TestSpecDisperse.py 16.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import unittest
from ObservationSim.MockObject.SpecDisperser import rotate90, SpecDisperser

from ObservationSim.Config import ConfigDir, ReadConfig, ChipOutput
from ObservationSim.Instrument import Telescope, Chip, FilterParam, Filter, FocalPlane
from ObservationSim.MockObject import MockObject, Star
from ObservationSim.PSF import PSFGauss

import numpy as np
import galsim
from astropy.table import Table
from scipy import interpolate

import matplotlib.pyplot as plt

from lmfit.models import LinearModel, GaussianModel


def fit_SingleGauss(xX, yX, contmX, iHa0):
    background = LinearModel(prefix='line_')
    pars = background.make_params(intercept=yX.max(), slope=0)
    pars = background.guess(yX, x=xX)

    gauss = GaussianModel(prefix='g_')
    pars.update(gauss.make_params())
    pars['g_center'].set(iHa0, min=iHa0 - 3, max=iHa0 + 3)
    pars['g_amplitude'].set(50, min=0)
    pars['g_sigma'].set(12, min=0.01)

    mod = gauss + background
    init = mod.eval(pars, x=xX)
    outX = mod.fit(yX, pars, x=xX)
    compsX = outX.eval_components(x=xX)
    # print(outX.fit_report(min_correl=0.25))
    # print outX.params['g_center']
    outX.fit_report(min_correl=0.25)
    # print(outX.fit_report(min_correl=0.25))
    line_slopeX = float(outX.fit_report(min_correl=0.25).split('line_slope:')[1].split('+/-')[0]) * contmX
    err_line_slopeX = float(
        outX.fit_report(min_correl=0.25).split('line_slope:')[1].split('+/-')[1].split('(')[0]) * contmX

    line_interceptX = float(outX.fit_report(min_correl=0.25).split('line_intercept:')[1].split('+/-')[0]) * contmX
    err_line_interceptX = float(
        outX.fit_report(min_correl=0.25).split('line_intercept:')[1].split('+/-')[1].split('(')[0]) * contmX

    sigmaX = float(outX.fit_report(min_correl=0.25).split('g_sigma:')[1].split('+/-')[0])
    err_sigmaX = float(outX.fit_report(min_correl=0.25).split('g_sigma:')[1].split('+/-')[1].split('(')[0])

    fwhmX = float(outX.fit_report(min_correl=0.25).split('g_fwhm:')[1].split('+/-')[0])
    err_fwhmX = float(outX.fit_report(min_correl=0.25).split('g_fwhm:')[1].split('+/-')[1].split('(')[0])

    centerX = float(outX.fit_report(min_correl=0.25).split('g_center:')[1].split('+/-')[0])
    err_centerX = float(outX.fit_report(min_correl=0.25).split('g_center:')[1].split('+/-')[1].split('(')[0])

    return sigmaX, err_sigmaX, fwhmX, err_fwhmX, centerX, err_centerX

def produceObj(x,y,chip):
    pos_img = galsim.PositionD(chip.bound.xmin + x, chip.bound.ymin + y)

    param = {}
    param["star"] = 1
    param["id"] = 1
    param["ra"] = chip.img.wcs.posToWorld(pos_img).ra.deg
    param["dec"] = chip.img.wcs.posToWorld(pos_img).dec.deg
    param["z"] = 0
    param["sed_type"] = 1
    param["model_tag"] = 1
    param["mag_use_normal"] = 10

    obj = Star(param)

    pos_img, offset, local_wcs = obj.getPosImg_Offset_WCS(img=chip.img, chip=chip)
    wave = np.arange(2500, 11000.5, 0.5)
    # sedLen = wave.shape[0]
    flux = pow(wave, -2) * 1e8
    flux[200] = flux[200] * 10
    flux[800] = flux[800] * 30
    flux[2000] = flux[2000] * 5

    obj.sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
    return obj, pos_img


class TestSpecDisperse(unittest.TestCase):

    def __init__(self, methodName='runTest',conff = '', throughputf = ''):
        super(TestSpecDisperse,self).__init__(methodName)
        self.conff = conff
        self.throughputf = throughputf

