crmask.py 29.1 KB
Newer Older
Hu Yi's avatar
Hu Yi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3

##############################################################
#Author  Hu Yi (NAOC, huyi.naoc@gmail.com), Zhang Yajie (TJU)#
##############################################################

#Thanks to Zhang Keming who is the author of deepCR.
#Thanks to the authors of astropy and ccdproc.
#Software package dependencies, numpy, astropy, ccdproc and deepCR
#Installation dependencies on Ubuntu 20.04
#apt install python3-numpy python3-astropy python3-ccdproc python3-pip
#python3 -m pip install deepCR
#Version 0.2

#changelog
#V0.2 training method are developed and test.

import configparser
import numpy as np
from astropy.io import fits as pyfits
from astropy import units as u
from astropy.nddata import CCDData
from pathlib import Path
import ccdproc 


import datetime
import sys


__all__ = ['CRMask']

class CRMask:
    def __init__(self, obj, flag = None, mask = None, clean = None, sky = None, save_flag = True, update_flag = True, save_name = None, flag_suffix = 'flg', clean_suffix = 'crclean', append_flag = False, mask_suffix = 'crmask', model = 'deepCR', fill_flag = True, fill_method = 'inpainting', gpu_flag = False, config_path = 'MSC_crmask.ini', **kwargs):
        """
            Instantiation of CRMask with specified model configuration.
            Parameters
            ----------
            obj : string, Path, astropy.io.fits.HDUList, numpy.ndarray, astropy.nddata.CCDData or list of string
                if model is ``deepCR``, ``lacosmic``, obj is input image to be cosmic-ray masked
                if model is ``deepCR_train``, obj is input training and validating images
            flag : (optional) string, Path, astropy.io.fits.HDUList, numpy.ndarray or astropy.nddata.CCDData
                flag image(s), default is None
            mask : (optional) string or list of string
                mask image(s), default is None, necessary when model is ``deepCR_train`` or ``benchmark``, otherwise, let it alone
            sky : (optional) string or list of string
                sky image(s), default is None, optional when model is ``deepCR_train``, otherwise, let it alone 
            save_flag : (optional) boolean
                whether save CR mask (and cleaned) image, default is True
            update_flag : (optional) boolean
                whether update flag image, default is True
            save_name : (optional) string
                output mask, cleaned and flag filename. default is None. If save_name is None, use the filename as the input. And if save_flag is True, save_name is None, and obj is a numpy.ndarray or a astropy.nddata.CCDData, cr_mask will raise a ValueError exception
            flag_suffix : (optional) string
                suffix name of flag file, if flag is a numpy.ndarray or a astropy.nddata.CCDData, default is ``flg``
            mask_suffix : (optional) string
                suffix name of mask file, default is ``crmask``
            clean_suffix : (optional) string
                suffix name of cleaned file, default is ``crclean``
            model : (optional) string
                model type, can be ``deepCR``, ``lacosmic``, ``deepCR_train`` or ``benchmark`` default is ``deepCR``
            fill_flag : (optional) boolean
                whehter generate cleaned image, default is True
            fill_method : (optional) string
                fill method for CR contaminated pixel, can be ``inpainting``, ``meanmask``, ``meanmed``, default is ``inpainting``
            gpu_flag : (optional) boolean
                whether use GPU, default is False
            config_path : (optional) string
Hu Yi's avatar
Hu Yi committed
69
                configuration file path, default is ``./crmask.ini``
Hu Yi's avatar
Hu Yi committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        """
        self.model = model
        if model == 'deepCR_train':
            self.image_sets = obj
            self.mask_sets = mask
            self.ignore_sets = flag
            self.sky_sets = sky
            self.gpu_flag = gpu_flag
            self.clean_sets = clean 
            if config_path != None:
                config = configparser.ConfigParser()
                config.read(config_path)
                if config.has_option('global', 'gpu_flag'):
                    self.append_flag = config.getboolean('global', 'gpu_flag')
                self.config = config
            return

