SimSteps.py 21.6 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
import galsim
import traceback
import gc
import psutil
import numpy as np
from astropy.io import fits
from datetime import datetime
from numpy.random import Generator, PCG64

from ObservationSim._util import get_shear_field
from ObservationSim.Straylight import calculateSkyMap_split_g
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader
from ObservationSim.PSF import PSFGauss, FieldDistortion, PSFInterp, PSFInterpSLS
from ObservationSim.Instrument.Chip import ChipUtils as chip_utils
from ObservationSim.Instrument.Chip import Effects
from ObservationSim.Instrument.Chip.libCTI.CTI_modeling import CTI_sim

class SimSteps:
    def __init__(self, overall_config, chip_output, all_filters):
        self.overall_config = overall_config
        self.chip_output = chip_output
        self.all_filters = all_filters
    
    def prepare_headers(self, chip, pointing):
        datetime_obs = datetime.utcfromtimestamp(pointing.timestamp)
        date_obs = datetime_obs.strftime("%y%m%d")
        time_obs = datetime_obs.strftime("%H%M%S")
        self.h_prim = generatePrimaryHeader(
            xlen=chip.npix_x, 
            ylen=chip.npix_y, 
            pointNum = str(pointing.id),
            ra=pointing.ra, 
            dec=pointing.dec, 
            pixel_scale=chip.pix_scale,
            date=date_obs,
            time_obs=time_obs,
            exptime=pointing.exp_time,
            im_type=pointing.pointing_type,
            sat_pos=[pointing.sat_x, pointing.sat_y, pointing.sat_z],
            sat_vel=[pointing.sat_vx, pointing.sat_vy, pointing.sat_vz],
            project_cycle=self.overall_config["project_cycle"],
            run_counter=self.overall_config["run_counter"],
            chip_name=str(chip.chipID).rjust(2, '0'))
        self.h_ext = generateExtensionHeader(
            chip=chip,
            xlen=chip.npix_x, 
            ylen=chip.npix_y, 
            ra=pointing.ra, 
            dec=pointing.dec, 
            pa=pointing.img_pa.deg, 
            gain=chip.gain, 
            readout=chip.read_noise, 
            dark=chip.dark_noise, 
            saturation=90000, 
            pixel_scale=chip.pix_scale, 
            pixel_size=chip.pix_size,
            xcen=chip.x_cen,
            ycen=chip.y_cen,
            extName=pointing.pointing_type,
            timestamp = pointing.timestamp,
            exptime = pointing.exp_time,
            readoutTime = chip.readout_time)
        return self.h_prim, self.h_ext

    def add_sky_background(self, chip, filt, tel, pointing, catalog, obs_param):
        flat_normal = np.ones_like(chip.img.array)
        if obs_param["flat_fielding"] == True:
            flat_normal = flat_normal * chip.flat_img.array / np.mean(chip.flat_img.array)
        if obs_param["shutter_effect"] == True:
            flat_normal = flat_normal * chip.shutter_img
            flat_normal = np.array(flat_normal, dtype='float32')
        
        if obs_param["enable_straylight_model"]:
            # Filter.sky_background, Filter.zodical_spec will be updated
            filt.setFilterStrayLightPixel(
                jtime = pointing.jdt,
                sat_pos = np.array([pointing.sat_x, pointing.sat_y, pointing.sat_z]),
                pointing_radec = np.array([pointing.ra,pointing.dec]),
                sun_pos = np.array([pointing.sun_x, pointing.sun_y, pointing.sun_z]))
            self.chip_output.Log_info("================================================")
            self.chip_output.Log_info("sky background + stray light pixel flux value: %.5f"%(filt.sky_background))
        
        if chip.survey_type == "photometric":
            sky_map = filt.getSkyNoise(exptime = obs_param["exptime"])
            sky_map = sky_map * np.ones_like(chip.img.array) * flat_normal
            sky_map = galsim.Image(array=sky_map)
        else:
            # chip.loadSLSFLATCUBE(flat_fn='flat_cube.fits')
            sky_map = calculateSkyMap_split_g(
                    skyMap=flat_normal,
                    blueLimit=filt.blue_limit,
                    redLimit=filt.red_limit,
                    conf=chip.sls_conf,
                    pixelSize=chip.pix_scale,
                    isAlongY=0,
                    flat_cube=chip.flat_cube, 
                    zoldial_spec = filt.zodical_spec)
            sky_map = sky_map + filt.sky_background
        
101
        # sky_map = sky_map * tel.pupil_area * obs_param["exptime"]
Fang Yuedong's avatar
Fang Yuedong committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        chip.img += sky_map
        return chip, filt, tel, pointing

    def add_objects(self, chip, filt, tel, pointing, catalog, obs_param):

