test_imaging.py 7.24 KB
Newer Older
Wei Chengliang's avatar
Wei Chengliang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import unittest

from scipy import interpolate
import astropy.constants as cons
from astropy.table import Table
import h5py as h5
import sys,os,math
from itertools import islice
import numpy as np
import galsim
import yaml
import copy
from astropy.cosmology import FlatLambdaCDM
from astropy import constants
from astropy import units as U
from ObservationSim.MockObject._util import getObservedSED

from ObservationSim.Instrument import Chip, Filter, FilterParam, FocalPlane
from ObservationSim.PSF.PSFInterp import PSFInterp
from ObservationSim.MockObject._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getABMAG


def convert_sed(mag, sed, target_filt, norm_filt=None):
    bandpass = target_filt.bandpass_full

    if norm_filt is not None:
        norm_thr_rang_ids = norm_filt['SENSITIVITY'] > 0.001
    else:
        norm_filt = Table(
            np.array(np.array([bandpass.wave_list*10.0, bandpass.func(bandpass.wave_list)])).T, names=(['WAVELENGTH', 'SENSITIVITY'])
        )
        norm_thr_rang_ids = norm_filt['SENSITIVITY'] > 0.001

    sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=mag,
            spectrum=sed,
            norm_thr=norm_filt,
            sWave=np.floor(norm_filt[norm_thr_rang_ids][0][0]),
            eWave=np.ceil(norm_filt[norm_thr_rang_ids][-1][0]))
    sed_photon = copy.copy(sed)
    sed_photon = np.array([sed_photon['WAVELENGTH'], sed_photon['FLUX']*sedNormFactor]).T
    sed_photon = galsim.LookupTable(x=np.array(sed_photon[:, 0]), f=np.array(sed_photon[:, 1]), interpolant='nearest')
    # Get magnitude
    sed_photon = galsim.SED(sed_photon, wave_type='A', flux_type='1', fast=False)
    interFlux = integrate_sed_bandpass(sed=sed_photon, bandpass=bandpass)
    mag_csst = getABMAG(
        interFlux=interFlux,
        bandpass=bandpass
    )
    if target_filt.survey_type == "photometric":
        return sed_photon, mag_csst, interFlux
    elif target_filt.survey_type == "spectroscopic":
        del sed_photon
        return sed, mag_csst, interFlux

def _load_gals(file_path):
    gals_cat = h5.File(file_path, 'r')['galaxies']
    for ikeys in gals_cat.keys():
        gals = gals_cat[ikeys]
        
    param = {}
    igals = 9
    param['z'] = gals['redshift'][igals]
    param['mag_use_normal'] = gals['mag_csst_g'][igals]
    print(param['mag_use_normal'] )

    param['e1'] = gals['ellipticity_true'][igals][0]
    param['e2'] = gals['ellipticity_true'][igals][1]
    
    param['e1_disk'] = param['e1']
    param['e2_disk'] = param['e2']
    param['e1_bulge'] = param['e1']
    param['e2_bulge'] = param['e2']

    # Masses
    param['bulgemass'] = gals['bulgemass'][igals]
    param['diskmass'] = gals['diskmass'][igals]

    param['size'] = gals['size'][igals]

    # Sersic index
    param['disk_sersic_idx'] = 1.
    param['bulge_sersic_idx'] = 4.

    # Sizes
    param['bfrac'] = param['bulgemass']/(param['bulgemass'] + param['diskmass'])
    if param['bfrac'] >= 0.6:
        param['hlr_bulge'] = param['size']
        param['hlr_disk'] = param['size'] * (1. - param['bfrac'])
    else:
        param['hlr_disk'] = param['size']
        param['hlr_bulge'] = param['size'] * param['bfrac']

    # SED coefficients
    param['coeff'] = gals['coeff'][igals]

    # TEST no redening and no extinction
    param['av'] = 0.0
    param['redden'] = 0

Wei Chengliang's avatar
Wei Chengliang committed
100
101
    pcs = h5.File(os.path.join(os.getenv('UNIT_TEST_DATA_ROOT'), 'csst_msc_sim/csst_fz_msc/sedlibs/pcs.h5'), "r")
    lamb = h5.File(os.path.join(os.getenv('UNIT_TEST_DATA_ROOT'), 'csst_msc_sim/csst_fz_msc/sedlibs/lamb.h5'), "r")
Wei Chengliang's avatar
Wei Chengliang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    lamb_gal = lamb['lamb'][()]
    pcs = pcs['pcs'][()]

