_statistics_aperture( + args.data_image, + args.seg_image, + args.flag_image, + args.sky_image, + aperture_min=args.aper_min, + aperture_max=args.aper_max, + aperture_step=args.aper_sampling, + Nsample=args.n_sample, + base_name=args.out_basename, + output_dir=args.output_dir) \ No newline at end of file diff --git a/evaluation/calculate_completeness_fraction.py b/evaluation/calculate_completeness_fraction.py new file mode 100644 index 0000000000000000000000000000000000000000..7017cc24657324b8778e70bee5a0af9b937a792e --- /dev/null +++ b/evaluation/calculate_completeness_fraction.py @@ -0,0 +1,184 @@ +import argparse +import os +import numpy as np +import matplotlib.pyplot as plt +from astropy.io import ascii, fits +from cross_match_catalogs import read_catalog, match_catalogs_img +from ObservationSim.Instrument import Telescope, Filter, FilterParam + +VC_A = 2.99792458e+18 # speed of light: A/s + +def define_options(): + parser = argparse.ArgumentParser() + parser.add_argument('--TU_catalog', dest='TU_catalog', type=str, required=True, + help='path to the (injected) truth catalog') + parser.add_argument('--source_catalog', dest='source_catalog', type=str, required=True, + help='path to the (extracted) injected catalog') + parser.add_argument('--orig_catalog', dest='orig_catalog', type=str, required=True, + help='path to the (extracted) original catalog') + parser.add_argument('--image', dest='image', type=str, required=True, + help='path to the image, used to get the header info') + parser.add_argument('--output_dir', dest='output_dir', type=str, required=False, + default='./workspace', help='output path') + return parser + +def getChipFilter(chipID, filter_layout=None): + """Return the filter index and type for a given chip #(chipID) + """ + filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI", "FGS"] + if filter_layout is not None: + return filter_layout[chipID][0], filter_layout[chipID][1] + + # updated configurations + if chipID>42 or chipID<1: raise ValueError("!!! Chip ID: [1,42]") + if chipID in [6, 15, 16, 25]: filter_type = "y" + if chipID in [11, 20]: filter_type = "z" + if chipID in [7, 24]: filter_type = "i" + if chipID in [14, 17]: filter_type = "u" + if chipID in [9, 22]: filter_type = "r" + if chipID in [12, 13, 18, 19]: filter_type = "nuv" + if chipID in [8, 23]: filter_type = "g" + if chipID in [1, 10, 21, 30]: filter_type = "GI" + if chipID in [2, 5, 26, 29]: filter_type = "GV" + if chipID in [3, 4, 27, 28]: filter_type = "GU" + if chipID in range(31, 43): filter_type = 'FGS' + filter_id = filter_type_list.index(filter_type) + + return filter_id, filter_type + +def magToFlux(mag): + """ + flux of a given AB magnitude + + Parameters: + mag: magnitude in unit of AB + + Return: + flux: flux in unit of erg/s/cm^2/Hz + """ + flux = 10**(-0.4*(mag+48.6)) + return flux + +def getElectronFluxFilt(mag, filt, tel, exptime=150.): + photonEnergy = filt.getPhotonE() + flux = magToFlux(mag) + factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit) + return factor * filt.efficiency * tel.pupil_area * exptime + +def convert_catalog(catname): + data_dir = os.path.dirname(catname) + base_name = os.path.basename(catname) + text_file = ascii.read(catname) + fits_filename = os.path.join(data_dir, base_name + '.fits') + text_file.write(fits_filename, overwrite=True) + +def validation_hist(val, idx, name="val", nbins=10, fig_name='detected_counts.png', output_dir='./'): + counts, bins = np.histogram(val, bins=nbins) + is_empty = np.full(len(val), False) + for i in range(len(idx)): + if idx[i].size == 0: + is_empty[i] = True + counts_detected, _ = np.histogram(val[~is_empty], bins=nbins) + plt.figure() + plt.stairs(counts, bins, color='r', label='TU