Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Fang Yuedong
injection_pipeline
Commits
de19281e
Commit
de19281e
authored
Feb 09, 2024
by
Fang Yuedong
Browse files
backup
parent
fbaecf55
Changes
14
Show whitespace changes
Inline
Side-by-side
.gitignore
0 → 100644
View file @
de19281e
*.fits
*.cat
*.log
*.list
*.png
*.pyc
*.so
\ No newline at end of file
config/config_injection_20231203.yaml
0 → 100644
View file @
de19281e
---
###############################################
#
# Configuration file for CSST object injection
# Last modified: 2022/06/19
#
###############################################
# n_objects: 500
rotate_objs
:
NO
use_mpi
:
YES
run_name
:
"
test_20231203"
project_cycle
:
6
run_counter
:
1
pos_sampling
:
type
:
"
HexGrid"
# type: "RectGrid"
# grid_spacing: 18.5 # arcsec (~250 pixels)
grid_spacing
:
15
# arcsec (~500 pixels)
# type: "uniform"
# object_density: 37 # arcmin^-2
output_img_dir
:
"
/share/home/fangyuedong/injection_pipeline/workspace"
input_img_list
:
"
/share/home/fangyuedong/injection_pipeline/input_L1_IMG_20231203.list"
###############################################
# PSF setting
###############################################
psf_setting
:
# Which PSF model to use:
# "Gauss": simple gaussian profile
# "Interp": Interpolated PSF from sampled ray-tracing data
psf_model
:
"
Interp"
# PSF size [arcseconds]
# radius of 80% energy encircled
# NOTE: only valid for "Gauss" PSF
psf_rcont
:
0.15
# path to PSF data
# NOTE: only valid for "Interp" PSF
psf_dir
:
"
/share/simudata/CSSOSDataProductsSims/data/psfCube1"
###############################################
# Input path setting
# (NOTE) Used NGP Catalog for testing
###############################################
# Default path settings for NGP footprint simulation
data_dir
:
"
/share/simudata/CSSOSDataProductsSims/data/"
input_path
:
cat_dir
:
"
OnOrbitCalibration/CTargets20211231"
star_cat
:
"
CT-NGP_r1.8_G28.hdf5"
galaxy_cat
:
"
galaxyCats_r_3.0_healpix_shift_192.859500_27.128300.hdf5"
SED_templates_path
:
star_SED
:
"
Catalog_20210126/SpecLib.hdf5"
galaxy_SED
:
"
Templates/Galaxy/"
###############################################
# Instrumental effects setting
# (NOTE) Here only used to construct
# ObservationSim.Instrument.Chip object
# (TODO) Should readout from header
###############################################
ins_effects
:
# switches
bright_fatter
:
ON
# Whether to simulate Brighter-Fatter (also diffusion) effect
# values
# dark_exptime: 300 # Exposure time for dark current frames [seconds]
# flat_exptime: 150 # Exposure time for flat-fielding frames [seconds]
# readout_time: 40 # The read-out time for each channel [seconds]
# df_strength: 2.3 # Sillicon sensor diffusion strength
# bias_level: 500 # bias level [e-/pixel]
# gain: 1.1 # Gain
# full_well: 90000 # Full well depth [e-]
###############################################
# Random seeds
###############################################
random_seeds
:
seed_Av
:
121212
# Seed for generating random intrinsic extinction
###############################################
# Measurement setting
###############################################
measurement_setting
:
input_img_list
:
"
/share/home/fangyuedong/injection_pipeline/L1_INJECTED_20231203.list"
# input_img_list: "/share/home/fangyuedong/injection_pipeline/input_L1_img_MSC_0000000.list"
input_wht_list
:
"
/share/home/fangyuedong/injection_pipeline/L1_WHT_20231203.list"
input_flg_list
:
"
/share/home/fangyuedong/injection_pipeline/L1_FLG_20231203.list"
# input_psf_list: "/share/home/fangyuedong/injection_pipeline/psf_img_MSC_0000000.list"
sex_config
:
"
/share/home/fangyuedong/injection_pipeline/config/default.config"
sex_param
:
"
/share/home/fangyuedong/injection_pipeline/config/default.param"
n_jobs
:
18
output_dir
:
"
/share/home/fangyuedong/injection_pipeline/workspace"
\ No newline at end of file
evaluation/calculate_completeness_fraction.py
View file @
de19281e
...
...
@@ -8,16 +8,30 @@ from ObservationSim.Instrument import Telescope, Filter, FilterParam
VC_A
=
2.99792458e+18
# speed of light: A/s
# def define_options():
# parser = argparse.ArgumentParser()
# parser.add_argument('--TU_catalog', dest='TU_catalog', type=str, required=True,
# help='path to the (injected) truth catalog')
# parser.add_argument('--source_catalog', dest='source_catalog', type=str, required=True,
# help='path to the (extracted) injected catalog')
# parser.add_argument('--orig_catalog', dest='orig_catalog', type=str, required=True,
# help='path to the (extracted) original catalog')
# parser.add_argument('--image', dest='image', type=str, required=True,
# help='path to the image, used to get the header info')
# parser.add_argument('--output_dir', dest='output_dir', type=str, required=False,
# default='./workspace', help='output path')
# return parser
def
define_options
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--TU_catalog'
,
dest
=
'TU_catalog'
,
type
=
str
,
required
=
True
,
help
=
'path to the (injected) truth catalog'
)
parser
.
add_argument
(
'--source_catalog'
,
dest
=
'source_catalog'
,
type
=
str
,
required
=
True
,
parser
.
add_argument
(
'--TU_catalog
_list
'
,
dest
=
'TU_catalog
_list
'
,
type
=
str
,
required
=
True
,
help
=
'path to the
list of
(injected) truth catalog'
)
parser
.
add_argument
(
'--source_catalog
_list
'
,
dest
=
'source_catalog
_list
'
,
type
=
str
,
required
=
True
,
help
=
'path to the (extracted) injected catalog'
)
parser
.
add_argument
(
'--orig_catalog'
,
dest
=
'orig_catalog'
,
type
=
str
,
required
=
True
,
help
=
'path to the (extracted) original catalog'
)
parser
.
add_argument
(
'--image'
,
dest
=
'image'
,
type
=
str
,
required
=
True
,
help
=
'path to the image, used to get the header info'
)
#
parser.add_argument('--orig_catalog', dest='orig_catalog', type=str, required=True,
#
help='path to the
list of
(extracted) original catalog')
#
parser.add_argument('--image', dest='image', type=str, required=True,
#
help='path to the image, used to get the header info')
parser
.
add_argument
(
'--output_dir'
,
dest
=
'output_dir'
,
type
=
str
,
required
=
False
,
default
=
'./workspace'
,
help
=
'output path'
)
return
parser
...
...
@@ -72,13 +86,24 @@ def convert_catalog(catname):
fits_filename
=
os
.
path
.
join
(
data_dir
,
base_name
+
'.fits'
)
text_file
.
write
(
fits_filename
,
overwrite
=
True
)
def
validation_hist
(
val
,
idx
,
name
=
"val"
,
nbins
=
10
,
fig_name
=
'detected_counts.png'
,
output_dir
=
'./'
):
def
validation_hist
(
val
,
idx
,
name
=
"val"
,
nbins
=
10
,
bins
=
None
,
fig_name
=
'detected_counts.png'
,
output_dir
=
'./'
,
create_figure
=
True
):
if
bins
is
None
:
counts
,
bins
=
np
.
histogram
(
val
,
bins
=
nbins
)
else
:
counts
,
bins
=
np
.
histogram
(
val
,
bins
=
bins
)
is_empty
=
np
.
full
(
len
(
val
),
False
)
for
i
in
range
(
len
(
idx
)):
if
idx
[
i
].
size
==
0
:
is_empty
[
i
]
=
True
if
bins
is
None
:
counts_detected
,
_
=
np
.
histogram
(
val
[
~
is_empty
],
bins
=
nbins
)
else
:
counts_detected
,
_
=
np
.
histogram
(
val
[
~
is_empty
],
bins
=
bins
)
if
create_figure
:
create_hist_figure
(
counts
,
counts_detected
,
bins
,
name
,
output_dir
,
fig_name
)
return
counts
,
counts_detected
,
bins
def
create_hist_figure
(
counts
,
counts_detected
,
bins
,
name
=
"val"
,
output_dir
=
'./'
,
fig_name
=
'detected_counts.png'
):
plt
.
figure
()
plt
.
stairs
(
counts
,
bins
,
color
=
'r'
,
label
=
'TU objects'
)
plt
.
stairs
(
counts_detected
,
bins
,
color
=
'g'
,
label
=
'Detected'
)
...