    def test_rotate901(self):
        m = np.array([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]])
        m1 = np.array([[21,16,11,6,1],[22,17,12,7,2],[23,18,13,8,3],[24,19,14,9,4],[25,20,15,10,5]])
        m2 = np.array([[5,10,15,20,25],[4,9,14,19,24],[3,8,13,18,23],[2,7,12,17,22],[1,6,11,16,21]])
        xc = 2
        yc = 2
        isClockwise = 0
        m1, xc1, yc1 = rotate90(array_orig=m, xc=xc, yc=yc, isClockwise=isClockwise)
        self.assertTrue(xc1-xc == 0)
        self.assertTrue(yc1-yc == 0)
        self.assertTrue(np.sum(m-m1) == 0)

    def test_rotate902(self):
        m = np.array([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20],[21,22,23,24,25]])
        m1 = np.array([[21,16,11,6,1],[22,17,12,7,2],[23,18,13,8,3],[24,19,14,9,4],[25,20,15,10,5]])
        m2 = np.array([[5,10,15,20,25],[4,9,14,19,24],[3,8,13,18,23],[2,7,12,17,22],[1,6,11,16,21]])
        xc = 2
        yc = 2
        isClockwise =1
        m1, xc1, yc1 = rotate90(array_orig=m, xc=xc, yc=yc, isClockwise=isClockwise)
        self.assertTrue(xc1-xc == 0)
        self.assertTrue(yc1-yc == 0)
        self.assertTrue(np.sum(m-m2) == 0)


    def test_Specdistperse1(self):
        star = galsim.Gaussian(fwhm=0.39)
        g_img = galsim.Image(100, 100, scale=0.074)
        starImg = star.drawImage(image=g_img)

        wave = np.arange(6200, 10000.5, 0.5)
        # sedLen = wave.shape[0]
        flux = pow(wave, -2) * 1e8
        # flux[200] = flux[200] * 10
        # flux[800] = flux[800] * 30
        # flux[2000] = flux[2000] * 5

        sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
        conff = self.conff
        throughput_f = self.throughputf
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])
        sdp = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                            band_end=10000, isAlongY=0, conf=conff, gid=0)
        spec = sdp.compute_spec_orders()
        Aimg = spec['A'][0]
        wave_pix = spec['A'][5]
        wave_pos = spec['A'][3]
        sens = spec['A'][6]
        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[:, i])
        # figure()
        # imshow(Aimg)

        wave_flux = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux[i] = f / deltW
        sed_i = interpolate.interp1d(sed['WAVELENGTH'], sed['FLUX'])
        ids = wave_pix < 9700
        ids1 = wave_pix[ids] > 6500
        print('Spec disperse flux test')
        self.assertTrue(np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1]))<0.004)
        plt.figure()
        plt.plot(wave_pix, wave_flux)
        plt.plot(sed['WAVELENGTH'], sed['FLUX'])
        plt.xlim(6200, 10000)
        plt.ylim(1, 3)
        plt.yscale('log')
        plt.xlabel('$\lambda$')
        plt.ylabel('$F\lambda$')
        plt.legend(['extracted', 'input'])
        plt.show()

    def test_Specdistperse2(self):

        psf_fwhm = 0.39
        pix_scale = 0.074
        star = galsim.Gaussian(fwhm=psf_fwhm)
        g_img = galsim.Image(100, 100, scale=pix_scale)
        starImg = star.drawImage(image=g_img)

        wave = np.arange(6200, 10000.5, 0.5)
        # sedLen = wave.shape[0]
        flux = pow(wave, -2) * 1e8
        flux[200] = flux[200] * 10
        flux[800] = flux[800] * 30
        flux[2000] = flux[2000] * 5

        sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
        conff = self.conff
        throughput_f = self.throughputf
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])
        sdp = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                            band_end=10000, isAlongY=0, conf=conff, gid=0)
        spec = sdp.compute_spec_orders()
        Aimg = spec['A'][0]
        wave_pix = spec['A'][5]
        wave_pos = spec['A'][3]
        sens = spec['A'][6]
        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[:, i])
        # figure()
        # imshow(Aimg)

