NGPCatalog.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import galsim
import random
import numpy as np
import h5py as h5
import healpy as hp
import astropy.constants as cons
from astropy.coordinates import spherical_to_cartesian
from astropy.table import Table
from scipy import interpolate
from datetime import datetime

from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar
from ObservationSim.MockObject._util import seds, sed_assign, extAv, tag_sed, getObservedSED
from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position

try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

NSIDE = 128

class NGPCatalog(CatalogBase):
    def __init__(self, config, chip, pointing, **kwargs):
        super().__init__()
        self.cat_dir = os.path.join(config["data_dir"], config["input_path"]["cat_dir"])
        self.seed_Av = config["random_seeds"]["seed_Av"]

        if "logger" in kwargs:
            self.logger = kwargs["logger"]
        else:
            self.logger = None

        with pkg_resources.path('Catalog.data', 'SLOAN_SDSS.g.fits') as filter_path:
                self.normF_star = Table.read(str(filter_path))
        with pkg_resources.path('Catalog.data', 'lsst_throuput_g.fits') as filter_path:
                self.normF_galaxy = Table.read(str(filter_path))
        
        self.config = config
        self.chip = chip
        self.pointing = pointing

        if "star_cat" in config["input_path"] and config["input_path"]["star_cat"] and not config["run_option"]["galaxy_only"]:
            star_file = config["input_path"]["star_cat"]
            star_SED_file = config["SED_templates_path"]["star_SED"]
            self.star_path = os.path.join(self.cat_dir, star_file)
            self.star_SED_path = os.path.join(config["data_dir"], star_SED_file)
            self._load_SED_lib_star()
        if "galaxy_cat" in config["input_path"] and config["input_path"]["galaxy_cat"] and not config["run_option"]["star_only"]:
            galaxy_file = config["input_path"]["galaxy_cat"]
            self.galaxy_path = os.path.join(self.cat_dir, galaxy_file)
            self.galaxy_SED_path = os.path.join(config["data_dir"], config["SED_templates_path"]["galaxy_SED"])
            self._load_SED_lib_gals()
        if "rotateEll" in config["shear_setting"]:
            self.rotation = float(int(config["shear_setting"]["rotateEll"]/45.))
        else:
            self.rotation = 0.

        self._get_healpix_list()
        self._load()

    def _get_healpix_list(self):
        self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2)
        ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax
        ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min]))
        dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min]))
        vertices = spherical_to_cartesian(1., dec, ra)
        self.pix_list = hp.query_polygon(NSIDE, np.array(vertices).T, inclusive=True)
        if self.logger is not None:
            msg = str(("HEALPix List: ", self.pix_list))
            self.logger.info(msg)
        else:
            print("HEALPix List: ", self.pix_list)

    def load_norm_filt(self, obj):
        if obj.type == "star":
            return self.normF_star
        elif obj.type == "galaxy" or obj.type == "quasar":
            return self.normF_galaxy
        else:
            return None

    def _load_SED_lib_star(self):
        self.tempSED_star = h5.File(self.star_SED_path,'r')

    def _load_SED_lib_gals(self):
        self.tempSed_gal, self.tempRed_gal = seds("galaxy.list", seddir=self.galaxy_SED_path)

    def _load_gals(self, gals, pix_id=None):
        ngals = len(gals['galaxyID'])
        self.rng_sedGal = random.Random()
        self.rng_sedGal.seed(pix_id) # Use healpix index as the random seed
        self.ud = galsim.UniformDeviate(pix_id)

        # Apply astrometric modeling
        # in C3 case only aberration
        ra_arr = gals['ra_true'][:]
        dec_arr = gals['dec_true'][:]
        if self.config["obs_setting"]["enable_astrometric_model"]:
            ra_list = ra_arr.tolist()
            dec_list = dec_arr.tolist()
            pmra_list = np.zeros(ngals).tolist()
            pmdec_list = np.zeros(ngals).tolist()
            rv_list = np.zeros(ngals).tolist()
            parallax_list = [1e-9] * ngals
            dt = datetime.fromtimestamp(self.pointing.timestamp)
            date_str = dt.date().isoformat()
            time_str = dt.time().isoformat()
            ra_arr, dec_arr = on_orbit_obs_position(
                input_ra_list=ra_list,
                input_dec_list=dec_list,
                input_pmra_list=pmra_list,
                input_pmdec_list=pmdec_list,
                input_rv_list=rv_list,
                input_parallax_list=parallax_list,
                input_nstars=ngals,
                input_x=self.pointing.sat_x,
                input_y=self.pointing.sat_y,
                input_z=self.pointing.sat_z,
                input_vx=self.pointing.sat_vx,
                input_vy=self.pointing.sat_vy,
                input_vz=self.pointing.sat_vz,
                input_epoch="J2015.5",
                input_date_str=date_str,
                input_time_str=time_str
            )