...
@@ -87,22 +112,38 @@ def validation_hist(val, idx, name="val", nbins=10, fig_name='detected_counts.pn
plt
.
legend
(
loc
=
'upper right'
,
fancybox
=
True
)
fig_name
=
os
.
path
.
join
(
output_dir
,
fig_name
)
plt
.
savefig
(
fig_name
)
return
counts
,
bins
def
hist_fraction
(
val
,
idx
,
name
=
'val'
,
nbins
=
10
,
normed
=
False
,
output_dir
=
'./'
):
def
hist_fraction
(
val
,
idx
,
name
=
'val'
,
nbins
=
10
,
bins
=
None
,
output_dir
=
'./'
,
fig_name
=
"completeness_fraction.png"
):
if
bins
is
None
:
counts
,
bins
=
np
.
histogram
(
val
,
bins
=
nbins
)
else
:
counts
,
bins
=
np
.
histogram
(
val
,
bins
=
bins
)
is_empty
=
np
.
full
(
len
(
val
),
False
)
for
i
in
range
(
len
(
idx
)):
if
idx
[
i
].
size
==
0
:
is_empty
[
i
]
=
True
counts_detected
,
_
=
np
.
histogram
(
val
[
~
is_empty
],
bins
=
nbins
,
density
=
normed
)
if
bins
is
None
:
counts_detected
,
_
=
np
.
histogram
(
val
[
~
is_empty
],
bins
=
nbins
)
else
:
counts_detected
,
_
=
np
.
histogram
(
val
[
~
is_empty
],
bins
=
bins
)
fraction
=
counts_detected
/
counts
fraction
[
np
.
where
(
np
.
isnan
(
fraction
))[
0
]]
=
0.
plt
.
figure
()
plt
.
stairs
(
fraction
,
bins
,
color
=
'r'
,
label
=
'completeness fraction'
)
plt
.
xlabel
(
name
,
size
=
'x-large'
)
plt
.
title
(
"Completeness Fraction"
)
fig_name
=
os
.
path
.
join
(
output_dir
,
"completeness_fraction_%s.png"
%
(
name
))
fig_name
=
os
.
path
.
join
(
output_dir
,
fig_name
)
plt
.
savefig
(
fig_name
)
return
fraction
def
create_fraction_figure
(
counts
,
counts_detected
,
bins
,
name
=
'val'
,
output_dir
=
'./'
,
fig_name
=
"completeness_fraction.png"
):
fraction
=
counts_detected
/
counts
fraction
[
np
.
where
(
np
.
isnan
(
fraction
))[
0
]]
=
0.
plt
.
figure
()
plt
.
stairs
(
fraction
,
bins
,
color
=
'r'
,
label
=
'completeness fraction'
)
plt
.
xlabel
(
name
,
size
=
'x-large'
)
plt
.
title
(
"Completeness Fraction"
)
fig_name
=
os
.
path
.
join
(
output_dir
,
fig_name
)
plt
.
savefig
(
fig_name
)
return
fraction
...
...
@@ -116,6 +157,25 @@ def calculate_fraction(TU_catalog, source_catalog, output_dir, nbins=10):
fraction
=
hist_fraction
(
val
=
mag_TU
,
idx
=
idx1
,
name
=
"mag_injected"
,
nbins
=
10
,
output_dir
=
output_dir
)
return
counts
,
bins
,
fraction
def
calculate_fraction_multi_cats
(
TU_catalog_list
,
source_catalog_list
,
output_dir
,
nbins
=
10
):
counts
=
np
.
zeros
(
nbins
)
counts_detected
=
np
.
zeros
(
nbins
)
bins
=
np
.
linspace
(
18
,
26
,
num
=
(
nbins
+
1
))
for
i
in
range
(
len
(
TU_catalog_list
)):
TU_catalog
=
TU_catalog_list
[
i
]
source_catalog
=
source_catalog_list
[
i
]
convert_catalog
(
TU_catalog
)
x_TU_temp
,
y_TU_temp
,
col_list
=
read_catalog
(
TU_catalog
+
'.fits'
,
ext_num
=
1
,
ra_name
=
"xImage"
,
dec_name
=
"yImage"
,
col_list
=
[
"mag"
])
mag_TU_temp
=
col_list
[
0
]
x_source_temp
,
y_source_temp
,
_
=
read_catalog
(
source_catalog
,
ext_num
=
1
,
ra_name
=
"X_IMAGE"
,
dec_name
=
"Y_IMAGE"
)
idx1
,
_
,
=
match_catalogs_img
(
x1
=
x_TU_temp
,
y1
=
y_TU_temp
,
x2
=
x_source_temp
,
y2
=
y_source_temp
)
counts_temp
,
counts_detected_temp
,
_
=
validation_hist
(
val
=
mag_TU_temp
,
idx
=
idx1
,
name
=
"mag_injected"
,
bins
=
bins
,
output_dir
=
output_dir
,
create_figure
=
False
)
counts
+=
counts_temp
counts_detected
+=
counts_detected_temp
create_hist_figure
(
counts
,
counts_detected
,
bins
,
"mag_injected"
,
output_dir
)
fraction
=
create_fraction_figure
(
counts
,
counts_detected
,
bins
,
'mag_injected'
,
output_dir
)
return
counts
,
counts_detected
,
bins
,
fraction
def
calculate_undetected_flux
(
orig_cat
,
mag_bins
,
fraction
,
mag_low
=
20.0
,
mag_high
=
26.0
,
image
=
None
,
output_dir
=
'./'
):
# Get info from original image
hdu
=
fits
.
open
(
image
)
...
...
@@ -166,19 +226,32 @@ def calculate_undetected_flux(orig_cat, mag_bins, fraction, mag_low=20.0, mag_hi
undetected_flux
/=
(
float
(
nx_pix
)
*
float
(
ny_pix
))
return
undetected_flux
# if __name__ == "__main__":
# args = define_options().parse_args()
# counts, bins, fraction = calculate_fraction(
# TU_catalog=args.TU_catalog,
# source_catalog=args.source_catalog,
# output_dir=args.output_dir,
# nbins=20
# )
# undetected_flux = calculate_undetected_flux(
# orig_cat=args.orig_catalog,
# mag_bins=bins,
# fraction=fraction,
# image=args.image,
# output_dir=args.output_dir,
# )
# print(undetected_flux)
if
__name__
==
"__main__"
:
args
=
define_options
().
parse_args
()
counts
,
bins
,
fraction
=
calculate_fraction
(
TU_catalog
=
args
.
TU_catalog
,
source_catalog
=
args
.
source_catalog
,
with
open
(
args
.