        wave_flux = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux[i] = f / deltW
        sed_i = interpolate.interp1d(sed['WAVELENGTH'], sed['FLUX'])
        input_em_lam = 6600
        ids = wave_pix < input_em_lam+200
        ids1 = wave_pix[ids] > input_em_lam-200
        deltLamda_pix = (max(wave_pix[ids][ids1]) - min(wave_pix[ids][ids1])) / (wave_pix[ids][ids1].shape[0] - 1)
        _, _, fwhmx, fwhmx_err, center, center_err = fit_SingleGauss(wave_pix[ids][ids1], wave_flux[ids][ids1], 1.0, 6600)

        print('Emission line position and shape test')

        self.assertTrue(input_em_lam-center < deltLamda_pix)

        self.assertTrue(fwhmx/deltLamda_pix*pix_scale - psf_fwhm  < np.abs(0.01))
        # print('error is ',np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1])))
        # self.assertTrue(np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1]))<0.004)
        plt.figure()
        plt.plot(wave_pix, wave_flux)
        plt.plot(sed['WAVELENGTH'], sed['FLUX'])
        plt.xlim(6200, 10000)
        plt.ylim(1, 75)
        plt.yscale('log')
        plt.xlabel('$\lambda$')
        plt.ylabel('$F\lambda$')
        plt.legend(['extracted', 'input'])
        plt.show()

    def test_Specdistperse3(self):

        psf_fwhm = 0.39
        pix_scale = 0.074
        star = galsim.Gaussian(fwhm=psf_fwhm)
        g_img = galsim.Image(100, 100, scale=pix_scale)
        starImg = star.drawImage(image=g_img)

        wave = np.arange(6200, 10000.5, 0.5)
        # sedLen = wave.shape[0]
        flux = pow(wave, -2) * 1e8
        flux[200] = flux[200] * 10
        flux[800] = flux[800] * 30
        flux[2000] = flux[2000] * 5

        sed = Table(np.array([wave, flux]).T,
                    names=('WAVELENGTH', 'FLUX'))
        conff = self.conff
        throughput_f = self.throughputf
        thp = Table.read(throughput_f)
        thp_i = interpolate.interp1d(thp['WAVELENGTH'], thp['SENSITIVITY'])
        sdp = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                            band_end=8000, isAlongY=0, conf=conff, gid=0)
        sdp1 = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=8000,
                             band_end=10000, isAlongY=0, conf=conff, gid=0)
        spec = sdp.compute_spec_orders()
        spec1 = sdp1.compute_spec_orders()
        Aimg = spec['A'][0] + spec1['A'][0]
        wave_pix = spec['A'][5]
        wave_pos = spec['A'][3]
        sens = spec['A'][6]
        sh = Aimg.shape
        spec_pix = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix[i] = sum(Aimg[:, i])


        wave_flux = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux[i] = f / deltW

        sdp2 = SpecDisperser(orig_img=starImg, xcenter=0, ycenter=0, origin=[100, 100], tar_spec=sed, band_start=6200,
                             band_end=10000, isAlongY=0, conf=conff, gid=0)

        spec2 = sdp2.compute_spec_orders()
        Aimg2 = spec2['A'][0]

        spec_pix2 = np.zeros(sh[1])
        for i in range(sh[1]):
            spec_pix2[i] = sum(Aimg2[:, i])

        wave_flux2 = np.zeros(wave_pix.shape[0])
        for i in np.arange(1, wave_pix.shape[0] - 1):
            w = wave_pix[i]
            thp_w = thp_i(w)
            deltW = (w - wave_pix[i - 1]) / 2 + (wave_pix[i + 1] - w) / 2
            f = spec_pix2[wave_pos[0] - 1 + i]

            if 6200 <= w <= 10000:
                f = f / thp_w
            else:
                f = 0
            wave_flux2[i] = f / deltW

        r1_i = interpolate.interp1d(wave_pix, wave_flux2)
        r2_i = interpolate.interp1d(wave_pix, wave_flux)

        print('Spec Splicing test')
        self.assertTrue(r1_i(8000)-r2_i(8000) < np.abs(0.0001))