        if model == 'benchmark':
            self.res = obj
            self.ref = mask
            return

        if isinstance(obj, str) or isinstance(obj, Path):
            self.hdulist = pyfits.open(obj)
        elif isinstance(obj, pyfits.HDUList):
            self.hdulist = obj
        elif isinstance(obj, np.ndarray) or isinstance(obj, CCDData):
            hdulist = pyfits.HDUList()
            primary = pyfits.PrimaryHDU()
            header = primary.header
            header['NEXTEND'] = 1
            hdulist.append(primary)
            image = pyfits.ImageHDU()
            header = image.header
            header['BITPIX'] = -32
            header['NAXIS'] = 2
            header.insert('NAXIS', ('NAXIS1', obj.shape[0]), after = True)
            header.insert('NAXIS1', ('NAXIS2', obj.shape[1]), after = True)
            header['EXTNAME'] = 'SCI'
            header['EXTVER'] = 1
            if isinstance(obj, CCDData):
                image.data = np.asarray(CCDData)
            else:
                image.data = obj
            hdulist.append(image)
            self.hdulist = hdulist
        else:
            raise TypeError('For cosmic ray masking and cleaning, obj must be a string, or a pathlib.Path object, or a astropy.io.fits.HDUList object!')  
        if flag != None:
            if isinstance(flag, str) or isinstance(flag, Path):
                flag_hdulist = pyfits.open(flag, mode = 'update')
            elif isinstance(flag, pyfits.HDUList):
                flag_hdulist = flag
            elif isinstance(flag, np.ndarray) or isinstance(flag, CCDData):
                flag_hdulist = pyfits.HDUList()
                flag_primary = pyfits.PrimaryHDU(header = self.hdulist[0].header)
                flag_hdulist.append(flag_hdulist)
                if isinstance(obj, CCDData):
                    flag_data = np.asarray(CCDData)
                    flag_image = pyfits.ImageHDU(data=flag_data, header=self.hdulist[1].header)
                else:
                    flag_image = pyfits.ImageHDU(data=flag, header=self.hdulist[1].header)
                flag_hdulist.append(flag_image)
            else:
                raise TypeError('For cosmic ray masking and cleaning, mask must be a string, or a pathlib.Path object, or a astropy.io.fits.HDUList object!')
            self.flag = flag_hdulist
        else:
            self.flag = None

        self.update_flag = update_flag
        self.save_flag = save_flag
        self.save_name = save_name
        self.flag_suffix = flag_suffix
        self.clean_suffix = clean_suffix
        self.append_flag = append_flag
        self.mask_suffix = mask_suffix
        self.gpu_flag = gpu_flag
        self.fill_method = fill_method
        self.model = model

        if config_path != None:
            config = configparser.ConfigParser()
            config.read(config_path)

            if config.has_option('global', 'save_flag'):
                self.save_flag = config.getboolean('global', 'save_flag')

            if config.has_option('global', 'clean_suffix'):
                self.clean_suffix = config.get('global', 'clean_suffix')

            if config.has_option('global', 'append_flag'):
                self.append_flag = config.getboolean('global', 'append_flag')

            if config.has_option('global', 'flag_suffix'):
                self.flag_suffix = config.get('global', 'flag_suffix')
            
            if config.has_option('global', 'mask_suffix'):
                self.mask_suffix = config.get('global', 'mask_suffix')

            if config.has_option('global', 'gpu_flag'):
                self.append_flag = config.getboolean('global', 'gpu_flag')
            
            if config.has_option('global', 'fill_flag'):
                self.fill_flag = config.getboolean('global', 'fill_flag')
            
            if config.has_option('global', 'fill_method'):
                self.fill_method = config.get('global', 'fill_method')

            if config.has_option('global', 'model'):
                self.model = config.get('global', 'model')

            self.config = config

    def cr_mask_lacosmic(self):
        