TU_catalog_list
)
as
file
:
TU_catalog_list
=
[
line
.
rstrip
()
for
line
in
file
]
with
open
(
args
.
source_catalog_list
)
as
file
:
source_catalog_list
=
[
line
.
rstrip
()
for
line
in
file
]
counts
,
counts_detected
,
bins
,
fraction
=
calculate_fraction_multi_cats
(
TU_catalog_list
=
TU_catalog_list
,
source_catalog_list
=
source_catalog_list
,
output_dir
=
args
.
output_dir
,
nbins
=
20
)
\ No newline at end of file
undetected_flux
=
calculate_undetected_flux
(
orig_cat
=
args
.
orig_catalog
,
mag_bins
=
bins
,
fraction
=
fraction
,
image
=
args
.
image
,
output_dir
=
args
.
output_dir
,
)
print
(
undetected_flux
)
\ No newline at end of file
evaluation/cross_match_catalogs.py
View file @
de19281e
import
numpy
as
np
import
astropy.units
as
u
import
matplotlib.pyplot
as
plt
from
astropy.coordinates
import
SkyCoord
from
astropy.io
import
fits
from
astropy.io
import
ascii
from
sklearn.neighbors
import
BallTree
# TU_catalog = "test_RectGrid_20220628.cat"
# source_catalog = "extracted_test_RectGrid_20220628.fits"
TU_catalog
=
"injected_bkgsub_img.cat"
source_catalog
=
"extracted_injected_bkgsub_img.fits"
...
...
@@ -26,7 +23,6 @@ def read_catalog(catname, ext_num=1, ra_name='ra', dec_name='dec', col_list=[]):
if
len
(
col_list
)
>
0
:
for
col
in
col_list
:
col_other
.
append
(
data
[
col
])
# print(ra, dec)
return
ra
,
dec
,
col_other
def
match_catalogs_sky
(
ra1
,
dec1
,
ra2
,
dec2
,
max_dist
=
0.6
,
others1
=
[],
others2
=
[],
thresh
=
[]):
...
...
@@ -37,33 +33,24 @@ def match_catalogs_sky(ra1, dec1, ra2, dec2, max_dist=0.6, others1=[], others2=[
# print(idx2)
# print(np.shape(idx1))
# print(np.shape(idx2))
# TODO
def
match_catalogs_img
(
x1
,
y1
,
x2
,
y2
,
max_dist
=
0.5
,
others1
=
[],
others2
=
[],
thresh
=
[]):
def
match_catalogs_img
(
x1
,
y1
,
x2
,
y2
,
max_dist
=
2
,
others1
=
[],
others2
=
[],
thresh
=
[]):
cat1
=
np
.
array
([(
x
,
y
)
for
x
,
y
in
zip
(
x1
,
y1
)])
cat2
=
np
.
array
([(
x
,
y
)
for
x
,
y
in
zip
(
x2
,
y2
)])
# print(np.shape(cat1))
# print(np.shape(cat2))
tree
=
BallTree
(
cat2
)
idx1
=
tree
.
query_radius
(
cat1
,
r
=
max_dist
)
tree
=
BallTree
(
cat1
)
idx2
=
tree
.
query_radius
(
cat2
,
r
=
max_dist
)
# print(np.shape(idx1))
tot
=
0
print
(
idx1
)
for
idx
in
idx1
:
if
len
(
idx
)
==
0
:
continue
if
len
(
idx
)
>
1
:
print
(
len
(
idx
))
tot
+=
1
print
(
tot
)
print
(
"number of matched sources = "
,
tot
)
return
idx1
,
idx2
def
validation_hist
(
val1
,
idx1
,
name
=
"val1"
,
nbins
=
10
):
counts
,
bins
=
np
.
histogram
(
val1
)
plt
.
stairs
(
counts
,
bins
)
plt
.
xlabel
(
name
,
size
=
'x-large'
)
plt
.
savefig
(
"detection_completeness.png"
)
# plt.show()
if
__name__
==
"__main__"
:
convert_catalog
(
TU_catalog
)
ra_TU
,
dec_TU
,
_
=
read_catalog
(
'test_ascii_to_fits.fits'
,
ext_num
=
1
,
ra_name
=
"ra"
,
dec_name
=
"dec"
)
...
...
@@ -74,4 +61,3 @@ if __name__=="__main__":
# match_catalogs_sky(ra1=ra_TU, dec1=dec_TU, ra2=ra_source, dec2=dec_source)
idx1
,
idx2
,
=
match_catalogs_img
(
x1
=
x_TU
,
y1
=
y_TU
,
x2
=
x_source
,
y2
=
y_source
)
# print(ra_TU, dec_TU)
\ No newline at end of file
validation_hist
(
mag_TU
,
idx1
,
name
=
"mag_injected"
)
\ No newline at end of file
injection_pipeline/Catalog/C6_SimCat.py
0 → 100644
View file @
de19281e
import
os
import
galsim
import
random
import
numpy
as
np
import
h5py
as
h5
import
healpy
as
hp
import
astropy.constants
as
cons
import
traceback
from
astropy.coordinates
import
spherical_to_cartesian
from
astropy.table
import
Table
from
scipy
import
interpolate
from
datetime
import
datetime
from
ObservationSim.MockObject
import
CatalogBase
,
Star
,
Galaxy
,
Quasar
from
ObservationSim.MockObject._util
import
tag_sed
,
getObservedSED
,
getABMAG
,
integrate_sed_bandpass
,
comoving_dist
from
ObservationSim.Astrometry.Astrometry_util
import
on_orbit_obs_position
# (TEST)
from
astropy.cosmology
import
FlatLambdaCDM
from
astropy
import
constants
from
astropy
import
units
as
U
try
:
import
importlib.resources
as
pkg_resources
except
ImportError
:
# Try backported to PY<37 'importlib_resources'
import
importlib_resources
as
pkg_resources
# CONSTANTS
NSIDE
=
128
def
get_bundleIndex
(
healpixID_ring
,
bundleOrder
=
4
,
healpixOrder
=
7
):
assert
NSIDE
==
2
**
healpixOrder
shift
=
healpixOrder
-
bundleOrder
shift
=
2
*
shift
nside_bundle
=
2
**
bundleOrder
nside_healpix
=
2
**
healpixOrder
healpixID_nest
=
hp
.
ring2nest
(
nside_healpix
,
healpixID_ring
)
bundleID_nest
=
(
healpixID_nest
>>
shift
)
bundleID_ring
=
hp
.
nest2ring
(
nside_bundle
,
bundleID_nest
)
return
bundleID_ring
class
SimCat
(
CatalogBase
):
def
__init__
(
self
,
config
,
chip
,
nobjects
=
None
):
super
().
__init__
()
self
.
cat_dir
=
os
.
path
.
join
(
config
[
"data_dir"
],
config
[
"catalog_options"
][
"input_path"
][
"cat_dir"
])
self
.
seed_Av
=
config
[
"catalog_options"
][
"seed_Av"
]
self
.
cosmo
=
FlatLambdaCDM
(
H0
=
67.66
,
Om0
=
0.3111
)
with
pkg_resources
.
path
(
'Catalog.data'
,
'SLOAN_SDSS.g.fits'
)
as
filter_path
:
self
.
normF_star
=
Table
.
read
(
str
(
filter_path
))
self
.
config
=
config
self
.
chip
=
chip
galaxy_dir
=
config
[
"catalog_options"
][
"input_path"
][
"galaxy_cat"
]
self
.
galaxy_path
=
os
.
path
.
join
(
self
.
cat_dir
,
galaxy_dir
)
self
.
galaxy_SED_path
=
os
.
path
.
join
(
config
[
"data_dir"
],
config
[
"catalog_options"
][
"SED_templates_path"
][
"galaxy_SED"
])
self
.
_load_SED_lib_gals
()
if
"rotateEll"
in
config
[
"catalog_options"
]:
self
.
rotation
=
float
(
int
(
config
[
"catalog_options"
][
"rotateEll"
]
/
45.
))
else
:
self
.
rotation
=
0.
self
.
_get_healpix_list
()
self
.