        # self.assertTrue(fwhmx/deltLamda_pix*pix_scale - psf_fwhm  < np.abs(0.01))
        # print('error is ',np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1])))
        # self.assertTrue(np.mean((wave_flux[ids][ids1] - sed_i(wave_pix[ids][ids1]))/sed_i(wave_pix[ids][ids1]))<0.004)
        plt.figure()
        plt.plot(wave_pix, wave_flux2)
        plt.plot(wave_pix, wave_flux)
        # plt.plot(sed['WAVELENGTH'], sed['FLUX'])
        plt.xlim(6200, 10000)
        plt.ylim(1, 4)
        plt.yscale('log')
        plt.xlabel('$\lambda$')
        plt.ylabel('$F\lambda$')
        plt.legend(['one spec', 'split in 8000 A'])
        plt.show()



    def test_double_disperse(self):
        work_dir = "/public/home/fangyuedong/CSST_unittest/CSST/test/"
        # data_dir = "/Volumes/Extreme SSD/SimData/"
        data_dir = "/data/simudata/CSSOSDataProductsSims/data/"
        path_dict = ConfigDir(work_dir=work_dir, data_dir=data_dir)
        config = ReadConfig(path_dict["config_file"])

        filter_param = FilterParam(filter_dir=path_dict["filter_dir"])
        focal_plane = FocalPlane(survey_type=config["survey_type"])
        chip = Chip(1, ccdEffCurve_dir=path_dict["ccd_dir"], CRdata_dir=path_dict["CRdata_dir"],
                    normalize_dir=path_dict["normalize_dir"], sls_dir=path_dict["sls_dir"],
                    config=config)
        filter_id, filter_type = chip.getChipFilter()
        filt = Filter(filter_id=filter_id, filter_type=filter_type, filter_param=filter_param,
                      ccd_bandpass=chip.effCurve)
        tel = Telescope(optEffCurve_path=path_dict["mirror_file"])

        psf_model = PSFGauss(chip=chip)


        wcs_fp = focal_plane.getTanWCS(config["ra_center"], config["dec_center"], config["image_rot"], chip.pix_scale)
        chip.img = galsim.ImageF(chip.npix_x, chip.npix_y)
        chip.img.setOrigin(chip.bound.xmin, chip.bound.ymin)
        chip.img.wcs = wcs_fp

        obj, pos_img = produceObj(2000,4500, chip)
        obj.drawObj_slitless(
            tel=tel,
            pos_img=pos_img,
            psf_model=psf_model,
            bandpass_list=filt.bandpass_sub_list,
            filt=filt,
            chip=chip,
            g1=0,
            g2=0,
            exptime=150,
            normFilter=chip.normF_star)

        obj, pos_img = produceObj(3685, 6500, chip)
        obj.drawObj_slitless(
            tel=tel,
            pos_img=pos_img,
            psf_model=psf_model,
            bandpass_list=filt.bandpass_sub_list,
            filt=filt,
            chip=chip,
            g1=0,
            g2=0,
            exptime=150,
            normFilter=chip.normF_star)

        obj, pos_img = produceObj(5000, 2500, chip)
        obj.drawObj_slitless(
            tel=tel,
            pos_img=pos_img,
            psf_model=psf_model,
            bandpass_list=filt.bandpass_sub_list,
            filt=filt,
            chip=chip,
            g1=0,
            g2=0,
            exptime=150,
            normFilter=chip.normF_star)

        print('Spec double disperse test')
        from astropy.io import fits
        fits.writeto('test.fits',chip.img.array, overwrite = True)

        # plt.figure()
        # plt.imshow(chip.img.array)
        # plt.show()



if __name__ == '__main__':
    conff='/data/simudata/CSSOSDataProductsSims/data/CONF/CSST_GI2.conf'
    throughputf='/data/simudata/CSSOSDataProductsSims/data/CONF/GI.Throughput.1st.fits'

    suit = unittest.TestSuite()
    case1 = TestSpecDisperse('test_Specdistperse1',conff,throughputf)
    suit.addTest(case1)
    case2 = TestSpecDisperse('test_Specdistperse2', conff, throughputf)
    suit.addTest(case2)
    case3 = TestSpecDisperse('test_Specdistperse3', conff, throughputf)
    suit.addTest(case3)
    case4 = TestSpecDisperse('test_double_disperse', conff, throughputf)
    suit.addTest(case4)

    unittest.TextTestRunner(verbosity=2).run(suit)
    # runner = unittest.TextTestRunner()
    # runner.run(suit)