        config = self.config
        
        if config.has_option('lacosmic', 'sigclip'):
            sigclip = config.getfloat('lacosmic', 'sigclip')
        else:
            sigclip = 4.0

        if config.has_option('lacosmic', 'sigfrac'):
            sigfrac = config.getfloat('lacosmic', 'sigfrac')
        else:
            sigfrac = 0.3
        
        if config.has_option('lacosmic', 'objlim'):
            objlim = config.getfloat('lacosmic', 'objlim')
        else:
            objlim = 5.0
        
        if config.has_option('lacosmic', 'gain'):
            gain = config.getfloat('lacosmic', 'gain')
        else:
            gain = 1.0

        if config.has_option('lacosmic', 'readnoise'):
            readnoise = config.getfloat('lacosmic', 'readnoise')
        else:
            readnoise = 6.5

        if config.has_option('lacosmic', 'satlevel'):
            satlevel = config.getfloat('lacosmic', 'satlevel')
        else:
            satlevel = 65535.0

        if config.has_option('lacosmic', 'pssl'):
            pssl = config.getfloat('lacosmic', 'pssl')
        else:
            pssl = 0.0
    
        if config.has_option('lacosmic', 'niter'):
            niter = config.getint('lacosmic', 'niter')
        else:
            niter = 4
        
        if config.has_option('lacosmic', 'sepmed'):
            sepmed = config.getboolean('lacosmic', 'sepmed')
        else:
            sepmed = True


        if config.has_option('lacosmic', 'cleantype'):
            cleantype = config.get('lacosmic', 'cleantype')
        else:
            cleantype = self.fill_method

        if config.has_option('lacosmic', 'fsmode'):
            fsmode = config.get('lacosmic', 'fsmode')
        else:
            fsmode = 'median'

        if config.has_option('lacosmic', 'psfmodel'):
            psfmodel = config.get('lacosmic', 'psfmodel')
        else:
            psfmodel = 'gauss'

        if config.has_option('lacosmic', 'psffwhm'):
            psffwhm = config.getfloat('lacosmic', 'psffwhm')
        else:
            psffwhm = 2.5

        if config.has_option('lacosmic', 'psfsize'):
            psfsize = config.getint('lacosmic', 'psfsize')
        else:
            psfsize = 7

        if config.has_option('lacosmic', 'psfk'):
            psfk = config.get('lacosmic', 'psfk')
        else:
            psfk = None

        if config.has_option('lacosmic', 'psfbeta'):
            psfbeta = config.getfloat('lacosmic', 'psfbeta')
        else:
            psfbeta = 4.765

        if config.has_option('lacosmic', 'gain_apply'):
            gain_apply = config.getboolean('lacosmic', 'gain_apply')
        else:
            gain_apply = True

        data = self.hdulist[1].data

        start_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
        cleaned, masked = ccdproc.cosmicray_lacosmic(data, sigclip, sigfrac, objlim, gain, readnoise, satlevel, pssl, niter, sepmed, cleantype, fsmode, psfmodel, psffwhm, psfsize, psfk, psfbeta, False, gain_apply)
        end_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
        masked_hdulist = pyfits.HDUList()
        masked_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
        masked_hdulist.append(masked_primary)
        masked = masked.astype(np.uint8)
        masked_image = pyfits.ImageHDU(data=masked, header=self.hdulist[1].header)
        masked_hdulist.append(masked_image)
        