_load
(
nobjects
=
nobjects
)
def
_get_healpix_list
(
self
):
self
.
sky_coverage
=
self
.
chip
.
getSkyCoverageEnlarged
(
self
.
chip
.
img
.
wcs
,
margin
=
0.2
)
ra_min
,
ra_max
,
dec_min
,
dec_max
=
self
.
sky_coverage
.
xmin
,
self
.
sky_coverage
.
xmax
,
self
.
sky_coverage
.
ymin
,
self
.
sky_coverage
.
ymax
ra
=
np
.
deg2rad
(
np
.
array
([
ra_min
,
ra_max
,
ra_max
,
ra_min
]))
dec
=
np
.
deg2rad
(
np
.
array
([
dec_max
,
dec_max
,
dec_min
,
dec_min
]))
self
.
pix_list
=
hp
.
query_polygon
(
NSIDE
,
hp
.
ang2vec
(
np
.
radians
(
90.
)
-
dec
,
ra
),
inclusive
=
True
)
if
self
.
logger
is
not
None
:
msg
=
str
((
"HEALPix List: "
,
self
.
pix_list
))
self
.
logger
.
info
(
msg
)
else
:
print
(
"HEALPix List: "
,
self
.
pix_list
)
def
load_norm_filt
(
self
,
obj
):
if
obj
.
type
==
"star"
:
return
self
.
normF_star
elif
obj
.
type
==
"galaxy"
or
obj
.
type
==
"quasar"
:
return
None
else
:
return
None
def
_load_SED_lib_gals
(
self
):
pcs
=
h5
.
File
(
os
.
path
.
join
(
self
.
galaxy_SED_path
,
"pcs.h5"
),
"r"
)
lamb
=
h5
.
File
(
os
.
path
.
join
(
self
.
galaxy_SED_path
,
"lamb.h5"
),
"r"
)
self
.
lamb_gal
=
lamb
[
'lamb'
][()]
self
.
pcs
=
pcs
[
'pcs'
][()]
def
_load_gals
(
self
,
gals
,
pix_id
=
None
,
cat_id
=
0
,
nobjects
=
1
):
# Load how mnay objects?
max_ngals
=
len
(
gals
[
'ra'
])
remain
=
nobjects
for
igals
in
range
(
max_ngals
):
if
remain
==
0
:
break
param
=
self
.
initialize_param
()
param
[
'ra'
]
=
ra_arr
[
igals
]
param
[
'dec'
]
=
dec_arr
[
igals
]
param
[
'ra_orig'
]
=
gals
[
'ra'
][
igals
]
param
[
'dec_orig'
]
=
gals
[
'dec'
][
igals
]
# [TODO]
param
[
'mag_use_normal'
]
=
gals
[
'mag_csst_%s'
%
(
self
.
filt
.
filter_type
)][
igals
]
# if self.filt.is_too_dim(mag=param['mag_use_normal'], margin=self.config["obs_setting"]["mag_lim_margin"]):
# continue
param
[
'z'
]
=
gals
[
'redshift'
][
igals
]
param
[
'model_tag'
]
=
'None'
param
[
'g1'
]
=
gals
[
'shear'
][
igals
][
0
]
param
[
'g2'
]
=
gals
[
'shear'
][
igals
][
1
]
param
[
'kappa'
]
=
gals
[
'kappa'
][
igals
]
param
[
'e1'
]
=
gals
[
'ellipticity_true'
][
igals
][
0
]
param
[
'e2'
]
=
gals
[
'ellipticity_true'
][
igals
][
1
]
# For shape calculation
param
[
'ell_total'
]
=
np
.
sqrt
(
param
[
'e1'
]
**
2
+
param
[
'e2'
]
**
2
)
if
param
[
'ell_total'
]
>
0.9
:
continue
remain
-=
1
param
[
'e1_disk'
]
=
param
[
'e1'
]
param
[
'e2_disk'
]
=
param
[
'e2'
]
param
[
'e1_bulge'
]
=
param
[
'e1'
]
param
[
'e2_bulge'
]
=
param
[
'e2'
]
param
[
'delta_ra'
]
=
0
param
[
'delta_dec'
]
=
0
# Masses
param
[
'bulgemass'
]
=
gals
[
'bulgemass'
][
igals
]
param
[
'diskmass'
]
=
gals
[
'diskmass'
][
igals
]
param
[
'size'
]
=
gals
[
'size'
][
igals
]
if
param
[
'size'
]
>
self
.
max_size
:
self
.
max_size
=
param
[
'size'
]
# Sersic index
param
[
'disk_sersic_idx'
]
=
1.
param
[
'bulge_sersic_idx'
]
=
4.
# Sizes
param
[
'bfrac'
]
=
param
[
'bulgemass'
]
/
(
param
[
'bulgemass'
]
+
param
[
'diskmass'
])
if
param
[
'bfrac'
]
>=
0.6
:
param
[
'hlr_bulge'
]
=
param
[
'size'
]
param
[
'hlr_disk'
]
=
param
[
'size'
]
*
(
1.
-
param
[
'bfrac'
])
else
:
param
[
'hlr_disk'
]
=
param
[
'size'
]
param
[
'hlr_bulge'
]
=
param
[
'size'
]
*
param
[
'bfrac'
]
# SED coefficients
param
[
'coeff'
]
=
gals
[
'coeff'
][
igals
]
param
[
'detA'
]
=
gals
[
'detA'
][
igals
]
# Others
param
[
'galType'
]
=
gals
[
'type'
][
igals
]
param
[
'veldisp'
]
=
gals
[
'veldisp'
][
igals
]
# TEST no redening and no extinction
param
[
'av'
]
=
0.0
param
[
'redden'
]
=
0
param
[
'star'
]
=
0
# Galaxy
# TEMP
self
.
ids
+=
1
# param['id'] = self.ids
param
[
'id'
]
=
'%06d'
%
(
int
(
pix_id
))
+
'%06d'
%
(
cat_id
)
+
'%08d'
%
(
igals
)
if
param
[
'star'
]
==
0
:
obj
=
Galaxy
(
param
,
self
.
rotation
,
logger
=
self
.
logger
)
self
.
objs
.
append
(
obj
)
return
remain
def
_load
(
self
,
nobjects
=
1
):
from
itertools
import
cycle
self
.
objs
=
[]
self
.
ids
=
0
to_be_read_in
=
nobjects
pool
=
cycle
(
self
.
pix_list
)
for
pix
in
pool
:
try
:
if
to_be_read_in
==
0
:
break
bundleID
=
get_bundleIndex
(
pix
)
file_path
=
os
.
path
.
join
(
self
.
galaxy_path
,
"galaxies_C6_bundle{:06}.h5"
.
format
(
bundleID
))
gals_cat
=
h5
.
File
(
file_path
,
'r'
)[
'galaxies'
]
gals
=
gals_cat
[
str
(
pix
)]
to_be_read_in
=
self
.
_load_gals
(
gals
,
pix_id
=
pix
,
cat_id
=
bundleID
,
n_objects
=
to_be_read_in
)
del
gals
except
Exception
as
e
:
traceback
.
print_exc
()
print
(
e
)
def
load_sed
(
self
,
obj
,
**
kwargs
):
factor
=
10
**
(
-
.
4
*
self
.
cosmo
.
distmod
(
obj
.
z
).
value
)
flux
=
np
.
matmul
(
self
.
pcs
,
obj
.
coeff
)
*
factor
# if np.any(flux < 0):
# raise ValueError("Glaxy %s: negative SED fluxes"%obj.id)
flux
[
flux
<
0
]
=
0.
sedcat
=
np
.
vstack
((
self
.
lamb_gal
,
flux
)).
