PSFGauss.py 3.21 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import galsim
import sep
import numpy as np
from scipy.interpolate import interp1d
from .PSFModel import PSFModel
import os, sys

class PSFGauss(PSFModel):
	def __init__(self, chip, fwhm=0.187, sigSpin=0., psfRa=0.15):
		self.pix_size = chip.pix_scale
		self.chip = chip
		self.fwhm = fwhm
		self.sigSpin = sigSpin
		self.sigGauss = psfRa # 80% light radius
		self.psf = galsim.Gaussian(flux=1.0,fwhm=fwhm)

	def perfGauss(self, r, sig):
		"""
		pseudo-error function, i.e. Cumulative distribution function of Gaussian distribution

		Parameter:
		r: radius
		sig: sigma of the Gaussian distribution

		Return:
		the value of the pseudo CDF
		"""
		gaussFun = lambda sigma, r: 1.0/(np.sqrt(2.0*np.pi)*sigma) * np.exp(-r**2/(2.0*sigma**2))
		nxx = 1000
		rArr = np.linspace(0.0,r,nxx)
		gauss = gaussFun(sig,rArr)
		erf = 2.0*np.trapz(gauss,rArr)
		return erf

	def fracGauss(self, sig, r=0.15, pscale=None):
		"""
		For a given Gaussian PSF with sigma=sig,
		derive the flux ratio ar the given radius r
		
		Parameters:
		sig: sigma of the Gauss PSF Function in arcsec
		r:   radius in arcsec
		pscale: pixel scale

		Return: the flux ratio
		"""
		if pscale == None:
			pscale = self.pix_size
		gaussx = galsim.Gaussian(flux=1.0,sigma=sig)
		gaussImg  = gaussx.drawImage(scale=pscale, method='no_pixel')
		gaussImg = gaussImg.array
		size = np.size(gaussImg,axis=0)
		cxy = 0.5*(size-1)
		flux, ferr, flag = sep.sum_circle(gaussImg,cxy,cxy,r/pscale,subpix=0)
		frac = flux.tolist()
		return frac

	def fwhmGauss(self, r=0.15,fr=0.8,pscale=None):
		"""
		Given a total flux ratio 'fr' within a fixed radius 'r',
		estimate the fwhm of the Gaussian function

		return the fwhm in arcsec
		"""
		if pscale == None:
			pscale = self.pix_size
		err = 1.0e-3
		nxx = 100
		sig = np.linspace(0.5*pscale,1.0,nxx)
		frA = np.zeros(nxx)
		for i in range(nxx): frA[i] = self.fracGauss(sig[i],r=r,pscale=pscale)
		index = [i for i in range(nxx-1) if (fr-frA[i])*(fr-frA[i+1])<=0.0][0]

		while abs(frA[index]-fr)>1.0e-3:
			sig = np.linspace(sig[index],sig[index+1],nxx)
			for i in range(nxx): frA[i] = self.fracGauss(sig[i],r=r,pscale=pscale)
			index = [i for i in range(nxx-1) if (fr-frA[i])*(fr-frA[i+1])<=0.0][0]

		fwhm = 2.35482*sig[index]
		return fwhm

	def get_PSF(self, pos_img, chip=None, bandpass=None, folding_threshold=5.e-3):
		dx = pos_img.x - self.chip.cen_pix_x
		dy = pos_img.y - self.chip.cen_pix_y
		return self.PSFspin(dx, dy)

	def PSFspin(self, x, y):
		"""
		The PSF profile at a given image position relative to the axis center

		Parameters:
		theta : spin angles in a given exposure in unit of [arcsecond]
		dx, dy: relative position to the axis center in unit of [pixels]

		Return:
		Spinned PSF: g1, g2 and axis ratio 'a/b'
		"""
		a2Rad = np.pi/(60.0*60.0*180.0)
		
		ff = self.sigGauss * 0.107 * (1000.0/10.0) # in unit of [pixels]
		rc = np.sqrt(x*x + y*y)
		cpix = rc*(self.sigSpin*a2Rad)

		beta = (np.arctan2(y,x) + np.pi/2)
		ell = cpix**2/(2.0*ff**2+cpix**2)
		#ell *= 10.0
		qr = np.sqrt((1.0+ell)/(1.0-ell))

		#psfShape = galsim.Shear(e=ell, beta=beta)
		#g1, g2 = psfShape.g1, psfShape.g2
		#qr = np.sqrt((1.0+ell)/(1.0-ell))

		#return ell, beta, qr
		PSFshear = galsim.Shear(e=ell, beta=beta*galsim.radians)
		return self.psf.shear(PSFshear), PSFshear