        #TODO
        #add history keywords here
        if self.flag != None:
            self.flag[1].data |= (mask<<4)
            self.flag[1].header.add_history('Use ccdproc.cosimicray_lacosmicfor cosmic ray detecting')
            value = 'CRMask start at {0}'.format(start_time)
            self.flag[1].header.add_history(value)
            value = 'CRMask end   at {0}'.format(end_time)
            self.flag[1].header.add_history(value)
        
        masked_hdulist[1].header.add_history('Use ccdproc.cosimicray_lacosmic for cosmic ray detecting')
        value = 'CRMask start at {0}'.format(start_time)
        masked_hdulist[1].header.add_history(value)
        value = 'CRMask end at   {0}'.format(end_time)
        masked_hdulist[1].header.add_history(value)

        if self.fill_flag:
            cleaned_hdulist = pyfits.HDUList()
            cleaned_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
            cleaned_hdulist.append(cleaned_primary)
            cleaned_image = pyfits.ImageHDU(data=cleaned, header=self.hdulist[1].header)
            cleaned_hdulist.append(cleaned_image)
            cleaned_hdulist[1].header.add_history('Use ccdproc.cosimicray_lacosmic for cosmic ray detecting')
            value = 'CRMask start at {0}'.format(start_time)
            cleaned_hdulist[1].header.add_history(value)
            value = 'CRMask end at   {0}'.format(end_time)
            cleaned_hdulist[1].header.add_history(value)

            return masked_hdulist, cleaned_hdulist
        else:
            return masked_hdulist

    def cr_mask_deepCR(self):
        from deepCR import deepCR

        config = self.config
        
        if config.has_option('deepCR', 'threshold'):
            threshold = config.getfloat('deepCR', 'threshold')
        else:
            threshold = 0.5

        if config.has_option('deepCR', 'inpaint'):
            inpaint = config.getboolean('deepCR', 'inpaint')
        else:
            inpaint = True

        if config.has_option('deepCR', 'binary'):
            binary = config.getboolean('deepCR', 'binary')
        else:
            binary = True

        if config.has_option('deepCR', 'patch'):
            patch = config.getint('deepCR', 'patch')
        else:
            patch = 256

        if config.has_option('deepCR', 'segment'):
            segment = config.getboolean('deepCR', 'segment')
        else:
            segment = True
        
        if config.has_option('deepCR', 'parallel'):
            parallel = config.getboolean('deepCR', 'parallel')
        else:
            parallel = True

        if config.has_option('deepCR', 'clean_model'):
            clean_model = config.get('deepCR', 'clean_model')
        else:
            clean_model = 'ACS-WFC-F606W-2-32'
        
        if config.has_option('deepCR', 'inpaint_model'):
            inpaint_model = config.get('deepCR', 'inpaint_model')
        else:
            inpaint_model = 'ACS-WFC-F606W-2-32'
        
        if config.has_option('deepCR', 'n_jobs'):
            n_jobs = config.getint('deepCR', 'n_jobs')
        else:
            n_jobs = -1

        if config.has_option('deepCR', 'hidden'):
            hidden = config.getint('deepCR', 'hidden')
        else:
            hidden = 32

        if self.gpu_flag:
            model = deepCR(clean_model, inpaint_model, device = 'GPU', hidden = hidden)
        else:
            model = deepCR(clean_model, inpaint_model, device = 'CPU', hidden = hidden)
        
        data = self.hdulist[1].data

        masked_hdulist = pyfits.HDUList()
        masked_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
        masked_hdulist.append(masked_primary)
        if inpaint:
            cleaned_hdulist = pyfits.HDUList()
            cleaned_primary = pyfits.PrimaryHDU(header=self.hdulist[0].header)
            cleaned_hdulist.append(cleaned_primary)

        start_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
        if binary:
            if inpaint:
                masked, cleaned = model.clean(data, threshold = threshold, inpaint = inpaint, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
            else:
                masked = model.clean(data, threshold = threshold, inpaint = inpaint, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
        else:
            if inpaint:
                masked, cleaned = model.clean(data, threshold = threshold, inpaint = inpaint, binary = False, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
            else:
                masked = model.clean(data, threshold = threshold, inpaint = inpaint, binary = False, segment = segment, patch = patch, parallel = parallel, n_jobs = n_jobs)
        end_time = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f") 
        
        masked =  masked.astype(np.uint8)
        masked_image = pyfits.ImageHDU(data=masked, header=self.hdulist[1].header)
        masked_hdulist.append(masked_image)
        