T
sed_data
=
getObservedSED
(
sedCat
=
sedcat
,
redshift
=
obj
.
z
,
av
=
obj
.
param
[
"av"
],
redden
=
obj
.
param
[
"redden"
]
)
wave
,
flux
=
sed_data
[
0
],
sed_data
[
1
]
speci
=
interpolate
.
interp1d
(
wave
,
flux
)
lamb
=
np
.
arange
(
2000
,
11001
+
0.5
,
0.5
)
y
=
speci
(
lamb
)
# erg/s/cm2/A --> photon/s/m2/A
all_sed
=
y
*
lamb
/
(
cons
.
h
.
value
*
cons
.
c
.
value
)
*
1e-13
sed
=
Table
(
np
.
array
([
lamb
,
all_sed
]).
T
,
names
=
(
'WAVELENGTH'
,
'FLUX'
))
del
wave
del
flux
return
sed
\ No newline at end of file
injection_pipeline/Catalog/data/__init__.py
0 → 100644
View file @
de19281e
injection_pipeline/SingleEpochImage.py
View file @
de19281e
...
...
@@ -57,23 +57,6 @@ class SingleEpochImage(object):
self
.
setup_image_for_injection
()
# [TODO] Header should come from input image
# self.header_ext = generateExtensionHeader(
# chip=self.chip,
# xlen=self.chip.npix_x,
# ylen=self.chip.npix_y,
# ra=self.ra_cen,
# dec=self.dec_cen,
# pa=self.pos_ang,
# gain=self.chip.gain, # {TODO}
# readout=self.chip.read_noise,
# dark=self.chip.dark_noise,
# saturation=90000,
# pixel_scale=self.chip.pix_scale,
# pixel_size=self.chip.pix_size,
# xcen=self.chip.x_cen,
# ycen=self.chip.y_cen,
# extName = 'raw')
self
.
header_ext
=
self
.
header_img
# (TODO) specify sub-directory
...
...
@@ -95,10 +78,12 @@ class SingleEpochImage(object):
def
setup_image_for_injection
(
self
):
self
.
ra_cen
=
self
.
wcs
.
wcs
.
crval
[
0
]
self
.
dec_cen
=
self
.
wcs
.
wcs
.
crval
[
1
]
self
.
wcs_fp
=
self
.
focal_plane
.
getTanWCS
(
self
.
ra_cen
,
self
.
dec_cen
,
self
.
pos_ang
*
galsim
.
degrees
,
self
.
pixel_scale
)
#
self.wcs_fp = self.focal_plane.getTanWCS(self.ra_cen, self.dec_cen, self.pos_ang*galsim.degrees, self.pixel_scale)
self
.
chip
.
img
=
galsim
.
Image
(
self
.
image
,
copy
=
True
)
self
.
chip
.
img
.
setOrigin
(
self
.
chip
.
bound
.
xmin
,
self
.
chip
.
bound
.
ymin
)
self
.
chip
.
img
.
wcs
=
self
.
wcs_fp
# self.chip.img.wcs = self.wcs_fp
# self.chip.img.setOrigin(0, 0)
self
.
chip
.
img
.
wcs
=
galsim
.
AstropyWCS
(
wcs
=
self
.
wcs
)
def
read_initial_image
(
self
,
filepath
):
data_dir
=
os
.
path
.
dirname
(
filepath
)
...
...
@@ -110,15 +95,20 @@ class SingleEpochImage(object):
hdu
.
close
()
# Determine which CCD
self
.
chip_ID
=
int
(
self
.
header0
[
'DETECTOR'
][
-
2
:])
# self.chip_ID = int(self.header0['DETECTOR'][-2:])
self
.
chip_ID
=
int
(
self
.
header_img
[
"CHIPID"
])
# Construnct Chip object
self
.
chip
=
Chip
(
chipID
=
self
.
chip_ID
,
config
=
self
.
config
)
self
.
exp_time
=
float
(
self
.
header0
[
'EXPTIME'
])
self
.
chip
.
gain
=
float
(
self
.
header_img
[
"GAIN1"
])
# self.chip.gain = float(self.header_img["GAIN1"])
self
.
chip
.
gain
=
float
(
self
.
header_img
[
"GAIN01"
])
# Process L1 image
# self.image = self.image * self.exp_time / self.chip.gain
self
.
image
=
self
.
image
*
self
.
chip
.
gain
self
.
image
=
self
.
image
*
self
.
exp_time
/
self
.
chip
.
gain
print
(
self
.
chip
.
gain
,
self
.
exp_time
)
print
(
self
.
image
)
print
(
np
.
sum
(
self
.
image
<
0
),
np
.
sum
(
self
.
image
>
0
))
# self.image = self.image * self.chip.gain
# Process L1 SKY image
# [TODO]
...
...
@@ -128,7 +118,8 @@ class SingleEpochImage(object):
# image -= sky_img
# Process L1 FLAG image
flag_img_path
=
os
.
path
.
join
(
data_dir
,
img_name
.
replace
(
"img_L1"
,
"flg_L1"
))
# flag_img_path = os.path.join(data_dir, img_name.replace("img_L1", "flg_L1"))
flag_img_path
=
os
.
path
.
join
(
data_dir
,
img_name
.
replace
(
"IMG"
,
"FLG"
))
flag_img
=
fits
.
getdata
(
flag_img_path
)
self
.
image
[
flag_img
>
0
]
=
0.
...
...
@@ -143,7 +134,7 @@ class SingleEpochImage(object):
# hdu1.writeto(fname, output_verify='ignore', overwrite=True)
def
_get_wcs
(
self
,
header
):
self
.
pos_ang
=
float
(
header
[
'POS_ANG'
])
#
self.pos_ang = float(header['POS_ANG'])
self
.
wcs
=
wcs
.
WCS
(
header
)
self
.
pixel_scale
=
0.074
...
...
@@ -186,7 +177,7 @@ class SingleEpochImage(object):
try
:
sed_data
=
cat
.
load_sed
(
obj
)
norm_filt
=
cat
.
load_norm_filt
(
obj
)
obj
.
sed
,
obj
.
param
[
"mag_%s"
%
self
.
filt
.
filter_type
],
obj
.
param
[
"flux_%s"
%
self
.
filt
.
filter_type
]
=
cat
.
convert_sed
(
obj
.
sed
,
obj
.
param
[
"mag_%s"
%
self
.
filt
.
filter_type
.
lower
()
],
obj
.
param
[
"flux_%s"
%
self
.
filt
.
filter_type
.
lower
()
]
=
cat
.
convert_sed
(
mag
=
obj
.
param
[
"mag_use_normal"
],
sed
=
sed_data
,
target_filt
=
self
.
filt
,
...
...
@@ -233,9 +224,9 @@ class SingleEpochImage(object):
self
.
chip
.
img
=
galsim
.
Image
(
self
.
chip
.
img
.
array
,
dtype
=
np
.
float32
)
# [TODO] TEST
#
self.chip.img *= self.chip.gain
#
self.chip.img /= self.exp_time
self
.
chip
.
img
/=
self
.
chip
.
gain
self
.
chip
.
img
*=
self
.
chip
.
gain
self
.
chip
.
img
/=
self
.
exp_time
#
self.chip.img /= self.chip.gain
hdu1
=
fits
.
PrimaryHDU
(
header
=
self
.
header0
)
hdu2
=
fits
.
ImageHDU
(
self
.
chip
.
img
.
array
,
header
=
self
.
header_img
)
...