objects') + plt.stairs(counts_detected, bins, color='g', label='Detected') + plt.xlabel(name, size='x-large') + plt.title("Counts") + plt.legend(loc='upper right', fancybox=True) + fig_name = os.path.join(output_dir, fig_name) + plt.savefig(fig_name) + return counts, bins + +def hist_fraction(val, idx, name='val', nbins=10, normed=False, output_dir='./'): + counts, bins = np.histogram(val, bins=nbins) + is_empty = np.full(len(val), False) + for i in range(len(idx)): + if idx[i].size == 0: + is_empty[i] = True + counts_detected, _ = np.histogram(val[~is_empty], bins=nbins, density=normed) + fraction = counts_detected / counts + fraction[np.where(np.isnan(fraction))[0]] = 0. + plt.figure() + plt.stairs(fraction, bins, color='r', label='completeness fraction') + plt.xlabel(name, size='x-large') + plt.title("Completeness Fraction") + fig_name = os.path.join(output_dir, "completeness_fraction_%s.png"%(name)) + plt.savefig(fig_name) + return fraction + +def calculate_fraction(TU_catalog, source_catalog, output_dir, nbins=10): + convert_catalog(TU_catalog) + x_TU, y_TU, col_list = read_catalog(TU_catalog + '.fits', ext_num=1, ra_name="xImage", dec_name="yImage", col_list=["mag"]) + mag_TU = col_list[0] + x_source, y_source, _ = read_catalog(source_catalog, ext_num=1, ra_name="X_IMAGE", dec_name="Y_IMAGE") + idx1, idx2, = match_catalogs_img(x1=x_TU, y1=y_TU, x2=x_source, y2=y_source) + counts, bins = validation_hist(val=mag_TU, idx=idx1, name="mag_injected", output_dir=output_dir) + fraction = hist_fraction(val=mag_TU, idx=idx1, name="mag_injected", nbins=10, output_dir=output_dir) + return counts, bins, fraction + +def calculate_undetected_flux(orig_cat, mag_bins, fraction, mag_low=20.0, mag_high=26.0, image=None, output_dir='./'): + # Get info from original image + hdu = fits.open(image) + header0 = hdu[0].header + header1 = hdu[1].header + nx_pix, ny_pix = header0["PIXSIZE1"], header0["PIXSIZE2"] + exp_time = header0["EXPTIME"] + gain = header1["GAIN1"] + chipID = int(header0["DETECTOR"][-2:]) + zp = header1["ZP"] + hdu.close() + + # Get info from original catalog + ra_orig, dec_orig, col_list_orig = read_catalog(orig_cat, ra_name='RA', dec_name='DEC', col_list=['Mag_Kron']) + mag_orig = col_list_orig[0] + nbins = len(mag_bins) - 1 + counts, _ = np.histogram(mag_orig, bins=nbins) + + mags = (mag_bins[:-1] + mag_bins[1:])/2. + counts_missing = (counts / fraction) - counts + counts_missing[np.where(np.isnan(counts_missing))[0]] = 0. + counts_missing[np.where(np.isinf(counts_missing))[0]] = 0. + print(counts_missing) + print(counts_missing.sum()) + + plt.figure() + plt.stairs(counts_missing, mag_bins, color='r', label='undetected counts') + plt.xlabel("mag_injected", size='x-large') + plt.title("Undetected Sources") + fig_name = os.path.join(output_dir, "undetected_sources.png") + plt.savefig(fig_name) + + tel = Telescope() + filter_param = FilterParam() + filter_id, filter_type = getChipFilter(chipID=chipID) + + filt = Filter(filter_id=filter_id, + filter_type=filter_type, + filter_param=filter_param) + + undetected_flux = 0. + for i in range(len(mags)): + if mags[i] < mag_low or mags[i] > mag_high: + continue + flux_electrons = counts_missing[i] * getElectronFluxFilt(mag=mags[i], filt=filt, tel=tel) + undetected_flux += flux_electrons + + undetected_flux /= (float(nx_pix) * float(ny_pix)) + return undetected_flux + +if __name__ == "__main__": + args = define_options().parse_args() + counts, bins, fraction = calculate_fraction( + TU_catalog=args.TU_catalog, + source_catalog=args.source_catalog, + output_dir=args.output_dir, + nbins=20 + ) + undetected_flux = calculate_undetected_flux( + orig_cat=args.orig_catalog, + mag_bins=bins, + fraction=fraction, + image=args.image, + output_dir=args.output_dir, + ) + print(undetected_flux) \ No newline at end of file diff --git a/evaluation/cross_match_catalogs.py