        #TODO
        #add history keywords here
        if self.flag != None:
            self.flag[1].data |= (mask<<4)
            self.flag[1].header.add_history('Use deepCR for cosmic ray detecting')
            value = 'CRMask start at {0}'.format(start_time)
            self.flag[1].header.add_history(value)
            value = 'CRMask end at   {0}'.format(end_time)
            self.flag[1].header.add_history(value)
        masked_hdulist[1].header.add_history('Use deepCR for cosmic ray detecting')
        value = 'CRMask start at {0}'.format(start_time)
        masked_hdulist[1].header.add_history(value)
        value = 'CRMask end at   {0}'.format(end_time)
        masked_hdulist[1].header.add_history(value)
        value = 'deepCR mask model {0}'.format(clean_model)
        masked_hdulist[1].header.add_history(value)

        if inpaint:
            cleaned_image = pyfits.ImageHDU(data=cleaned, header=self.hdulist[1].header)
            cleaned_hdulist.append(cleaned_image)
            cleaned_hdulist[1].header.add_history('Use deepCR for cosmic ray detecting')
            value = 'CRMask start at {0}'.format(start_time)
            cleaned_hdulist[1].header.add_history(value)
            value = 'CRMask end   at {0}'.format(end_time)
            cleaned_hdulist[1].header.add_history(value)
            value = 'deepCR inpaint model {0}'.format(inpaint_model)
            cleaned_hdulist[1].header.add_history(value)
            return masked_hdulist,cleaned_hdulist
        else:
            return masked_hdulist

    #return a hdulist of a masked image, and a hdulist of a cleaned image if fill_flag is set.
    def cr_mask(self):
        #here do cr mask task
        if self.model  == 'lacosmic':
            if self.fill_flag:
                masked, cleaned = CRMask.cr_mask_lacosmic(self)
            else:
                masked = CRMask.cr_mask_lacosmic(self)
        elif self.model == 'deepCR':
            if self.fill_flag:
                masked, cleaned = CRMask.cr_mask_deepCR(self)
            else:
                masked = CRMask.cr_mask_deepCR(self)

        else:
            raise ValueError('Cosmic ray model are not supported!')

        #save the result to a file.
        output = None
        if self.save_flag:
            if self.save_name != None:
                output = self.save_name
            else:
                output = self.hdulist.filename()
            #append to the input
            if self.append_flag:
                self.hdulist.append(masked[1])
                if self.fill_flag:
                    self.hdulist.append(cleaned[1])
                if output != None:
                    self.hdulist.writeto(output)
                else:
                    #TODO
                    #raise an exception.
                    pass
            else:
                if output != None:
                    if output.split('.')[-1] == 'fits':
                        mask_output = output[0:-4] + self.mask_suffix + '.fits'
                        clean_output = output[0:-4] + self.clean_suffix + '.fits'
                    else:
                        mask_output = output + '.' + self.mask_suffix + '.fits'
                        clean_output = output + '.' + self.clean_suffix + '.fits'
                    masked.writeto(mask_output)
                    if self.fill_flag:
                        cleaned.writeto(clean_output)
                else:
                    #TODO
                    #raise an exception here
                   pass

        #update flag file.
        if self.update_flag and self.flag != None:
            flag_output = self.flag.filename()
            if flag_output == None:
                if output != None:
                    if output.split('.')[-1] == 'fits':
                        flag_output = output[0:-4] + self.flag_suffix + '.fits'
                    else:
                        flag_output = output + '.' + self.flag_suffix + '.fits'
                else:
                    #raise an exception here.
                    pass
            self.flag.writeto(flag_output)

        if self.fill_flag:
            return (masked, cleaned)
        else:
            return masked

    def cr_train_deepCR_image_to_ndarray(self, image_sets, patch):
        
        if isinstance(image_sets, str):
            if image_sets[-4:] == '.npy':
                input_image = np.load(image_sets)
            elif image_sets[-5:] == '.fits':
                image = pyfits.open(image_sets)
                data = image[1].data
                x, y = data.shape
                m = x // patch
                n = y // patch
                start_x = np.mod(x, patch) // 2
                start_y = np.mod(y, patch) // 2
                input_image = np.zeros((m * n, patch, patch), dtype = data.dtype)
                for i in range(m):
                    for j in range(n):
                        input_image[i * m + j] = data[start_x + i * patch:start_x + (i + 1) * patch, start_y + j * patch:start_y + (j + 1) * patch]