        for igals in range(ngals):
            param = self.initialize_param()
            param['ra'] = ra_arr[igals]
            param['dec'] = dec_arr[igals]
            param['ra_orig'] = gals['ra_true'][igals]
            param['dec_orig'] = gals['dec_true'][igals]
            param['mag_use_normal'] = gals['mag_true_g_lsst'][igals]
            if param['mag_use_normal'] >= 26.5:
                continue
            param['z'] = gals['redshift_true'][igals]
            param['model_tag'] = 'None'
            param['gamma1'] = 0
            param['gamma2'] = 0
            param['kappa'] = 0
            param['delta_ra'] = 0
            param['delta_dec'] = 0
            # sersicB = gals['sersic_bulge'][igals]
            hlrMajB = gals['size_bulge_true'][igals]
            hlrMinB = gals['size_minor_bulge_true'][igals]
            # sersicD = gals['sersic_disk'][igals]
            hlrMajD = gals['size_disk_true'][igals]
            hlrMinD = gals['size_minor_disk_true'][igals]
            aGal = gals['size_true'][igals]
            bGal = gals['size_minor_true'][igals]
            param['bfrac'] = gals['bulge_to_total_ratio_i'][igals]
            param['theta'] = gals['position_angle_true'][igals]
            param['hlr_bulge'] = np.sqrt(hlrMajB * hlrMinB)
            param['hlr_disk'] = np.sqrt(hlrMajD * hlrMinD)
            param['ell_bulge'] = (hlrMajB - hlrMinB)/(hlrMajB + hlrMinB)
            param['ell_disk'] = (hlrMajD - hlrMinD)/(hlrMajD + hlrMinD)
            param['ell_tot'] = (aGal - bGal) / (aGal + bGal)

            # Assign each galaxy a template SED
            param['sed_type'] = sed_assign(phz=param['z'], btt=param['bfrac'], rng=self.rng_sedGal)
            param['redden'] = self.tempRed_gal[param['sed_type']]
            param['av'] = self.avGal[int(self.ud()*self.nav)]
            if param['sed_type'] <= 5:
                param['av'] = 0.0
                param['redden'] = 0
            param['star'] = 0   # Galaxy
            if param['sed_type'] >= 29:
                param['av'] = 0.6 * param['av'] / 3.0 # for quasar, av=[0, 0.2], 3.0=av.max-av.im
                param['star'] = 2 # Quasar

174
175
176
177
            # NOTE: this cut cannot be put before the SED type has been assigned
            if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
                continue

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
            self.ids += 1
            # param['id'] = self.ids
            param['id'] = gals['galaxyID'][igals]
            
            if param['star'] == 0:
                obj = Galaxy(param, self.rotation, logger=self.logger)
                self.objs.append(obj)
            if param['star'] == 2:
                obj = Quasar(param, logger=self.logger)
                self.objs.append(obj)