        # Prepare output file(s) for this chip
        self.chip_output.create_output_file()

        # Prepare the PSF model
        if self.overall_config["psf_setting"]["psf_model"] == "Gauss":
            psf_model = PSFGauss(chip=chip, psfRa=self.overall_config["psf_setting"]["psf_rcont"])
        elif self.overall_config["psf_setting"]["psf_model"] == "Interp":
            if chip.survey_type == "spectroscopic":
                psf_model = PSFInterpSLS(chip, filt, PSF_data_prefix=self.overall_config["psf_setting"]["psf_sls_dir"])
            else:
                psf_model = PSFInterp(chip=chip, npsf=chip.n_psf_samples, PSF_data_file=self.overall_config["psf_setting"]["psf_pho_dir"])
        else:
            self.chip_output.Log_error("unrecognized PSF model type!!", flush=True)
        
        # Apply field distortion model
        if obs_param["field_dist"] == True:
            fd_model = FieldDistortion(chip=chip, img_rot=pointing.img_pa.deg)
        else:
            fd_model = None

        # Update limiting magnitudes for all filters based on the exposure time
        # Get the filter which will be used for magnitude cut
        for ifilt in range(len(self.all_filters)):
            temp_filter = self.all_filters[ifilt]
            temp_filter.update_limit_saturation_mags(exptime=pointing.get_full_depth_exptime(temp_filter.filter_type), chip=chip)
            if temp_filter.filter_type.lower() == self.overall_config["obs_setting"]["cut_in_band"].lower():
                cut_filter = temp_filter

        # Read in shear values from configuration file if the constant shear type is used
        if self.overall_config["shear_setting"]["shear_type"] == "constant":
            g1_field, g2_field, _ = get_shear_field(config=self.overall_config)
            self.chip_output.Log_info("Use constant shear: g1=%.5f, g2=%.5f"%(g1_field, g2_field))

        # Get chip WCS
        if not hasattr(self, 'h_ext'):
            _, _ = self.prepare_headers(chip=chip, pointing=pointing)
        chip_wcs = galsim.FitsWCS(header = self.h_ext)
        
        # Loop over objects
        nobj = len(catalog.objs)
        missed_obj = 0
        bright_obj = 0
        dim_obj = 0
        for j in range(nobj):
            # # [DEBUG] [TODO]
            # if j >= 10:
            #     break
            obj = catalog.objs[j]

            # load and convert SED; also caculate object's magnitude in all CSST bands
            try:
                sed_data = catalog.load_sed(obj)
                norm_filt = catalog.load_norm_filt(obj)
                obj.sed, obj.param["mag_%s"%filt.filter_type.lower()], obj.param["flux_%s"%filt.filter_type.lower()] = catalog.convert_sed(
                    mag=obj.param["mag_use_normal"],
                    sed=sed_data,
                    target_filt=filt, 
                    norm_filt=norm_filt,
                )
                _, obj.param["mag_%s"%cut_filter.filter_type.lower()], obj.param["flux_%s"%cut_filter.filter_type.lower()] = catalog.convert_sed(
                    mag=obj.param["mag_use_normal"],
                    sed=sed_data,
                    target_filt=cut_filter, 
                    norm_filt=norm_filt,
                )
            except Exception as e:
                traceback.print_exc()
                self.chip_output.Log_error(e)
                continue

            # [TODO] Testing
            # self.chip_output.Log_info("mag_%s = %.3f"%(filt.filter_type.lower(), obj.param["mag_%s"%filt.filter_type.lower()]))

            # Exclude very bright/dim objects (for now)
            if cut_filter.is_too_bright(
                mag=obj.param["mag_%s"%self.overall_config["obs_setting"]["cut_in_band"].lower()],
                margin=self.overall_config["obs_setting"]["mag_sat_margin"]):
                self.chip_output.Log_info("obj %s too birght!! mag_%s = %.3f"%(obj.id, cut_filter.filter_type, obj.param["mag_%s"%self.overall_config["obs_setting"]["cut_in_band"].lower()]))
                bright_obj += 1
                obj.unload_SED()
                continue
            if filt.is_too_dim(
                mag=obj.getMagFilter(filt),
                margin=self.overall_config["obs_setting"]["mag_lim_margin"]):
                self.chip_output.Log_info("obj %s too dim!! mag_%s = %.3f"%(obj.id, filt.filter_type, obj.getMagFilter(filt)))
                dim_obj += 1
                obj.unload_SED()
                continue

