test_Straylight.py 8.22 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import unittest
from ObservationSim.Straylight import Straylight

import numpy as np
import math
import astropy.constants as cons
import galsim
from astropy.table import Table
from scipy import interpolate

import matplotlib.pyplot as plt

hubbleAverZodiacal = {'nuv':0.0035,'u':0.0163,'g':0.1109,'r':0.1471,'i':0.1568,'z':0.0953,'y':0.0283}
hubbleAverEarthShine = {'nuv':0.00024,'u':0.0051,'g':0.0506,'r':0.0591,'i':0.0568,'z':0.0315,'y':0.0090}

def transRaDec2D(ra, dec):
    x1 = np.cos(dec / 57.2957795) * np.cos(ra / 57.2957795);
    y1 = np.cos(dec / 57.2957795) * np.sin(ra / 57.2957795);
    z1 = np.sin(dec / 57.2957795);
    return np.array([x1, y1, z1])


def getAngle132(x1=0, y1=0, z1=0, x2=0, y2=0, z2=0, x3=0, y3=0, z3=0):
    cosValue = 0;
    angle = 0;

    x11 = x1 - x3;
    y11 = y1 - y3;
    z11 = z1 - z3;

    x22 = x2 - x3;
    y22 = y2 - y3;
    z22 = z2 - z3;

    tt = np.sqrt((x11 * x11 + y11 * y11 + z11 * z11) * (x22 * x22 + y22 * y22 + z22 * z22));
    if (tt == 0):
        return 0;

    cosValue = (x11 * x22 + y11 * y22 + z11 * z22) / tt;

    if (cosValue > 1):
        cosValue = 1;
    if (cosValue < -1):
        cosValue = -1;
    angle = math.acos(cosValue);
    return angle * 360 / (2 * math.pi);

def calculateAnglePwithEarth(sat = np.array([0,0,0]), pointing = np.array([0,0,0]), sun = np.array([0,0,0])):
    modSat = np.sqrt(sat[0]*sat[0] + sat[1]*sat[1]+sat[2]*sat[2])
    modPoint = np.sqrt(pointing[0]*pointing[0] + pointing[1]*pointing[1] + pointing[2]*pointing[2])
    withLocalZenithAngle = (pointing[0] * sat[0] + pointing[1] * sat[1] + pointing[2] * sat[2]) / (modPoint*modSat)

    innerM_sat_sun = sat[0] * sun[0] + sat[1] * sun[1] + sat[2] * sun[2]
    cosAngle = innerM_sat_sun / (modSat * cons.au.value/1000)
    isInSunSide = 1
    if (cosAngle < -0.3385737): #cos109.79
        isInSunSide = -1;
    elif cosAngle >= -0.3385737 and cosAngle <= 0.3385737:
        isInSunSide = 0;

    return math.acos(withLocalZenithAngle)*180/math.pi,isInSunSide

class TestStraylight(unittest.TestCase):

    def __init__(self, methodName='runTest',datFn = '', filter = 'i', grating = "GI"):
        super(TestStraylight,self).__init__(methodName)
        self.pointingData = np.loadtxt(datFn, dtype=np.double)
        self.filter = filter
        self.grating = grating


    def test_EarthShineFilter(self):
        d_sh = self.pointingData.shape
        sl_e_pix = np.zeros([d_sh[0],3],dtype=np.double)

        for i in np.arange(d_sh[0]):
            # if i > 50:
            #     continue
            ju = self.pointingData[i, 5]
            # pointing = transRaDec2D(self.pointingData[i, 0], self.pointingData[i, 1])
            # print(ju, pointing, surveylist[i,3:9])
            sl = Straylight(jtime=ju, sat_pos=self.pointingData[i, 6:9], pointing_radec=np.array([self.pointingData[i, 0], self.pointingData[i, 1]]),sun_pos=self.pointingData[i,9:12])
            e1, py = sl.calculateEarthShineFilter(filter=self.filter)
            earthZenithAngle, isInSunSide = calculateAnglePwithEarth(sat=self.pointingData[i, 6:9], pointing= sl.pointing, sun=self.pointingData[i,9:12])
            # e2, _ = sl.calculateZodiacalFilter2(filter='i', sun_pos=sl.sun_pos)
            # e3 = sl.calculateStarLightFilter(filter='i', pointYaxis=py)
            # e_all = sl.calculateStrayLightFilter(filter='i')
            # s_pix, spec = sl.calculateStrayLightGrating(grating='GI')
            sl_e_pix[i,0] = e1
            sl_e_pix[i, 1] = earthZenithAngle
            sl_e_pix[i, 2] = isInSunSide
        median  = np.median(sl_e_pix[:,0])
        print(' average Earthshine %s: %e' % (self.filter, median))
        self.assertTrue(median-hubbleAverEarthShine[self.filter] < 0.1)
        plt.figure()
        ids1 = sl_e_pix[:, 2] == 1
        ids2 = sl_e_pix[:, 2] != 1
        plt.plot(sl_e_pix[ids1, 0], sl_e_pix[ids1, 1], 'r.')
        plt.plot(sl_e_pix[ids2, 0], sl_e_pix[ids2, 1], 'b.')
        plt.legend(['In Sun Side', 'In Earths shadow'])
        plt.xlabel('straylight-earthshine(e-/pixel/s)')
        plt.ylabel('Angle with local zenith(degree)')
        plt.show()