                #input_image = data[start_x:start_x + m * patch, start_y:start_y + m * patch].reshape(m*n,patch,patch)
            else:
                #TODO
                #raise an exception
                pass
        if isinstance(image_sets, list):    
            input_list = []
            for image_file in image_sets:
                if isinstance(image_file, str):
                    if image_file[-4:] == '.npy':
                        input_image = np.load(image_file)
                    elif image_file[-5:] == '.fits':
                        image = pyfits.open(image_file)
                        data = image[1].data
                        x, y = data.shape
                        m = x // patch
                        n = y // patch
                        start_x = np.mod(x, patch) // 2
                        start_y = np.mod(y, patch) // 2
                        input_image = np.zeros((m * n, patch, patch), dtype = data.dtype)
                        for i in range(m):
                            for j in range(n):
                                input_image[i * m + j] = data[start_x + i * patch:start_x + (i + 1) * patch, start_y + j * patch:start_y + (j + 1) * patch]
                        #input_image = data[start_x:start_x + m * patch, start_y:start_y + m * patch].reshape(m*n,patch,patch)
                        input_list.append(input_image)
                    else:
                        #TODO
                        #raise an exception
                        pass
                else:
                    #TODO
                    #raise an exception
                    pass
            input_image = np.concatenate(input_list)
        return input_image

    def cr_train_deepCR_prepare_data(self, patch):
        if self.image_sets != None:
            self.training_image = CRMask.cr_train_deepCR_image_to_ndarray(self, self.image_sets, patch)
            np.save('image.npy', self.training_image)
        else:
            raise ValueError('training image should not be None')

        if self.mask_sets != None:
            self.training_mask = CRMask.cr_train_deepCR_image_to_ndarray(self, self.mask_sets, patch).astype(np.int16)
            np.save('mask.npy', self.training_mask)
        else:
            raise ValueError('mask image should not be None')
        
        if self.ignore_sets != None:
            self.training_ignore = CRMask.cr_train_deepCR_image_to_ndarray(self, self.flag, patch)
        else:
            self.training_ignore = None

        if self.sky_sets != None:
            self.training_sky = CRMask.cr_train_deepCR_image_to_ndarray(self, self.sky, patch)
        else:
            self.training_sky = None

    
    def cr_train_deepCR(self):
        
        from deepCR import train
        
        config = self.config

        if config.has_option('deepCR', 'aug_sky'):
            aug_sky = np.array(config.get('deepCR', 'aug_sky').split()).astype(np.float32)
            aug_sky0 = aug_sky[0]
            aug_sky1 = aug_sky[1]
        else:
            aug_sky0 = 0.
            aug_sky1 = 0.

        if  config.has_option('deepCR', 'model_name'):
            model_name = config.get('deepCR', 'model_name')
        else:
            model_name = 'model'

        if  config.has_option('deepCR', 'hidden'):
            hidden = config.getint('deepCR', 'hidden')
        else:
            hidden = 50

        if  config.has_option('deepCR', 'epoch'):
            epoch = config.getint('deepCR', 'epoch')
        else:
            epoch = 50

        if config.has_option('deepCR', 'patch'):
            patch = config.getint('deepCR', 'patch')
        else:
            patch = 256

        if config.has_option('deepCR', 'batch'):
            batch = config.getint('deepCR', 'batch')
        else:
            batch = 16