    def _load_stars(self, stars, pix_id=None):
        nstars = len(stars['sourceID'])
        # Apply astrometric modeling
        ra_arr = stars["RA"][:]
        dec_arr = stars["Dec"][:]
        pmra_arr = stars['pmra'][:]
        pmdec_arr = stars['pmdec'][:]
        rv_arr = stars['RV'][:]
        parallax_arr = stars['parallax'][:]
        if self.config["obs_setting"]["enable_astrometric_model"]:
            ra_list = ra_arr.tolist()
            dec_list = dec_arr.tolist()
            pmra_list = pmra_arr.tolist()
            pmdec_list = pmdec_arr.tolist()
            rv_list = rv_arr.tolist()
            parallax_list = parallax_arr.tolist()
            dt = datetime.fromtimestamp(self.pointing.timestamp)
            date_str = dt.date().isoformat()
            time_str = dt.time().isoformat()
            ra_arr, dec_arr = on_orbit_obs_position(
                input_ra_list=ra_list,
                input_dec_list=dec_list,
                input_pmra_list=pmra_list,
                input_pmdec_list=pmdec_list,
                input_rv_list=rv_list,
                input_parallax_list=parallax_list,
                input_nstars=nstars,
                input_x=self.pointing.sat_x,
                input_y=self.pointing.sat_y,
                input_z=self.pointing.sat_z,
                input_vx=self.pointing.sat_vx,
                input_vy=self.pointing.sat_vy,
                input_vz=self.pointing.sat_vz,
                input_epoch="J2015.5",
                input_date_str=date_str,
                input_time_str=time_str
            )
        for istars in range(nstars):
            param = self.initialize_param()
            param['ra'] = ra_arr[istars]
            param['dec'] = dec_arr[istars]
            param['ra_orig'] = stars["RA"][istars]
            param['dec_orig'] = stars["Dec"][istars]
            param['pmra'] = pmra_arr[istars]
            param['pmdec'] = pmdec_arr[istars]
            param['rv'] = rv_arr[istars]
            param['parallax'] = parallax_arr[istars]
            if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200):
                continue
            param['mag_use_normal'] = stars['app_sdss_g'][istars]
            if param['mag_use_normal'] >= 26.5:
                continue
            self.ids += 1
            # param['id'] = self.ids
            param['id'] = stars['sourceID'][istars]
            param['sed_type'] = stars['sourceID'][istars]
            param['model_tag'] = stars['model_tag'][istars]
            param['teff'] = stars['teff'][istars]
            param['logg'] = stars['grav'][istars]
            param['feh'] = stars['feh'][istars]
            param['z'] = 0.0
            param['star'] = 1   # Star
            obj = Star(param, logger=self.logger)
            self.objs.append(obj)

    def _load(self, **kwargs):
        self.nav = 15005
        self.avGal = extAv(self.nav, seed=self.seed_Av)
        self.objs = []
        self.ids = 0
        if "star_cat" in self.config["input_path"] and self.config["input_path"]["star_cat"] and not self.config["run_option"]["galaxy_only"]:
            star_cat = h5.File(self.star_path, 'r')['catalog']
            for pix in self.pix_list:
262
263
264
265
266
267
268
                try:
                    stars = star_cat[str(pix)]
                    self._load_stars(stars, pix_id=pix)
                    del stars
                except Exception as e:
                    self.logger.error(str(e))
                    print(e)
269
270
271
        if "galaxy_cat" in self.config["input_path"] and self.config["input_path"]["galaxy_cat"] and not self.config["run_option"]["star_only"]:
            gals_cat = h5.File(self.galaxy_path, 'r')['galaxies']
            for pix in self.pix_list:
272
273
274
275
276
277
278
                try:
                    gals = gals_cat[str(pix)]
                    self._load_gals(gals, pix_id=pix)
                    del gals
                except Exception as e:
                    self.logger.error(str(e))
                    print(e)
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        if self.logger is not None:
            self.logger.info("number of objects in catalog: %d"%(len(self.objs)))
        else:
            print("number of objects in catalog: ", len(self.objs))
        del self.avGal


    def load_sed(self, obj, **kwargs):
        if obj.type == 'star':
            _, wave, flux = tag_sed(
                h5file=self.tempSED_star,
                model_tag=obj.param['model_tag'],
                teff=obj.param['teff'],
                logg=obj.param['logg'],
                feh=obj.param['feh']
            )
        elif obj.type == 'galaxy' or obj.type == 'quasar':
            sed_data = getObservedSED(
                sedCat=self.tempSed_gal[obj.sed_type],
                redshift=obj.z,
                av=obj.param["av"],
                redden=obj.param["redden"]
            )
            wave, flux = sed_data[0], sed_data[1]
        else:
            raise ValueError("Object type not known")
        speci = interpolate.interp1d(wave, flux)
        # lamb = np.arange(2500, 10001 + 0.5, 0.5)
        lamb = np.arange(2400, 11001 + 0.5, 0.5)
        y = speci(lamb)
        # erg/s/cm2/A --> photo/s/m2/A
        all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13
        sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX'))
        del wave
        del flux
        return sed