b/evaluation/cross_match_catalogs.py index b00dd2941309953f6fbc2e557e24a686e24f5092..38b8cafc2268fb61e1671c7e9a0a55f07dae201e 100644 --- a/evaluation/cross_match_catalogs.py +++ b/evaluation/cross_match_catalogs.py @@ -41,8 +41,8 @@ def match_catalogs_sky(ra1, dec1, ra2, dec2, max_dist=0.6, others1=[], others2=[ def match_catalogs_img(x1, y1, x2, y2, max_dist=0.5, others1=[], others2=[], thresh=[]): cat1 = np.array([(x, y) for x,y in zip(x1, y1)]) cat2 = np.array([(x, y) for x,y in zip(x2, y2)]) - print(np.shape(cat1)) - print(np.shape(cat2)) + # print(np.shape(cat1)) + # print(np.shape(cat2)) tree = BallTree(cat2) idx1 = tree.query_radius(cat1, r = max_dist) tree = BallTree(cat1) @@ -59,7 +59,7 @@ def match_catalogs_img(x1, y1, x2, y2, max_dist=0.5, others1=[], others2=[], thr def validation_hist(val1, idx1, name="val1", nbins=10): counts, bins = np.histogram(val1) - plt.stairs(bins, counts) + plt.stairs(counts, bins) plt.xlabel(name, size='x-large') plt.savefig("detection_completeness.png") # plt.show() diff --git a/injection_pipeline/Catalog/C5_SimCat.py b/injection_pipeline/Catalog/C5_SimCat.py index 4e90b828ef306d8dc528e34bbcbd13a144de5540..3abd4019e6dccac476a87509cdf67dd6119bf07d 100644 --- a/injection_pipeline/Catalog/C5_SimCat.py +++ b/injection_pipeline/Catalog/C5_SimCat.py @@ -69,7 +69,7 @@ class SimCat(CatalogBase): for i in range(ngals): param = self.initialize_param() - igals = ngals % max_ngals + igals = i % max_ngals param['ra'] = gals['ra_true'][igals] param['dec'] = gals['dec_true'][igals] diff --git a/injection_pipeline/SingleEpochImage.py b/injection_pipeline/SingleEpochImage.py index 4a003ad1b63fcf7a5c8e195dba6228e8a7a0afd7..ecbd7e2d8304d03fa2ae8ee27d0e4885ddfd4924 100644 --- a/injection_pipeline/SingleEpochImage.py +++ b/injection_pipeline/SingleEpochImage.py @@ -28,6 +28,7 @@ class SingleEpochImage(object): elif 'object_density' in self.config["pos_sampling"] and self.config["pos_sampling"]['object_density'] is not None: # Fixed number density of objects self.objs_per_real = round(self.u_area * self.config["pos_sampling"]['object_density']) + print("number of injected obj = ",self.objs_per_real) else: # Grid types: calculate nobjects later self.objs_per_real = None @@ -56,22 +57,24 @@ class SingleEpochImage(object): self.setup_image_for_injection() - self.header_ext = generateExtensionHeader( - chip=self.chip, - xlen=self.chip.npix_x, - ylen=self.chip.npix_y, - ra=self.ra_cen, - dec=self.dec_cen, - pa=self.pos_ang, - gain=self.chip.gain, # {TODO} - readout=self.chip.read_noise, - dark=self.chip.dark_noise, - saturation=90000, - pixel_scale=self.chip.pix_scale, - pixel_size=self.chip.pix_size, - xcen=self.chip.x_cen, - ycen=self.chip.y_cen, - extName = 'raw') + # [TODO] Header should come from input image + # self.header_ext = generateExtensionHeader( + # chip=self.chip, + # xlen=self.chip.npix_x, + # ylen=self.chip.npix_y, + # ra=self.ra_cen, + # dec=self.dec_cen, + # pa=self.pos_ang, + # gain=self.chip.gain, # {TODO} + # readout=self.chip.read_noise, + # dark=self.chip.dark_noise, + # saturation=90000, + # pixel_scale=self.chip.pix_scale, + # pixel_size=self.chip.pix_size, + # xcen=self.chip.x_cen, + # ycen=self.chip.y_cen, + # extName = 'raw') + self.header_ext = self.header_img # (TODO) specify sub-directory self.chip_output = ChipOutput( @@ -100,19 +103,22 @@ class SingleEpochImage(object): def read_initial_image(self, filepath): data_dir = os.path.dirname(filepath) img_name = os.path.basename(filepath) - data = fits.open(filepath) - self.header0 = data[0].header - self.header_img = data[1].header + hdu = fits.open(filepath) + self.header0 = hdu[0].header + self.header_img = hdu[1].header self.image = fits.getdata(filepath) + hdu.close() # Determine which CCD self.chip_ID = int(self.header0['DETECTOR'][-2:]) # Construnct