        if config.has_option('deepCR', 'lr'):
            lr = config.getfloat('deepCR', 'lr')
        else:
            lr = 0.005

        if config.has_option('deepCR', 'auto_lr_decay'):
            auto_lr_decay = config.getboolean('deepCR', 'auto_lr_decay')
        else:
            auto_lr_decay = True

        if config.has_option('deepCR', 'lr_decay_patience'):
            lr_decay_patience = config.getint('deepCR', 'lr_decay_patience')
        else:
            lr_decay_patience = 4
        
        if config.has_option('deepCR', 'lr_decay_factor'):
            lr_decay_factor = config.getfloat('deepCR', 'lr_decay_factor')
        else:
            lr_decay_factor = 0.1

        if config.has_option('deepCR', 'save_after'):
            save_after = config.getfloat('deepCR', 'save_after')
        else:
            save_after = 100000

        if config.has_option('deepCR', 'plot_every'):
            plot_every = config.getint('deepCR', 'plot_every')
        else:
            plot_every = 10

        if config.has_option('deepCR', 'verbose'):
            verbose = config.getboolean('deepCR', 'verbose')
        else:
            verbose = True
        
        if config.has_option('deepCR', 'use_tqdm'):
            use_tqdm = config.getboolean('deepCR', 'use_tqdm')
        else:
            use_tqdm = False

        if config.has_option('deepCR', 'use_tqdm_notebook'):
            use_tqdm_notebook = config.getboolean('deepCR', 'use_tqdm_notebook')
        else:
            use_tqdm_notebook = False
        
        if  config.has_option('deepCR', 'directory'):
            directory = config.get('deepCR', 'directory')
        else:
            directory = './'
        
        CRMask.cr_train_deepCR_prepare_data(self, patch)
        
        print('Loading data completes!')
        trainer = train(self.training_image, self.training_mask, self.training_ignore, self.training_sky, [aug_sky0, aug_sky1], model_name, hidden, self.gpu_flag, epoch, batch, lr, auto_lr_decay, lr_decay_patience, lr_decay_factor, save_after, plot_every, verbose, use_tqdm, use_tqdm_notebook, directory)
        print('Start training!')
        trainer.train()
        trainer.save()
        print('Training completes!')

    def cr_train(self):
        if self.model == 'deepCR_train':
            CRMask.cr_train_deepCR(self)
        else:
            raise ValueError('Unsupported training model')

    def cr_benchmark(self):
        if isinstance(self.res, str) or isinstance(self.res, Path):
            hdulist = pyfits.open(self.res)
            res = hdulist[1].data
        elif isinstance(self.res, pyfits.HDUList):
            res = hdulist[1].data
        elif isinstance(self.res, np.ndarray):
            res = self.res
        elif isinstance(self.res, CCDData):
            res = np.asarray(self.res)
        else:
            raise TypeError('Input result image type error')

        if isinstance(self.ref, str) or isinstance(self.ref, Path):
            hdulist = pyfits.open(self.ref)
            ref = hdulist[1].data
        elif isinstance(self.ref, pyfits.HDUList):
            ref = hdulist[1].data
        elif isinstance(self.ref, np.ndarray):
            ref = self.ref
        elif isinstance(self.ref, CCDData):
            ref = np.asarray(self.ref)
        else:
            raise TypeError('Input reference image type error')

        if res.shape != ref.shape:
            raise TypeError('size of input result and reference image are not the same size')

        ref_crpix = np.count_nonzero(ref)
        res_crpix = np.count_nonzero(res)
        true_positive = np.count_nonzero(res&ref)
        false_negtive = np.count_nonzero((res^ref)&ref)

        return true_positive / ref_crpix, false_negtive / res_crpix

#to run the code
#./MSC_crmask xxxx.fits deepCR for deepCR
#./MSC_crmask xxxx.fits lacosmic for lacosmic

if __name__ == '__main__':
    crobj = CRMask(sys.argv[1], model = sys.argv[2])
    crobj.cr_mask()