            # Get corresponding shear values
            if self.overall_config["shear_setting"]["shear_type"] == "constant":
                if obj.type == 'star':
                    obj.g1, obj.g2 = 0., 0.
                else:
                    # Figure out shear fields from overall configuration shear setting
                    obj.g1, obj.g2 = g1_field, g2_field
            elif self.overall_config["shear_setting"]["shear_type"] == "catalog":
                pass
            else:
                self.chip_output.Log_error("Unknown shear input")
                raise ValueError("Unknown shear input")

            # Get position of object on the focal plane
            pos_img, _, _, _, fd_shear = obj.getPosImg_Offset_WCS(img=chip.img, fdmodel=fd_model, chip=chip, verbose=False, chip_wcs=chip_wcs, img_header=self.h_ext)

            # [TODO] For now, only consider objects which their centers (after field distortion) are projected within the focal plane
            # Otherwise they will be considered missed objects
            # if pos_img.x == -1 or pos_img.y == -1 or (not chip.isContainObj(x_image=pos_img.x, y_image=pos_img.y, margin=0.)):
            if pos_img.x == -1 or pos_img.y == -1:
                self.chip_output.Log_info('obj_ra = %.6f, obj_dec = %.6f, obj_ra_orig = %.6f, obj_dec_orig = %.6f'%(obj.ra, obj.dec, obj.ra_orig, obj.dec_orig))
                self.chip_output.Log_error("Objected missed: %s"%(obj.id))
                missed_obj += 1
                obj.unload_SED()
                continue

            # Draw object & update output catalog
            try:
                if self.overall_config["run_option"]["out_cat_only"]:
                    isUpdated = True
                    obj.real_pos = obj.getRealPos(chip.img, global_x=obj.posImg.x, global_y=obj.posImg.y, img_real_wcs=obj.chip_wcs)
                    pos_shear = 0.
                elif chip.survey_type == "photometric" and not self.overall_config["run_option"]["out_cat_only"]:
                    isUpdated, pos_shear = obj.drawObj_multiband(
                        tel=tel,
                        pos_img=pos_img, 
                        psf_model=psf_model, 
                        bandpass_list=filt.bandpass_sub_list, 
                        filt=filt, 
                        chip=chip, 
                        g1=obj.g1, 
                        g2=obj.g2, 
                        exptime=pointing.exp_time,
                        fd_shear=fd_shear)

                elif chip.survey_type == "spectroscopic" and not self.overall_config["run_option"]["out_cat_only"]:
                    isUpdated, pos_shear = obj.drawObj_slitless(
                        tel=tel, 
                        pos_img=pos_img, 
                        psf_model=psf_model, 
                        bandpass_list=filt.bandpass_sub_list, 
                        filt=filt, 
                        chip=chip, 
                        g1=obj.g1, 
                        g2=obj.g2, 
                        exptime=pointing.exp_time,
                        normFilter=norm_filt,
                        fd_shear=fd_shear)

                if isUpdated == 1:
                    # TODO: add up stats
                    self.chip_output.cat_add_obj(obj, pos_img, pos_shear)
                    pass
                elif isUpdated == 0:
                    missed_obj += 1
                    self.chip_output.Log_error("Objected missed: %s"%(obj.id))
                else:
                    self.chip_output.Log_error("Draw error, object omitted: %s"%(obj.id))
                    continue
            except Exception as e:
                traceback.print_exc()
                self.chip_output.Log_error(e)

            # Unload SED:
            obj.unload_SED()
            del obj
            gc.collect()
        del psf_model
        gc.collect()

        self.chip_output.Log_info("Running checkpoint #1 (Object rendering finished): pointing-%d chip-%d pid-%d memory-%6.2fGB"%(pointing.id, chip.chipID, os.getpid(), (psutil.Process(os.getpid()).memory_info().rss / 1024 / 1024 / 1024) ))

        self.chip_output.Log_info("# objects that are too bright %d out of %d"%(bright_obj, nobj))
        self.chip_output.Log_info("# objects that are too dim %d out of %d"%(dim_obj, nobj))
        self.chip_output.Log_info("# objects that are missed %d out of %d"%(missed_obj, nobj))