    def test_ZodiacalFilter(self):
        d_sh = self.pointingData.shape
        sl_e_pix = np.zeros([d_sh[0],2],dtype=np.double)

        for i in np.arange(d_sh[0]):
            ju = self.pointingData[i, 5]
            sl = Straylight(jtime=ju, sat_pos=self.pointingData[i, 6:9], pointing_radec=np.array([self.pointingData[i, 0], self.pointingData[i, 1]]),sun_pos=self.pointingData[i,9:12])
            e1, _ = sl.calculateZodiacalFilter2(filter=self.filter, sun_pos=sl.sun_pos)
            sl_e_pix[i,0] = e1
            sl_e_pix[i,1] = getAngle132(x1=self.pointingData[i,9], y1=self.pointingData[i,10], z1=self.pointingData[i,11], x2=sl.pointing[0],
                                        y2=sl.pointing[1], z2=sl.pointing[2], x3=0, y3=0, z3=0)
        plt.figure()
        plt.plot(sl_e_pix[:, 0], sl_e_pix[:, 1], 'r.')
        plt.xlabel('straylight-zodiacal(e-/pixel/s)')
        plt.ylabel('Angle between pointing and sun(degree)')
        plt.show()
        median  = np.median(sl_e_pix[:,0])
        print(' average Zodiacal %s: %f' % (self.filter, median))
        self.assertTrue(median-hubbleAverZodiacal[self.filter] < 0.1)

    def test_StarFilter(self):
        d_sh = self.pointingData.shape
        sl_e_pix = np.zeros(d_sh[0],dtype=np.double)

        tnum = 10
        for i in np.arange(tnum):
            # if i > 50:
            #     continue
            ju = self.pointingData[i, 5]
            # pointing = transRaDec2D(self.pointingData[i, 0], self.pointingData[i, 1])
            # print(ju, pointing, surveylist[i,3:9])
            sl = Straylight(jtime=ju, sat_pos=self.pointingData[i, 6:9], pointing_radec=np.array([self.pointingData[i, 0], self.pointingData[i, 1]]),sun_pos=self.pointingData[i,9:12])
            e1, py = sl.calculateEarthShineFilter(filter=self.filter)
            # e2, _ = sl.calculateZodiacalFilter2(filter='i', sun_pos=sl.sun_pos)
            e3 = sl.calculateStarLightFilter(filter=self.filter, pointYaxis=py)
            # e_all = sl.calculateStrayLightFilter(filter='i')
            # s_pix, spec = sl.calculateStrayLightGrating(grating='GI')
            sl_e_pix[i] = e3
        median  = np.median(sl_e_pix[0:tnum])
        print(' average Earthshine %s: %e' % (self.filter, median))
        self.assertTrue(median-hubbleAverEarthShine[self.filter] < 0.2)

    def test_GratingStraylight(self):
        d_sh = self.pointingData.shape
        sl_e_pix = np.zeros(d_sh[0],dtype=np.double)

        tnum = 10
        for i in np.arange(tnum):
            # if i > 50:
            #     continue
            ju = self.pointingData[i, 5]
            # pointing = transRaDec2D(self.pointingData[i, 0], self.pointingData[i, 1])
            # print(ju, pointing, surveylist[i,3:9])
            sl = Straylight(jtime=ju, sat_pos=self.pointingData[i, 6:9], pointing_radec=np.array([self.pointingData[i, 0], self.pointingData[i, 1]]),sun_pos=self.pointingData[i,9:12])
            # e1, py = sl.calculateEarthShineFilter(filter=self.filter)
            # e2, _ = sl.calculateZodiacalFilter2(filter='i', sun_pos=sl.sun_pos)
            # e3 = sl.calculateStarLightFilter(filter=self.filter, pointYaxis=py)
            # e_all = sl.calculateStrayLightFilter(filter='i')
            s_pix, spec = sl.calculateStrayLightGrating(grating=self.grating)
            sl_e_pix[i] = s_pix
        plt.figure()
        plt.plot(spec['WAVELENGTH'], spec['FLUX'], 'r')
        plt.xlabel('WAVELENGTH')
        plt.ylabel('F$\lambda$(erg/s/cm2/A/arcsec2)')
        plt.xlim(2000,10000)
        plt.show()
        median  = np.median(sl_e_pix[0:tnum])
        print(' average Earthshine %s: %e' % (self.grating, median))
        self.assertTrue(median < 0.8)





if __name__ == '__main__':

    suit = unittest.TestSuite()
    # case1 = TestStraylight('test_EarthShineFilter',datFn = 'Straylight_test.dat', filter = 'i')
    # suit.addTest(case1)
    # case2 = TestStraylight('test_ZodiacalFilter',datFn = 'Straylight_test.dat',filter = 'i')
    # suit.addTest(case2)
    # case3 = TestStraylight('test_StarFilter', datFn='Straylight_test.dat', filter='i')
    # suit.addTest(case3)
    case4 = TestStraylight('test_GratingStraylight', datFn='Straylight_test.dat', grating = 'GI')
    suit.addTest(case4)
    unittest.TextTestRunner(verbosity=2).run(suit)