...
measurement_pipeline/L1_pipeline/__init__.py
0 → 100644
View file @
de19281e
measurement_pipeline/L1_pipeline/csst_msc_mbi_instrument.py
0 → 100644
View file @
de19281e
from
datetime
import
datetime
from
typing
import
Optional
import
numpy
as
np
from
itertools
import
product
from
astropy.io
import
fits
from
astropy.stats
import
sigma_clipped_stats
SATURATE
=
50000
def
core_msc_l1_mbi_instrument
(
image_path
:
str
=
"/path/to/image"
,
bias_path
:
str
=
"/path/to/bias"
,
dark_path
:
str
=
"/path/to/dark"
,
flat_path
:
str
=
"/path/to/flat"
,
shutter_path
:
str
=
"/path/to/shutter"
,
image_output_path
:
str
=
"/path/to/image_output"
,
weight_output_path
:
str
=
"/path/to/weight_output"
,
flag_output_path
:
str
=
"/path/to/flag_output"
,
deepcr_model_path
:
Optional
[
str
]
=
None
,
config_ccd_info
:
Optional
[
str
]
=
None
,
config_bad_pixel
:
Optional
[
str
]
=
None
,
device
:
Optional
[
str
]
=
"CPU"
,
):
"""
Make the instrument correction for one chip of CSST data.
This function corrects the instrument effect, such as bias, dark, flat, shutter, cosmicrays etc.
Parameters
----------
image_path : str
The sci file path.
bias_path : str
The bias file path.
dark_path : str
The dark file path.
flat_path : str
The flat file path.
shutter_path : str
The shutter file path.
image_output_path : str
The image output file path.
weight_output_path : str
The weight output file path.
flag_output_path : str
The flag output file path.
deepcr_model_path : str, optional
The deepcr model file path.
config_ccd_info : str, optional
The config for ccd file path.
config_bad_pixel : str, optional
The config for bad pixel file path.
device : str
The deepcr device input 'CPU' or 'GPU', by default 'CPU'.
Returns
-------
CsstResult
Result containing `status` and `files`.
"""
status_header
=
_set_status_header
()
# CCD image processing
with
fits
.
open
(
image_path
)
as
raw
:
hdu
=
fits
.
HDUList
([
fits
.
PrimaryHDU
(
header
=
raw
[
0
].
header
.
copy
()),
fits
.
ImageHDU
(
header
=
raw
[
1
].
header
.
copy
(),
data
=
raw
[
1
].
data
.
copy
())
])
# 创建wht[1].data hdulist
wht
=
fits
.
HDUList
([
fits
.
PrimaryHDU
(
header
=
raw
[
0
].
header
.
copy
()),
fits
.
ImageHDU
(
header
=
raw
[
1
].
header
.
copy
(),
data
=
np
.
zeros_like
(
hdu
[
1
].
data
,
dtype
=
np
.
float32
))
])
# 创建flg[1].data hdulist
flg
=
fits
.
HDUList
([
fits
.
PrimaryHDU
(
header
=
raw
[
0
].
header
.
copy
()),
fits
.
ImageHDU
(
header
=
raw
[
1
].
header
.
copy
(),
data
=
np
.
zeros_like
(
hdu
[
1
].
data
,
dtype
=
np
.
uint32
))])
img_err
=
np
.
zeros_like
(
hdu
[
1
].
data
)
# shutter
shutter
=
fits
.
getdata
(
shutter_path
,
1
)
bias
,
bias_error
=
_read_ccds
(
bias_path
)
dark
,
dark_error
=
_read_ccds
(
dark_path
)
flat
,
flat_error
=
_read_ccds
(
flat_path
)
hdu
[
1
].
data
,
img_err
=
subtract_bias
(
hdu
[
1
].
data
,
img_err
,
bias
,
bias_error
,
)
status_header
.
set
(
'STA_BIAS'
,
0
)
hdu
[
1
].
data
,
img_err
=
subtract_dark
(
hdu
[
1
].
data
,
img_err
,
dark
,
dark_error
,
hdu
[
0
].
header
[
"EXPTIME"
]
)
status_header
.
set
(
'STA_DARK'
,
0
)
hdu
[
1
].
data
,
img_err
=
_divide_flat
(
hdu
[
1
].
data
,
img_err
,
flat
,
flat_error
,
)
status_header
.
set
(
'STA_FLAT'
,
0
)
# 非线性改正
hdu
[
1
].
data
=
_fix_nonlinear
(
hdu
[
1
].
data
)
status_header
.
set
(
'STA_NLIN'
,
0
)
# 坏像素检测
flg
[
1
].
data
=
_check_badpix
(
flg
[
1
].
data
,
flat
)
# 热像素和暖像素检测
flg
[
1
].
data
=
_check_hot_and_warm_pix
(
flg
[
1
].
data
,
dark
,
hdu
[
0
].
header
[
"EXPTIME"
],
hdu
[
1
].
header
[
"RON01"
]
)
# 过饱和检测
saturate
=
SATURATE
flg
[
1
].
data
=
_check_over_saturation
(
flg
[
1
].
data
,
hdu
[
1
].
data
,
saturate
)
saturate
=
(
saturate
*
hdu
[
1
].
header
[
"GAIN01"
]
/
hdu
[
0
].
header
[
"EXPTIME"
])
status_header
.
set
(
'SATURATE'
,
saturate
)
# 时间归一
hdu
[
1
].
data
=
hdu
[
1
].
data
/
hdu
[
0
].
header
[
"EXPTIME"
]
# 单位转换
hdu
[
1
].
data
=
_multiply_gain_map
(
hdu
[
1
].
data
,
hdu
[
1
].
header
)
status_header
.
set
(
'BUNIT'
,
'e/s'
)
# # 检测宇宙线
# hdu[1].data, flg[1].data, cr_count = remove_cr_deepcr(
# hdu[1].data,
# flg[1].data,
# device,
# hdu[1].header['CHIPID'],
# )
# status_header.set('STA_CRS', 0)
# status_header.set('CRCOUNT', cr_count)
# 记录BKG与RMS
_
,
bkg
,
rms
=
sigma_clipped_stats
(
data
=
hdu
[
1
].
data
,
mask
=
(
flg
[
1
].
data
==
16
)
)
status_header
.
set
(
'SKY_BKG'
,
bkg
)
status_header
.
set
(
'SKY_RMS'
,
rms
)
# 检测卫星拖尾
flg
[
1
].
data
=
_check_satellitetrail
(
flg
[
1
].
data
,
hdu
[
1
].
data
)
status_header
.
set
(
'STA_SAT'
,
0
)
# 生成wht[1].data
wht
[
1
].
data
=
_create_weight
(
hdu
[
1
].
data
,
flg
[
1
].
data
,
hdu
[
1
].
header
[
"RON01"
],
hdu
[
0
].
header
[
"EXPTIME"
]
)
# 数据类型
hdu
[
1
].
data
=
hdu
[
1
].
data
.
astype
(
np
.
float32
)
# 快门改正
hdu
[
1
].
data
=
_fix_shutter
(
hdu
[
1
].
data
,
shutter
,
hdu
[
0
].
header
[
"EXPTIME"
]
)
status_header
.
set
(
'STA_SHUT'
,
0
)
if
all
([
status_header
[
"STA_BIAS"
]
==
0
,
status_header
[
"STA_DARK"
]
==
0
,
status_header
[
"STA_FLAT"
]
==
0
,
status_header
[
"STA_CRS"
]
==
0
,
status_header
[
"STA_NLIN"
]
==
0
,
# status_header["STA_CTE"] == 0, # 这个功能还未添加
status_header
[
"STA_SAT"
]
==
0
,
status_header
[
"STA_SHUT"
]
==
0
,
status_header
[
"SKY_BKG"
]
!=
-
9999
,
status_header
[
"SKY_RMS"
]
!=
-
9999
,
status_header
[
"SATURATE"
]
!=
-
9999
,
status_header
[
"CRCOUNT"
]
!=
-
9999
]):
status_header
.
set
(
'STA_INST'
,
0
)
# hdu[1].header.extend(status_header, bottom=True)
# 修正wht和flg数据类型
wht
[
1
].
header
=
hdu
[
1
].
header
.
copy
()
wht
[
1
].
data
=
wht
[
1
].
data
.
astype
(
np
.
float32
)
wht
[
1
].
header
.
remove
(
'BUNIT'
)
flg
[
1
].
header
=
hdu
[
1
].
header
.
copy
()
flg
[
1
].
data
=
flg
[
1
].
data
.
astype
(
np
.
int32
)
flg
[
1
].
header
.
remove
(
'BUNIT'
)
hdu
.
writeto
(
image_output_path
,
overwrite
=
True
)
wht
.
writeto
(
weight_output_path
,
overwrite
=
True
)
flg
.
writeto
(
flag_output_path
,
overwrite
=
True
)
def
_set_status_header
():
status_header
=
fits
.