        # Apply flat fielding (with shutter effects)
        flat_normal = np.ones_like(chip.img.array)
        if obs_param["flat_fielding"] == True:
            flat_normal = flat_normal * chip.flat_img.array / np.mean(chip.flat_img.array)
        if obs_param["shutter_effect"] == True:
            flat_normal = flat_normal * chip.shutter_img
            flat_normal = np.array(flat_normal, dtype='float32')
        chip.img *= flat_normal
        del flat_normal

        return chip, filt, tel, pointing
    
    def add_cosmic_rays(self, chip, filt, tel, pointing, catalog, obs_param):
295
        self.chip_output.Log_info("  Adding Cosmic-Ray")
Fang Yuedong's avatar
Fang Yuedong committed
296
297
298
        chip.img, crmap_gsimg, cr_event_num = chip_utils.add_cosmic_rays(
            img=chip.img, 
            chip=chip, 
299
            exptime=pointing.exp_time, 
Fang Yuedong's avatar
Fang Yuedong committed
300
301
302
303
304
305
306
307
308
309
310
311
312
            seed=self.overall_config["random_seeds"]["seed_CR"]+pointing.id*30+chip.chipID)
        # [TODO] output cosmic ray image
        return chip, filt, tel, pointing
    
    def apply_PRNU(self, chip, filt, tel, pointing, catalog, obs_param):
        chip.img *= chip.prnu_img
        return chip, filt, tel, pointing
    
    def add_poisson_and_dark(self, chip, filt, tel, pointing, catalog, obs_param):
        # Add dark current & Poisson noise
        InputDark = False
        if obs_param["add_dark"] == True:
            if InputDark:
313
                chip.img = chip_utils.add_inputdark(img=chip.img, chip=chip, exptime=pointing.exp_time)
Fang Yuedong's avatar
Fang Yuedong committed
314
            else:
315
                chip.img, _ = chip_utils.add_poisson(img=chip.img, chip=chip, exptime=pointing.exp_time, poisson_noise=chip.poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
316
        else:
317
            chip.img, _ = chip_utils.add_poisson(img=chip.img, chip=self, exptime=pointing.exp_time, poisson_noise=chip.poisson_noise, dark_noise=0.)
Fang Yuedong's avatar
Fang Yuedong committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        return chip, filt, tel, pointing
    
    def add_brighter_fatter(self, chip, filt, tel, pointing, catalog, obs_param):
        chip.img = chip_utils.add_brighter_fatter(img=chip.img)
        return chip, filt, tel, pointing
    
    def add_detector_defects(self, chip, filt, tel, pointing, catalog, obs_param):
        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(self.overall_config["random_seeds"]["seed_defective"]+chip.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        chip.img = Effects.DefectivePixels(
            chip.img, 
            IfHotPix=obs_param["hot_pixels"], 
            IfDeadPix=obs_param["dead_pixels"],
            fraction=badfraction, 
            seed=self.overall_config["random_seeds"]["seed_defective"]+chip.chipID, biaslevel=0)
        # Apply Bad columns 
        if obs_param["bad_columns"] == True:
            chip.img = Effects.BadColumns(chip.img, seed=self.overall_config["random_seeds"]["seed_badcolumns"], chipid=chip.chipID)
        return chip, filt, tel, pointing
    
    def add_nonlinearity(self, chip, filt, tel, pointing, catalog, obs_param):
        self.chip_output.Log_info("  Applying Non-Linearity on the chip image")
        chip.img = Effects.NonLinearity(GSImage=chip.img, beta1=5.e-7, beta2=0)
        return chip, filt, tel, pointing
    
    def add_blooming(self, chip, filt, tel, pointing, catalog, obs_param):
        self.chip_output.Log_info("  Applying CCD Saturation & Blooming")
        chip.img = Effects.SaturBloom(GSImage=chip.img, nsect_x=1, nsect_y=1, fullwell=int(chip.full_well))
        return chip, filt, tel, pointing

    def apply_CTE(self, chip, filt, tel, pointing, catalog, obs_param):
        self.chip_output.Log_info("  Apply CTE Effect")
        ### 2*8 -> 1*16 img-layout
        img = chip_utils.formatOutput(GSImage=chip.img)
        chip.nsecy = 1
        chip.nsecx = 16

        img_arr = img.array
        ny, nx = img_arr.shape
        dx = int(nx/chip.nsecx)
        dy = int(ny/chip.nsecy)
        newimg = galsim.Image(nx, int(ny+chip.overscan_y), init_value=0)
        for ichannel in range(16):
            print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(pointing.id, chip.chipID, ichannel+1))
363
            noverscan, nsp, nmax = chip.overscan_y, 3, 10
Fang Yuedong's avatar
Fang Yuedong committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
            beta, w, c = 0.478, 84700, 0
            t = np.array([0.74, 7.7, 37],dtype=np.float32)
            rho_trap = np.array([0.6, 1.6, 1.4],dtype=np.float32)
            trap_seeds = np.array([0, 1000, 10000],dtype=np.int32) + ichannel + chip.chipID*16
            release_seed = 50 + ichannel + pointing.id*30  + chip.chipID*16
            newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(img_arr[:, 0+ichannel*dx:dx+ichannel*dx],dx,dy,noverscan,nsp,nmax,beta,w,c,t,rho_trap,trap_seeds,release_seed)
        newimg.wcs = img.wcs
        del img
        img = newimg