Chip object self.chip = Chip(chipID=self.chip_ID, config=self.config) self.exp_time = float(self.header0 ['EXPTIME']) + self.chip.gain = float(self.header_img["GAIN1"]) # Process L1 image - self.image = self.image * self.exp_time / self.chip.gain + # self.image = self.image * self.exp_time / self.chip.gain + self.image = self.image * self.chip.gain # Process L1 SKY image # [TODO] @@ -172,6 +178,8 @@ class SingleEpochImage(object): nobj = len(pos) # Make sure we have enough objects to inject assert nobj <= len(cat.objs) + + chip_wcs = galsim.FitsWCS(header=self.header_ext) for i in range(nobj): obj = cat.objs[i] @@ -190,7 +198,7 @@ class SingleEpochImage(object): # Update object position to a point on grid obj.param['ra'], obj.param['dec'] = pos[i][0], pos[i][1] self.chip_output.Log_info("ra = %.3f, dec = %.3f"%(obj.param['ra'], obj.param['dec'])) - pos_img, offset, local_wcs, real_wcs, fd_shear = obj.getPosImg_Offset_WCS(img=self.chip.img, fdmodel=self.fd_model, chip=self.chip, verbose=False, img_header=self.header_ext) + pos_img, offset, local_wcs, real_wcs, fd_shear = obj.getPosImg_Offset_WCS(img=self.chip.img, fdmodel=self.fd_model, chip=self.chip, verbose=False, chip_wcs=chip_wcs) self.chip_output.Log_info("pos_img_x = %.3f, pos_img_y = %.3f"%(pos_img.x, pos_img.y)) try: isUpdated, pos_shear = obj.drawObj_multiband( @@ -225,8 +233,9 @@ class SingleEpochImage(object): self.chip.img = galsim.Image(self.chip.img.array, dtype=np.float32) # [TODO] TEST - self.chip.img *= self.gain - self.chip.img /= self.exp_time + # self.chip.img *= self.chip.gain + # self.chip.img /= self.exp_time + self.chip.img /= self.chip.gain hdu1 = fits.PrimaryHDU(header=self.header0) hdu2 = fits.ImageHDU(self.chip.img.array, header=self.header_img) diff --git a/injection_pipeline/injection_pipeline.py b/injection_pipeline/injection_pipeline.py index 5e04f9815171ee73dabb9a6ed2ddf4f0de899321..1382428c570b49a8b7845b3f1828e6c707a54a29 100644 --- a/injection_pipeline/injection_pipeline.py +++ b/injection_pipeline/injection_pipeline.py @@ -33,11 +33,17 @@ class InjectionPipeline(object): # Prepare the output directory if not os.path.exists(self.config["output_img_dir"]): - os.makedirs(self.config["output_img_dir"]) + try: + os.makedirs(self.config["output_img_dir"]) + except OSError: + pass self.output_dir = os.path.join(self.config["output_img_dir"], self.config["run_name"]) if not os.path.exists(self.output_dir): - os.makedirs(self.output_dir) + try: + os.makedirs(self.output_dir) + except OSError: + pass def run_injection_img_list(self, Catalog): if self.config["use_mpi"]: diff --git a/measurement_pipeline/__init__.py b/measurement_pipeline/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/measurement_pipeline/create_mask.py b/measurement_pipeline/create_mask.py new file mode 100644 index 0000000000000000000000000000000000000000..cdf3d9e5987768e1e7cefdc4664357b75b200f2e --- /dev/null +++ b/measurement_pipeline/create_mask.py @@ -0,0 +1,84 @@ +import numpy as np +import argparse +import os +from skimage.draw import ellipse +from astropy.io import fits + +def define_options(): + parser = argparse.ArgumentParser() + parser.add_argument('--catalog', dest='catalog_path', type=str, required=False, + default=None, help='path to the object catalog (default: "%(default)s"') + parser.add_argument('--flag_image', dest='flag_path', type=str, required=False, + default=None, help='path to the flag image (default: "%(default)s"') + parser.add_argument('--output_dir', dest='output_dir', type=str, + default=None, help='path to the output mask image (default: "%(default)s"') + parser.add_argument('--margin', dest='margin', type=float, + default=0, help='margin for major and minor axes') + return parser + +def mask_object(img, x_image, y_image, A_image, B_image, theta_image, margin=0): + rr, cc = ellipse( + r=y_image, + c=x_image, + r_radius=B_image, + c_radius=A_image, + shape=img.shape, + rotation=np.deg2rad(-theta_image) + ) + img[rr, cc] = 1 + +def create_mask_catalog(catalog_path, flag_path, output_dir, margin=0): + catalog_dir = os.path.dirname(catalog_path) + catalog_name = os.path.basename(catalog_path) + flag_dir = os.path.dirname(flag_path) + flag_name = os.path.basename(flag_path) + + # Read header and data from flag image + hdu = fits.open(flag_path) + header0 = hdu[0].header + header1 = hdu[1].header + flag_img = fits.getdata(flag_path) + hdu.close() + + # Read data from detection catalog + hdu = fits.open(catalog_path) + catalog = hdu[1].data + hdu.close() + + # Setup mask image + mask = flag_img.copy() + mask[mask != 0] = 1 + + # Columns used for mask creation + x_image = catalog["X_IMAGE"] + y_image = catalog["Y_IMAGE"] + A_image = catalog["A_IMAGE"] + B_image = catalog["B_IMAGE"] + theta_image = catalog["theta_image"] + + for i in range(len(catalog)): + mask_object( + img=mask, + x_image=x_image[i], + y_image=y_image[i], + A_image=A_image[i], + B_image=B_image[i], + theta_image=theta_image[i], + margin=margin + ) + + # Save flag image + fname = os.path.join(output_dir, flag_name.replace("flg_L1", "mask_L1")) + hdu1 = fits.PrimaryHDU(header=header0) + hdu2 = fits.ImageHDU(mask, header=header1) + hdu1 = fits.HDUList([hdu1, hdu2]) + hdu1.writeto(fname, output_verify='ignore', overwrite=True) + +if __name__ == "__main__": + args = define_options().parse_args() + create_mask_catalog( + catalog_path=args.catalog_path, + flag_path=args.flag_path, + output_dir=args.output_dir, + margin=args.margin + ) \ No newline at end of file diff --git a/measurement_pipeline/data/default.config b/measurement_pipeline/data/default.config new file mode 100644 index 0000000000000000000000000000000000000000..cb2d0f91b7ded9b67299dab175c5db448a1cfddf --- /dev/null +++ b/measurement_pipeline/data/default.config @@ -0,0 +1,90 @@ +# Default configuration file for SExtractor 2.25.0 +# EB 2019-10-03 +# + +#-------------------------------- Catalog ------------------------------------ + +CATALOG_NAME test.cat # name of the output catalog +CATALOG_TYPE FITS_1.0 # NONE,ASCII,ASCII_HEAD, ASCII_SKYCAT, + # ASCII_VOTABLE, FITS_1.0 or FITS_LDAC +PARAMETERS_NAME default.param # name of the file containing catalog contents + +#------------------------------- Extraction ---------------------------------- + +DETECT_TYPE CCD # CCD (linear) or PHOTO (with gamma correction) +DETECT_MINAREA 3 # min. # of pixels above threshold +DETECT_THRESH 1.5 # or , in mag.arcsec-2 +ANALYSIS_THRESH 1.5 # or , in mag.arcsec-2 +THRESH_TYPE RELATIVE + +FILTER Y # apply filter for detection (Y or N)? +FILTER_NAME ../measurement_pipeline/data/default.conv # name of the file containing the filter + +DEBLEND_NTHRESH 64 # Number of deblending sub-thresholds +DEBLEND_MINCONT 0.0005 # Minimum contrast parameter for deblending + +CLEAN Y # Clean spurious detections? (Y or N)? +CLEAN_PARAM 1.0 # Cleaning efficiency + +MASK_TYPE CORRECT # type of detection MASKing: can be one of + # NONE, BLANK or CORRECT + +#------------------------------ Flagging ----------------------------------- +#FLAG_TYPE OR + +#------------------------------ Photometry ----------------------------------- + +PHOT_APERTURES 5 # MAG_APER aperture diameter(s) in pixels +PHOT_AUTOPARAMS 2.5, 3.5 # MAG_AUTO parameters: , +PHOT_PETROPARAMS 2.0, 3.5 # MAG_PETRO parameters: , + # + +SATUR_LEVEL 50000.0 # level (in ADUs) at which arises saturation +SATUR_KEY SATURATE # keyword for saturation level (in ADUs) + +MAG_ZEROPOINT 0.0 # magnitude zero-point +#MAG_GAMMA 4.0 # gamma of emulsion (for photographic scans) +GAIN 1.0 # detector gain in e-/ADU +#GAIN_KEY GAIN # keyword for detector gain in e-/ADU +PIXEL_SCALE 0 # size of pixel in arcsec (0=use FITS WCS info) + +#------------------------- Star/Galaxy Separation ---------------------------- + +SEEING_FWHM 0.15 # stellar FWHM in arcsec +STARNNW_NAME ../measurement_pipeline/data/default.nnw # Neural-Network_Weight table filename + +#------------------------------ Background ----------------------------------- + +BACK_TYPE AUTO +BACK_SIZE 400 # Background mesh: or , +BACK_FILTERSIZE 3 # Background filter: or , + +BACKPHOTO_TYPE GLOBAL # can be GLOBAL or LOCAL + +#------------------------------ Check Image ---------------------------------- + +CHECKIMAGE_TYPE NONE # can be NONE, BACKGROUND, BACKGROUND_RMS, + # MINIBACKGROUND, MINIBACK_RMS, -BACKGROUND, + # FILTERED, OBJECTS, -OBJECTS, SEGMENTATION, + # or APERTURES +CHECKIMAGE_NAME ../check.fits # Filename for the check-image + +#--------------------- Memory (change with caution!) ------------------------- + +MEMORY_OBJSTACK 3000 # number of objects in stack +MEMORY_PIXSTACK 300000 # number of pixels in stack +MEMORY_BUFSIZE 1024 # number of lines in buffer + +#----------------------------- Miscellaneous --------------------------------- + +VERBOSE_TYPE NORMAL # can be QUIET, NORMAL or FULL +HEADER_SUFFIX .head # Filename extension for additional headers +WRITE_XML N # Write XML file (Y/N)? +XML_NAME sex.xml # Filename for XML output + +#------------------------------ Weighting ----------------------------------- +#WEIGHT_TYPE MAP_WEIGHT +#RESCALE_WEIGHTS Y +#WEIGHT_IMAGE weight.fits +#WEIGHT_GAIN N +#WEIGHT_THRESH 1e-7 diff --git a/measurement_pipeline/data/default.param b/measurement_pipeline/data/default.param new file mode 100644 index 0000000000000000000000000000000000000000..02de5fc47ac52b1773864227383ebf4cf8c67610 --- /dev/null +++ b/measurement_pipeline/data/default.param @@ -0,0 +1,67 @@ +# ID and flags +NUMBER +FLAGS +# Basic coordinates +X_IMAGE +Y_IMAGE +XMIN_IMAGE +XMAX_IMAGE +YMIN_IMAGE +YMAX_IMAGE +# Accurate coordinates +XWIN_IMAGE +YWIN_IMAGE +ERRAWIN_IMAGE +ERRBWIN_IMAGE +ERRTHETAWIN_IMAGE +ALPHAWIN_J2000 +DELTAWIN_J2000 +ERRAWIN_WORLD +ERRBWIN_WORLD +ERRTHETAWIN_J2000 +# Peak value +XPEAK_IMAGE +YPEAK_IMAGE +ALPHAPEAK_J2000 +DELTAPEAK_J2000 +# Basic shape info +A_IMAGE +B_IMAGE +THETA_IMAGE +A_WORLD +B_WORLD +THETA_J2000 +ELONGATION +FLUX_RADIUS +# Isophotal photometry +#FLUX_ISO +#FLUXERR_ISO +MAG_ISO +MAGERR_ISO +ISOAREA_IMAGE +ISOAREAF_IMAGE +ISOAREA_WORLD +ISOAREAF_WORLD +# Aperture photometry +FLUX_APER(1) +FLUXERR_APER(1) +MAG_APER(1) +MAGERR_APER(1) +# Kron photometry +FLUX_AUTO +FLUXERR_AUTO +MAG_AUTO +MAGERR_AUTO +KRON_RADIUS +# Petrosian photometry +#FLUX_PETRO +#FLUXERR_PETRO +MAG_PETRO +MAGERR_PETRO +PETRO_RADIUS +# Basic surface brightnesses +BACKGROUND +THRESHOLD +MU_THRESHOLD +FLUX_MAX +MU_MAX \ No newline at end of file diff --git a/measurement_pipeline/detection.py b/measurement_pipeline/detection.py new file mode 100644 index 0000000000000000000000000000000000000000..0a965823b46fc684c756374e1a01a4ca4e1a70b9 --- /dev/null +++ b/measurement_pipeline/detection.py @@ -0,0 +1,62 @@ +import os +import subprocess +import joblib +from subprocess import Popen + +# try: +# import importlib.resources as pkg_resources +# except ImportError: +# # Try backported to PY<37 'importlib_resources' +# import importlib_resources as pkg_resources + +class Detection(object): + def __init__(self, n_jobs=4, output_dir=None): + self.CONFIG_PATH = os.path.join(os.path.dirname(__file__), "data/") + self.n_jobs = n_jobs + if output_dir: + self.output_dir = output_dir + else: + self.output_dir = os.path.dirname(__file__) + + def run_sextractor(self, image, weight, flag, psf=None, sex_config=None, sex_param=None, output_cat=None): + if output_cat is None: + basename = os.path.basename(image) + output_cat = basename.replace(".fits", "_extracted.cat") + output_cat = os.path.join(self.output_dir, output_cat) + + if sex_config is None: + sex_config = os.path.join(self.CONFIG_PATH, "default.config") + if sex_param is None: + sex_param = os.path.join(self.CONFIG_PATH, "default.param") + filter_path = os.path.join(self.CONFIG_PATH, "default.conv") + nnw_path = os.path.join(self.CONFIG_PATH, "default.nnw") + + sex_cmd1 = 'sex ' + image + ', ' + image + sex_cmd2 = ' -c ' + sex_config + sex_cmd3 = ' -CATALOG_NAME ' + output_cat + ' -WEIGHT_IMAGE ' + weight \ + + ' -FLAG_IMAGE ' + flag + sex_cmd4 = ' -PARAMETERS_NAME ' + sex_param + ' -FILTER_NAME ' + filter_path \ + + ' -STARNNW_NAME ' + nnw_path + sex_cmd5 = '' + if psf is not None: + sex_cmd5 += ' -PSF_NAME ' + psf + sex_cmd = sex_cmd1 + sex_cmd2 + sex_cmd3 + sex_cmd4 + sex_cmd5 + print(sex_cmd) + p = Popen(sex_cmd, shell=True) + p.wait() + + def run_detection(self, image_list, weight_list, flag_list, psf_list=None, sex_config=None, sex_param=None, output_cat_list=None): + assert len(image_list) == len(weight_list), "length of image list must be equal to length of weight list" + assert len(image_list) == len(flag_list), "length of image list must be equal to length of flag list" + if psf_list: + assert len(image_list) == len(psf_list), "length of image list must be equal to length of psf list" + else: + psf_list = [None for i in range(len(image_list))] + if output_cat_list: + assert len(image_list) == len(output_cat_list), "length of image list must be equal to length of output catalog path list" + else: + output_cat_list = [None for i in range(len(image_list))] + + joblib.Parallel(n_jobs=self.n_jobs)(joblib.delayed(self.run_sextractor)(image=image_list[i], weight=weight_list[i], flag=flag_list[i], psf=psf_list[i], sex_config=sex_config, sex_param=sex_param, output_cat=output_cat_list[i]) for i in range(len(image_list))) + + \ No newline at end of file diff --git a/measurement_pipeline/run_measurement.py b/measurement_pipeline/run_measurement.py new file mode 100644 index 0000000000000000000000000000000000000000..a602d1f28516bc55e8f12e68fb3b24dad3b52f06 --- /dev/null +++ b/measurement_pipeline/run_measurement.py @@ -0,0 +1,66 @@ +import argparse +import os +import yaml +from detection import Detection + +def parse_args(): + ''' + Parse command line arguments. Many of the following + can be set in the .yaml config file as well. + ''' + parser = argparse.ArgumentParser() + parser.add_argument('config_file', help='.yaml config file for injection settings.') + parser.add_argument('-c', '--config_dir', help='Directory that houses the .yaml config file.') + # parser.add_argument('-d', '--data_dir', help='Directory that houses the input data.') + # parser.add_argument('-w', '--work_dir', help='The path for output.') + return parser.parse_args() + +class MeasurementPipeline(object): + def __init__(self): + # Load configuration + args = parse_args() + if args.config_dir is None: + args.config_dir = '' + args.config_dir = os.path.abspath(args.config_dir) + args.config_file = os.path.join(args.config_dir, args.config_file) + with open(args.config_file, "r") as stream: + try: + self.config = yaml.safe_load(stream) + for key, value in self.config.items(): + print (key + " : " + str(value)) + except yaml.YAMLError as exc: + print(exc) + with open(self.config["measurement_setting"]["input_img_list"]) as input_list: + self.img_list = [line.rstrip() for line in input_list] + with open(self.config["measurement_setting"]["input_wht_list"]) as input_list: + self.wht_list = [line.rstrip() for line in input_list] + with open(self.config["measurement_setting"]["input_flg_list"]) as input_list: + self.flg_list = [line.rstrip() for line in input_list] + if self.config["measurement_setting"]["input_psf_list"]: + with open(self.config["measurement_setting"]["input_psf_list"]) as input_list: + self.psf_list = [line.rstrip() for line in input_list] + else: + self.psf_list = None + + def run_pipeline(self): + + # Detection + detection = Detection( + n_jobs=self.config["measurement_setting"]["n_jobs"], + output_dir=os.path.join( + self.config["measurement_setting"]["output_dir"], + self.config["run_name"] + ) + ) + detection.run_detection( + image_list=self.img_list, + weight_list=self.wht_list, + flag_list=self.flg_list, + psf_list=self.psf_list, + sex_config=self.config["measurement_setting"]["sex_config"], + sex_param=self.config["measurement_setting"]["sex_param"], + ) + +if __name__ == "__main__": + pipeline = MeasurementPipeline() + pipeline.run_pipeline() \ No newline at end of file diff --git a/run_aperture_noise.sh b/run_aperture_noise.sh new file mode 100755 index 0000000000000000000000000000000000000000..421dca584924145215e52f663cfbdc322e98ce26 --- /dev/null +++ b/run_aperture_noise.sh @@ -0,0 +1,11 @@ +#!/bin/bash + +python /share/home/fangyuedong/injection_pipeline/evaluation/aperture_noise.py \ + --data_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1.fits \ + --seg_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_seg.fits \ + --flag_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_flg_L1.fits \ + --sky_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_sky.fits \ + --aper_min 20 \ + --aper_max 50 \ + --aper_sampling 5 \ + --output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517 \ No newline at end of file diff --git a/run_calculate_completeness_fraction.sh b/run_calculate_completeness_fraction.sh new file mode 100755 index 0000000000000000000000000000000000000000..9969fcf389e7f71994aa340bad45ae9db036bfa1 --- /dev/null +++ b/run_calculate_completeness_fraction.sh @@ -0,0 +1,8 @@ +#!/bin/bash + +python /share/home/fangyuedong/injection_pipeline/evaluation/calculate_completeness_fraction.py \ + --TU_catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected.cat \ + --source_catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected_extracted.cat \ + --orig_catalog /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_cat.fits \ + --image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1.fits \ + --output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517 \ No newline at end of file diff --git a/run_injection.pbs b/run_injection.pbs index be239d1439549721f08ef212b2ff3702a9caf9c7..976b57bae957ef0acd4fc74770f35c610b97e8b4 100755 --- a/run_injection.pbs +++ b/run_injection.pbs @@ -3,7 +3,7 @@ #PBS -N INJ #PBS -l nodes=wcl-1:ppn=60 #PBS -u fangyuedong -#PBS -j oe +####PBS -j oe cd $PBS_O_WORKDIR diff --git a/run.sh b/run_injection.sh similarity index 100% rename from run.sh rename to run_injection.sh diff --git a/run_make_mask.sh b/run_make_mask.sh new file mode 100755 index 0000000000000000000000000000000000000000..532f33ad928cf96a8b8e1a297cb00df97966d0e0 --- /dev/null +++ b/run_make_mask.sh @@ -0,0 +1,7 @@ +#!/bin/bash + +python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/create_mask.py \ + --catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_extracted.cat \ + --flag_image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_flg_L1.fits \ + --output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/ \ + --margin 10 \ No newline at end of file diff --git a/run_measurement.sh b/run_measurement.sh new file mode 100755 index 0000000000000000000000000000000000000000..bb0a61546d1f4d6b4d1da109578c027b0c4b2e37 --- /dev/null +++ b/run_measurement.sh @@ -0,0 +1,3 @@ +#!/bin/bash + +python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/run_measurement.py config_injection.yaml -c /share/home/fangyuedong/injection_pipeline/config \ No newline at end of file