    cosmo = FlatLambdaCDM(H0=67.66, Om0=0.3111)
    factor = 10**(-.4 * cosmo.distmod(param['z']).value)
    flux = np.matmul(pcs, param['coeff']) * factor
    #  if np.any(flux < 0):
    #     raise ValueError("Glaxy %s: negative SED fluxes"%obj.id)
    flux[flux < 0] = 0.
    sedcat = np.vstack((lamb_gal, flux)).T
    sed_data = getObservedSED(
        sedCat=sedcat,
        redshift=param['z'],
        av=param["av"],
        redden=param["redden"]
    )
    wave, flux = sed_data[0], sed_data[1]

    speci = interpolate.interp1d(wave, flux)
    lamb = np.arange(2000, 11001+0.5, 0.5)
    y = speci(lamb)
    # erg/s/cm2/A --> photon/s/m2/A
    all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
    sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))
    
    param["sed"] = sed
    del wave
    del flux
    return param


def defineCCD(iccd, config_file):
    with open(config_file, "r") as stream:
        try:
            config = yaml.safe_load(stream)
            #for key, value in config.items():
            #    print (key + " : " + str(value))
        except yaml.YAMLError as exc:
            print(exc)
    chip = Chip(chipID=iccd, config=config)
    chip.img = galsim.ImageF(chip.npix_x, chip.npix_y)
    focal_plane = FocalPlane(chip_list=[iccd])
    chip.img.wcs= focal_plane.getTanWCS(192.8595, 27.1283, -113.4333*galsim.degrees, chip.pix_scale)
    return chip

def defineFilt(chip):
    filter_param = FilterParam()
    filter_id, filter_type = chip.getChipFilter()
    filt = Filter(
        filter_id=filter_id,
        filter_type=filter_type,
        filter_param=filter_param,
        ccd_bandpass=chip.effCurve)
    return filt


class imagingModule_coverage(unittest.TestCase):
    def __init__(self, methodName='runTest'):
        super(imagingModule_coverage, self).__init__(methodName)
Wei Chengliang's avatar
Wei Chengliang committed
161
        self.dataPath = os.path.join(os.getenv('UNIT_TEST_DATA_ROOT'), 'csst_msc_sim/csst_fz_msc')
Wei Chengliang's avatar
Wei Chengliang committed
162
163
164
165
166
167
168
169
170
171
172
        self.iccd = 8

    def test_imaging(self):
        config_file = os.path.join(self.dataPath, 'config_test.yaml')
        chip = defineCCD(self.iccd, config_file)
        bandpass = defineFilt(chip)
        filt = defineFilt(chip)
        print(chip.chipID)
        print(chip.cen_pix_x, chip.cen_pix_y)
        
        
Wei Chengliang's avatar
Wei Chengliang committed
173
        obj = _load_gals(os.path.join(self.dataPath, 'galaxies_C6_bundle000287.h5')) #("UNIT_TEST_DATA/galaxies_C6_bundle000287.h5")
Wei Chengliang's avatar
Wei Chengliang committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        sed_data = obj['sed']
        norm_filt = None
        obj_sed, obj_mag, obj_flux = convert_sed(
            mag=obj["mag_use_normal"],
            sed=sed_data,
            target_filt=filt,
            norm_filt=norm_filt,
        )

        pupil_area= np.pi * (0.5 * 2.)**2
        exptime = 150.
        nphotons_tot = obj_flux*pupil_area * exptime #getElectronFluxFilt(filt, tel, exptime)
        full = integrate_sed_bandpass(sed=obj_sed, bandpass=filt.bandpass_full)
        print(full, nphotons_tot, obj_mag)
        for i in range(4):
            sub = integrate_sed_bandpass(sed=obj_sed, bandpass=filt.bandpass_sub_list[i])
        
            ratio = sub / full
            nphotons = ratio * nphotons_tot
            disk = galsim.Sersic(n=obj['disk_sersic_idx'], half_light_radius=obj['hlr_disk'], flux=1.0)
            disk_shape = galsim.Shear(g1=obj['e1_disk'], g2=obj['e2_disk'])
            disk = disk.shear(disk_shape)
            gal_temp = disk
            gal_temp = gal_temp.withFlux(nphotons)

            psf = galsim.Gaussian(sigma=0.1, flux=1)
            gal_temp = galsim.Convolve(psf, gal_temp)

            if i == 0:
                gal = gal_temp
            else:
                gal = gal + gal_temp
        print(gal)
            

        self.assertTrue( gal != None )


if __name__ == '__main__':
    unittest.main()