        ### 1*16 -> 2*8 img-layout
        chip.img = chip_utils.formatRevert(GSImage=img)
        chip.nsecy = 2
        chip.nsecx = 8
        
        # [TODO] make overscan_y == 0
        chip.overscan_y = 0
        return chip, filt, tel, pointing
    
    def add_prescan_overscan(self, chip, filt, tel, pointing, catalog, obs_param):
        self.chip_output.Log_info("Apply pre/over-scan")
        chip.img = chip_utils.AddPreScan(GSImage=chip.img,
                                         pre1=chip.prescan_x,
                                         pre2=chip.prescan_y,
                                         over1=chip.overscan_x,
                                         over2=chip.overscan_y)
        return chip, filt, tel, pointing
    
    def add_bias(self, chip, filt, tel, pointing, catalog, obs_param):
        self.chip_output.Log_info("  Adding Bias level and 16-channel non-uniformity")
        if obs_param["bias_16channel"] == True:
            chip.img = Effects.AddBiasNonUniform16(chip.img, 
                    bias_level=float(chip.bias_level), 
                    nsecy = chip.nsecy, nsecx=chip.nsecx, 
                    seed=self.overall_config["random_seeds"]["seed_biasNonUniform"]+chip.chipID)
        elif obs_param["bias_16channel"] == False:
            chip.img += self.bias_level
        return chip, filt, tel, pointing

    def add_readout_noise(self, chip, filt, tel, pointing, catalog, obs_param):
        seed = int(self.overall_config["random_seeds"]["seed_readout"]) + pointing.id*30 + chip.chipID
        rng_readout = galsim.BaseDeviate(seed)
        readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=chip.read_noise)
        chip.img.addNoise(readout_noise)
        return chip, filt, tel, pointing
    
    def apply_gain(self, chip, filt, tel, pointing, catalog, obs_param):
        self.chip_output.Log_info("  Applying Gain")
        if obs_param["gain_16channel"] == True:
            chip.img, chip.gain_channel = Effects.ApplyGainNonUniform16(
                chip.img, gain=chip.gain, 
415
                nsecy = chip.nsecy, nsecx=chip.nsecx, 
Fang Yuedong's avatar
Fang Yuedong committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                seed=self.overall_config["random_seeds"]["seed_gainNonUniform"]+chip.chipID)
        elif obs_param["gain_16channel"] == False:
            chip.img /= chip.gain
        return chip, filt, tel, pointing
    
    def quantization_and_output(self, chip, filt, tel, pointing, catalog, obs_param):
        chip.img.array[chip.img.array > 65535] = 65535
        chip.img.replaceNegative(replace_value=0)
        chip.img.quantize()
        chip.img = galsim.Image(chip.img.array, dtype=np.uint16)
        hdu1 = fits.PrimaryHDU(header=self.h_prim)
        hdu1.add_checksum()
        hdu1.header.comments['CHECKSUM'] = 'HDU checksum'
        hdu1.header.comments['DATASUM'] = 'data unit checksum'
        hdu2 = fits.ImageHDU(chip.img.array, header=self.h_ext)
        hdu2.add_checksum()
        hdu2.header.comments['XTENSION'] = 'extension type'
        hdu2.header.comments['CHECKSUM'] = 'HDU checksum'
        hdu2.header.comments['DATASUM'] = 'data unit checksum'
        hdu1 = fits.HDUList([hdu1, hdu2])
        fname = os.path.join(self.chip_output.subdir, self.h_prim['FILENAME'] + '.fits')
        hdu1.writeto(fname, output_verify='ignore', overwrite=True)
        return chip, filt, tel, pointing

SIM_STEP_TYPES = {
    "scie_obs": "add_objects",
    "sky_background": "add_sky_background",
    "cosmic_rays": "add_cosmic_rays",
    "PRNU_effect": "apply_PRNU",
    "poisson_and_dark": "add_poisson_and_dark",
    "bright_fatter": "add_brighter_fatter",
    "detector_defects": "add_detector_defects",
    "nonlinearity": "add_nonlinearity",
    "blooming": "add_blooming",
    "CTE_effect": "apply_CTE",
    "prescan_overscan": "add_prescan_overscan",
    "bias": "add_bias",
    "readout_noise": "add_readout_noise",
    "gain": "apply_gain",
    "quantization_and_output": "quantization_and_output"
}