Header
()
# template Header
status_header
.
append
(
(
'COMMENT'
,
'='
*
66
),
bottom
=
True
)
status_header
.
append
(
(
'COMMENT'
,
'instrumental correction information'
),
bottom
=
True
)
status_header
.
append
(
(
'COMMENT'
,
'='
*
66
),
bottom
=
True
)
# status_header.append(
# ('VER_INST', csst_common.__version__, 'version of instrument'), bottom=True)
# status_header.append(
# ('STM_INST', csst_common.now(), 'time stamp of instrument processing'), bottom=True)
status_header
.
append
(
(
'STA_INST'
,
1
,
'0=done 1=wrong'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_BIAS'
,
1
,
'status flag for bias frame correction'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_DARK'
,
1
,
'status flag for dark frame correction'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_FLAT'
,
1
,
'status flag for flat frame correction'
),
bottom
=
True
)
status_header
.
append
(
(
'SKY_BKG'
,
-
9999
,
'estimated sky background (e-/s per pixel)'
),
bottom
=
True
)
status_header
.
append
(
(
'SKY_RMS'
,
-
9999
,
'standard dev of frame background (ADU)-> e-/s'
),
bottom
=
True
)
status_header
.
append
(
(
'SATURATE'
,
-
9999
,
'the flux limit of saturated pixel (e-/s)'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_CTE'
,
1
,
'status flag for CTE correction'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_SAT'
,
1
,
'status flag for satellite correction'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_CRS'
,
1
,
'status flag for cosmic rays mask'
),
bottom
=
True
)
status_header
.
append
(
(
'CRCOUNT'
,
-
9999
,
'cosmic rays pixel counts'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_NLIN'
,
1
,
'status flag for non-linear correction'
),
bottom
=
True
)
status_header
.
append
(
(
'STA_SHUT'
,
1
,
'status flag for shutter effect correction'
),
bottom
=
True
)
return
status_header
def
_read_ccds
(
ref_path
:
str
,
)
->
tuple
[
np
.
array
,
np
.
array
]:
ref
=
fits
.
getdata
(
ref_path
)
return
ref
,
np
.
zeros_like
(
ref
)
def
_divide_flat
(
image
:
np
.
ndarray
,
image_error
:
np
.
ndarray
,
flat
:
np
.
ndarray
,
flat_error
:
np
.
ndarray
,
)
->
tuple
[
np
.
ndarray
,
np
.
ndarray
]:
def
divide
(
a
,
b
):
return
np
.
divide
(
a
,
b
,
out
=
np
.
zeros_like
(
a
,
float
),
where
=
(
b
!=
0
))
result
=
divide
(
image
,
flat
)
result_error
=
np
.
abs
(
result
)
*
((
divide
(
image_error
,
image
))
**
2
+
(
divide
(
flat_error
,
flat
))
**
2
)
**
0.5
return
result
,
result_error
def
_fix_nonlinear
(
image
:
np
.
ndarray
,
beta1
:
float
=
5e-7
)
->
np
.
ndarray
:
# 计算非线性系数
beta
=
5e-7
f1
=
[
1
]
fnlin0
=
1
+
beta
fnlin
=
[
fnlin0
]
for
i
in
range
(
1000
,
65000
,
1000
):
f1
.
append
(
i
)
fnlin
.
append
(
1
+
beta
*
i
)
# 插值函数
from
scipy.interpolate
import
PchipInterpolator
as
PCHIP
# PCHIP stands for Piecewise Cubic Hermite Interpolating Polynomial
interp_func
=
PCHIP
(
f1
,
fnlin
)
# 非线性系数矩阵
imgnlin
=
interp_func
(
image
)
# 图像改正
image
=
imgnlin
*
image
return
image
def
_check_badpix
(
flag
:
np
.
ndarray
,
flat
:
np
.
ndarray
,
)
->
np
.
ndarray
:
med
=
np
.
median
(
flat
)
_flag
=
(
flat
<
0.5
*
med
)
|
(
1.5
*
med
<
flat
)
flag
=
flag
|
(
_flag
*
1
)
return
flag
def
_check_hot_and_warm_pix
(
flag
:
np
.
ndarray
,
dark
:
np
.
ndarray
,
exptime
:
float
,
rdnoise
:
float
,
)
->
np
.
ndarray
:
_dark
=
dark
*
exptime
_dark
[
_dark
<
0
]
=
0
_flag
=
1
*
rdnoise
**
2
<=
_dark
# 不确定是否包含 暂定包含
flag
=
flag
|
(
_flag
*
2
)
_flag
=
(
0.5
*
rdnoise
**
2
<
_dark
)
&
(
_dark
<
1
*
rdnoise
**
2
)
flag
=
flag
|
(
_flag
*
4
)
return
flag
def
_check_over_saturation
(
flag
:
np
.
ndarray
,
image
:
np
.
ndarray
,
saturate
:
int
=
65535
,
iterations
:
int
=
0
,
flag_value
:
int
=
8
)
->
np
.
ndarray
:
_flag
=
image
>=
saturate
flag_dilated
=
_dilation
(
_flag
,
iterations
=
iterations
)
flag
=
flag
|
(
flag_dilated
*
flag_value
)
return
flag
def
_dilation
(
array_orig
:
np
.
ndarray
,
iterations
:
int
=
1
):
"""
Make a dilation for array
This function makes a dilation for the 2D mask array (saturated pixels)
Parameters
----------
array_orig : np.ndarray
The mask array without dilation.
structure : int
The number of dilations performed on the structure with itself.
Returns
-------
array_out : np.ndarray
The mask array after dilation.
"""
from
scipy
import
ndimage
struct1
=
ndimage
.
generate_binary_structure
(
2
,
1
)
# give a saturate structure
struct_ext
=
ndimage
.
iterate_structure
(
struct1
,
iterations
)
# make a dilation
if
iterations
==
0
:
array_out
=
array_orig
else
:
array_out
=
ndimage
.
binary_dilation
(
array_orig
,
structure
=
struct_ext
,
iterations
=
1
).
astype
(
array_orig
.
dtype
)
return
array_out
def
_check_satellitetrail
(
flag
:
np
.
ndarray
,
image
:
np
.
ndarray
,
)
->
np
.
ndarray
:
from
skimage
import
exposure
,
transform
from
skimage.draw
import
line
from
skimage.feature
import
canny
# 调整图像
p1
,
p2
=
np
.
percentile
(
image
,
(
0.1
,
99.9
))
image
=
exposure
.
rescale_intensity
(
image
,
in_range
=
(
p1
,
p2
))
# 边界识别,转化为二值图像
immax
=
np
.
max
(
image
)
# canny边界
edge
=
canny
(
image
=
image
,
sigma
=
2.0
,
low_threshold
=
immax
*
0.1
,
high_threshold
=
immax
*
0.5
)
# 概率霍夫变换
angle
=
np
.
radians
(
np
.
arange
(
2
,
178
,
0.5
,
dtype
=
float
))
# 直线端点
result
=
transform
.
probabilistic_hough_line
(
image
=
edge
,
threshold
=
210
,
line_length
=
400
,
line_gap
=
75
,
theta
=
angle
)
result
=
np
.
asarray
(
result
)
# 绘制mask
mask
=
np
.
zeros
(
image
.
shape
)
# 遍历每一条线段
for
(
x1
,
y1
),
(
x2
,
y2
)
in
result
:
xx
,
yy
=
line
(
x1
,
y1
,
x2
,
y2
)
mask
[
yy
,
xx
]
=
1
mask
=
mask
.
astype
(
np
.
int32
)
flag
=
flag
|
(
mask
*
32
)
return
flag
def
_create_weight
(
img
:
np
.
ndarray
,
flg
:
np
.
ndarray
,
rdnoise
:
float
,
exptime
:
float
,
)
->
np
.
ndarray
:
data
=
img
.
copy
()
data
[
img
<
0
]
=
0
var_raw
=
data
*
exptime
+
rdnoise
**
2
var_bias
=
0.0
weight
=
1.
/
(
var_raw
+
var_bias
)
*
exptime
**
2
weight
[
flg
>
0
]
=
0
wht
=
weight
return
wht
def
_fix_shutter
(
img
:
np
.
ndarray
,
shutter
:
np
.
ndarray
,
exptime
:
float
=
150.
)
->
np
.
ndarray
:
img_cor
=
np
.
float32
(
img
*
exptime
*
1000.
/
(
exptime
*
1000.
+
shutter
))
return
img_cor
def
_multiply_gain_map
(
image
:
np
.
ndarray
,
header
:
fits
.
header
,
)
->
np
.
ndarray
:
gain_map
=
np
.
zeros_like
(
image
)
h
=
header
[
'NAXIS1'
]
//
8
w
=
header
[
'NAXIS2'
]
//
2
for
y
,
x
in
product
(
range
(
8
),
(
0
,
1
)):
y
=
y
if
x
==
0
else
7
-
y
gain
=
header
[
'GAIN'
+
str
(
x
*
8
+
y
+
1
).
zfill
(
2
)]
gain_map
[
w
*
x
:
w
*
(
x
+
1
),
h
*
y
:
h
*
(
y
+
1
)]
=
gain
return
image
*
gain_map
def
subtract_bias
(
image
:
np
.
ndarray
,
image_err
:
np
.
ndarray
,
bias
:
np
.
ndarray
,
bias_err
:
np
.
ndarray
,
)
->
tuple
[
np
.
ndarray
,
np
.
ndarray
]:
"""
Subtract bias.
Subtract bias.
Parameters
----------
image : numpy.ndarray
The input image to be corrected.
image_err : numpy.ndarray
The uncertainty of input image.
bias : numpy.ndarray
The input bias to be subtracted.
bias_err : numpy.ndarray
The uncertainty of input bias.
Returns
-------
output : np.ndarray
Output corrected image.
output_err : np.ndarray
Output uncertainty map.
"""
output
=
image
-
bias
output_err
=
np
.
sqrt
(
image_err
**
2
+
bias_err
**
2
)
return
output
,
output_err
def
subtract_dark
(
image
:
np
.
ndarray
,
image_err
:
np
.
ndarray
,
dark
:
np
.
ndarray
,
dark_err
:
np
.
ndarray
,
tdark_image
:
float
=
1.0
,
)
->
tuple
[
np
.
ndarray
,
np
.
ndarray
]:
"""
Subtract dark current.
Subtract dark current.
Parameters
----------
image : numpy.ndarray
The input image to be corrected.
image_err : numpy.ndarray
The uncertainty of input image.
dark : numpy.ndarray
The input dark current image to be subtracted.
dark_err : numpy.ndarray
The uncertainty of input dark current.
tdark_image : float, optional
The effective dark current cumulation time of input image. Default value is 1.0.
Returns
-------
output : np.ndarray
Output corrected image.
output_err : np.ndarray
Output uncertainty map.
"""
output
=
image
-
dark
*
tdark_image
output_err
=
np
.
sqrt
(
image_err
**
2
+
(
dark_err
*
tdark_image
)
**
2
)
return
output
,
output_err
measurement_pipeline/run_measurement.py
View file @
de19281e
...
...
@@ -36,7 +36,7 @@ class MeasurementPipeline(object):
self
.
wht_list
=
[
line
.
rstrip
()
for
line
in
input_list
]
with
open
(
self
.
config
[
"measurement_setting"
][
"input_flg_list"
])
as
input_list
:
self
.
flg_list
=
[
line
.
rstrip
()
for
line
in
input_list
]
if
self
.
config
[
"measurement_setting"
][
"input_psf_list"
]:
if
"input_psf_list"
in
self
.
config
[
"measurement_setting"
]
and
self
.
config
[
"measurement_setting"
][
"input_psf_list"
]:
with
open
(
self
.
config
[
"measurement_setting"
][
"input_psf_list"
])
as
input_list
:
self
.
psf_list
=
[
line
.
rstrip
()
for
line
in
input_list
]
else
:
...
...
run_calculate_completeness_fraction.sh
View file @
de19281e
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/evaluation/calculate_completeness_fraction.py
\
--TU_catalog
/share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected.cat
\
--source_catalog
/share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected_extracted.cat
\
--orig_catalog
/share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_cat.fits
\
--image
/share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1.fits
\
--output_dir
/share/home/fangyuedong/injection_pipeline/workspace/test_20230517
\ No newline at end of file
--TU_catalog_list
/share/home/fangyuedong/injection_pipeline/cat_INJECTED_20231203.list
\
--source_catalog_list
/share/home/fangyuedong/injection_pipeline/cat_EXTRACTED_20231203.list
\
--output_dir
/share/home/fangyuedong/injection_pipeline/workspace/test_20231203
# --TU_catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected.cat \
# --source_catalog /share/home/fangyuedong/injection_pipeline/workspace/test_20230517/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1_injected_extracted.cat \
# --orig_catalog /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_cat.fits \
# --image /share/L1Result/C6_2sq_sheared_photometry/MSC_0000000/CSST_MSC_MS_SCI_20240817060512_20240817060742_100000000_08_img_L1.fits \
# --output_dir /share/home/fangyuedong/injection_pipeline/workspace/test_20230517
\ No newline at end of file
run_injection.sh
View file @
de19281e
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/injection_pipeline/injection_pipeline.py config_injection.yaml
-c
/share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
# python /share/home/fangyuedong/injection_pipeline/injection_pipeline/injection_pipeline.py config_injection.yaml -c /share/home/fangyuedong/injection_pipeline/config
python /share/home/fangyuedong/injection_pipeline/injection_pipeline/injection_pipeline.py config_injection_20231203.yaml
-c
/share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
run_measurement.sh
View file @
de19281e
#!/bin/bash
python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/run_measurement.py config_injection.yaml
-c
/share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
# python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/run_measurement.py config_injection.yaml -c /share/home/fangyuedong/injection_pipeline/config
python /share/home/fangyuedong/injection_pipeline/measurement_pipeline/run_measurement.py config_injection_20231203.yaml
-c
/share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
run
_injection.pbs
→
submit
_injection.pbs
View file @
de19281e
...
...
@@ -10,4 +10,5 @@ cd $PBS_O_WORKDIR
NP
=
20
date
mpirun
-np
$NP
python /share/home/fangyuedong/injection_pipeline/injection_pipeline/injection_pipeline.py config_injection.yaml
-c
/share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
# mpirun -np $NP python /share/home/fangyuedong/injection_pipeline/injection_pipeline/injection_pipeline.py config_injection.yaml -c /share/home/fangyuedong/injection_pipeline/config
mpirun
-np
$NP
python /share/home/fangyuedong/injection_pipeline/injection_pipeline/injection_pipeline.py config_injection_20231203.yaml
-c
/share/home/fangyuedong/injection_pipeline/config
\ No newline at end of file
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment