Chip.py 49.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
import galsim
import os
import numpy as np
Fang Yuedong's avatar
Fang Yuedong committed
4
5
import pickle
import json
6
import ObservationSim.Instrument._util as _util
Fang Yuedong's avatar
Fang Yuedong committed
7
8
from astropy.table import Table
from numpy.random import Generator, PCG64
Fang Yuedong's avatar
Fang Yuedong committed
9
10
from astropy.io import fits
from datetime import datetime
Fang Yuedong's avatar
Fang Yuedong committed
11

12
13
14
from ObservationSim.Instrument.Chip import Effects as effects
from ObservationSim.Instrument.FocalPlane import FocalPlane
from ObservationSim.Config.Header import generatePrimaryHeader, generateExtensionHeader
Fang Yuedong's avatar
Fang Yuedong committed
15
from ObservationSim.Instrument._util import rotate_conterclockwise
16
from ObservationSim.Instrument.Chip import ChipUtils as chip_utils
17

Wei Chengliang's avatar
Wei Chengliang committed
18
19
from ObservationSim.Instrument.Chip.libCTI.CTI_modeling import CTI_sim

Fang Yuedong's avatar
Fang Yuedong committed
20
21
22
23
24
25
try:
    import importlib.resources as pkg_resources
except ImportError:
    # Try backported to PY<37 'importlib_resources'
    import importlib_resources as pkg_resources

Fang Yuedong's avatar
Fang Yuedong committed
26
class Chip(FocalPlane):
27
    def __init__(self, chipID, ccdEffCurve_dir=None, CRdata_dir=None, sls_dir=None, config=None, treering_func=None, logger=None):
Fang Yuedong's avatar
Fang Yuedong committed
28
29
        # Get focal plane (instance of paraent class) info
        super().__init__()
30
31
32
        self.nsecy = 2
        self.nsecx = 8
        self.gain_channel = np.ones(self.nsecy* self.nsecx)
Fang Yuedong's avatar
Fang Yuedong committed
33
        self._set_attributes_from_config(config)
Fang Yuedong's avatar
Fang Yuedong committed
34

35
36
        self.logger = logger

Fang Yuedong's avatar
Fang Yuedong committed
37
38
        # A chip ID must be assigned
        self.chipID = int(chipID)
Fang Yuedong's avatar
Fang Yuedong committed
39
        self.chip_name = str(chipID).rjust(2, '0')
Fang Yuedong's avatar
Fang Yuedong committed
40
41
42
43
44

        # Get corresponding filter info
        self.filter_id, self.filter_type = self.getChipFilter()
        self.survey_type = self._getSurveyType()

Fang Yuedong's avatar
Fang Yuedong committed
45
46
47
        if self.filter_type != "FGS":
            self._getChipRowCol()

48
        # Set the relavent specs for detectors
Fang Yuedong's avatar
Fang Yuedong committed
49
50
51
52
53
54
55
56
57
58
        try:
            with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath("chip_definition.json") as chip_definition:
                with open(chip_definition, "r") as f:
                    chip_dict = json.load(f)[str(self.chipID)]
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data.ccd', "chip_definition.json") as chip_definition:
                with open(chip_definition, "r") as f:
                    chip_dict = json.load(f)[str(self.chipID)]
        for key in chip_dict:
            setattr(self, key, chip_dict[key])
59
        
60
        self.fdModel = None
Fang Yuedong's avatar
Fang Yuedong committed
61
        if self.filter_type == "FGS":
62
63
64
65
66
67
68
69
70
            fgs_name = self.chip_name[0:4]
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.field_distortion').joinpath("FieldDistModelGlobal_pr4_%s.pickle"%(fgs_name.lower())) as field_distortion:
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.field_distortion', "FieldDistModelGlobal_pr4_%s.pickle"%(fgs_name.lower())) as field_distortion:
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
Fang Yuedong's avatar
Fang Yuedong committed
71
72
        else:
            # Get the corresponding field distortion model
73
74
75
76
77
78
79
80
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.field_distortion').joinpath("FieldDistModel_v2.0.pickle") as field_distortion:
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.field_distortion', "FieldDistModelGlobal_mainFP_v1.0.pickle") as field_distortion:
                    with open(field_distortion, "rb") as f:
                        self.fdModel = pickle.load(f)
Fang Yuedong's avatar
Fang Yuedong committed
81

Fang Yuedong's avatar
Fang Yuedong committed
82
83
        # Get boundary (in pix)
        self.bound = self.getChipLim()
84
        
Fang Yuedong's avatar
Fang Yuedong committed
85
86
        self.ccdEffCurve_dir = ccdEffCurve_dir
        self.CRdata_dir = CRdata_dir
87
88
        
        slsconfs = chip_utils.getChipSLSConf(chipID=self.chipID)
Fang Yuedong's avatar
Fang Yuedong committed
89
        if np.size(slsconfs) == 1:
90
91
92
93
94
95
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs) as conf_path:
                    self.sls_conf = str(conf_path)
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs) as conf_path:
                    self.sls_conf = str(conf_path)
Fang Yuedong's avatar
Fang Yuedong committed
96
        else:
Fang Yuedong's avatar
Fang Yuedong committed
97
98
            # self.sls_conf = [os.path.join(self.sls_dir, slsconfs[0]), os.path.join(self.sls_dir, slsconfs[1])]
            self.sls_conf = []
99
100
101
102
103
104
105
106
107
108
109
110
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[0]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[0]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            try:
                with pkg_resources.files('ObservationSim.Instrument.data.sls_conf').joinpath(slsconfs[1]) as conf_path:
                    self.sls_conf.append(str(conf_path))
            except AttributeError:
                with pkg_resources.path('ObservationSim.Instrument.data.sls_conf', slsconfs[1]) as conf_path:
                    self.sls_conf.append(str(conf_path))
Fang Yuedong's avatar
Fang Yuedong committed
111
112
113
114
        
        self.effCurve = self._getChipEffCurve(self.filter_type)
        self._getCRdata()

115
116
        # # Define the sensor model
        self.sensor = galsim.Sensor()
Fang Yuedong's avatar
Fang Yuedong committed
117

118
119
        self.flat_cube = None # for spectroscopic flat field cube simulation

Fang Yuedong's avatar
Fang Yuedong committed
120
121
122
123
124
125
126
    def _set_attributes_from_config(self, config):
        # Default setting
        self.read_noise = 5.0   # e/pix
        self.dark_noise = 0.02  # e/pix/s
        self.rotate_angle = 0.
        self.overscan   = 1000
        # Override default values
127
128
129
        # for key in ["gain", "bias_level, dark_exptime", "flat_exptime", "readout_time", "full_well", "read_noise", "dark_noise", "overscan"]:
        #     if key in config["ins_effects"]:
        #         setattr(self, key, config["ins_effects"][key])
Fang Yuedong's avatar
Fang Yuedong committed
130

Fang Yuedong's avatar
Fang Yuedong committed
131
132
133
134
135
136
137
138
139
    def _getChipRowCol(self):
        self.rowID, self.colID = self.getChipRowCol(self.chipID)

    def getChipRowCol(self, chipID):
        rowID = ((chipID - 1) % 5) + 1
        colID = 6 - ((chipID - 1) // 5)
        return rowID, colID

    def _getSurveyType(self):
140
        if self.filter_type in _util.SPEC_FILTERS:
Fang Yuedong's avatar
Fang Yuedong committed
141
            return "spectroscopic"
142
        elif self.filter_type in _util.PHOT_FILTERS:
Fang Yuedong's avatar
Fang Yuedong committed
143
            return "photometric"
Fang Yuedong's avatar
Fang Yuedong committed
144
145
        # elif self.filter_type in ["FGS"]:
        #     return "FGS"
Fang Yuedong's avatar
Fang Yuedong committed
146
147
148

    def _getChipEffCurve(self, filter_type):
        # CCD efficiency curves
149
        if filter_type in ['NUV', 'u', 'GU']: filename = 'UV0.txt'
Fang Yuedong's avatar
Fang Yuedong committed
150
        if filter_type in ['g', 'r', 'GV', 'FGS']: filename = 'Astro_MB.txt' # TODO, need to switch to the right efficiency curvey for FGS CMOS
Fang Yuedong's avatar
Fang Yuedong committed
151
        if filter_type in ['i', 'z', 'y', 'GI']: filename = 'Basic_NIR.txt'
152
153
154
155
156
157
        try:
            with pkg_resources.files('ObservationSim.Instrument.data.ccd').joinpath(filename) as ccd_path:
                table = Table.read(ccd_path, format='ascii')
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data.ccd', filename) as ccd_path:
                table = Table.read(ccd_path, format='ascii')
158
        throughput = galsim.LookupTable(x=table['col1'], f=table['col2'], interpolant='linear')
Fang Yuedong's avatar
Fang Yuedong committed
159
160
161
162
        bandpass = galsim.Bandpass(throughput, wave_type='nm')
        return bandpass

    def _getCRdata(self):
163
164
165
166
167
168
        try:
            with pkg_resources.files('ObservationSim.Instrument.data').joinpath("wfc-cr-attachpixel.dat") as cr_path:
                self.attachedSizes = np.loadtxt(cr_path)
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data', "wfc-cr-attachpixel.dat") as cr_path:
                self.attachedSizes = np.loadtxt(cr_path)
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    
    def loadSLSFLATCUBE(self, flat_fn='flat_cube.fits'):
        try:
            with pkg_resources.files('ObservationSim.Instrument.data').joinpath(flat_fn) as data_path:
                flat_fits = fits.open(data_path, ignore_missing_simple=True)
        except AttributeError:
            with pkg_resources.path('ObservationSim.Instrument.data', flat_fn) as data_path:
                flat_fits = fits.open(data_path, ignore_missing_simple=True)

        fl = len(flat_fits)
        fl_sh = flat_fits[0].data.shape
        assert fl == 4, 'FLAT Field Cube is Not 4 layess!!!!!!!'
        self.flat_cube = np.zeros([fl, fl_sh[0], fl_sh[1]])
        for i in np.arange(0, fl, 1):
            self.flat_cube[i] = flat_fits[i].data
Fang Yuedong's avatar
Fang Yuedong committed
184

185
    def getChipFilter(self, chipID=None):
Fang Yuedong's avatar
Fang Yuedong committed
186
187
        """Return the filter index and type for a given chip #(chipID)
        """
188
        filter_type_list = _util.ALL_FILTERS
Fang Yuedong's avatar
Fang Yuedong committed
189
190
191
192
        if chipID == None:
            chipID = self.chipID

        # updated configurations
Fang Yuedong's avatar
Fang Yuedong committed
193
194
        if chipID>42 or chipID<1: raise ValueError("!!! Chip ID: [1,42]")
        if chipID in [6, 15, 16, 25]:  filter_type = "y"
Fang Yuedong's avatar
Fang Yuedong committed
195
        if chipID in [11, 20]:         filter_type = "z"
Fang Yuedong's avatar
Fang Yuedong committed
196
        if chipID in [7, 24]:          filter_type = "i"
Fang Yuedong's avatar
Fang Yuedong committed
197
        if chipID in [14, 17]:         filter_type = "u"
Fang Yuedong's avatar
Fang Yuedong committed
198
        if chipID in [9, 22]:          filter_type = "r"
199
        if chipID in [12, 13, 18, 19]: filter_type = "NUV"
Fang Yuedong's avatar
Fang Yuedong committed
200
201
202
203
204
        if chipID in [8, 23]:          filter_type = "g"
        if chipID in [1, 10, 21, 30]:  filter_type = "GI"
        if chipID in [2, 5, 26, 29]:   filter_type = "GV"
        if chipID in [3, 4, 27, 28]:   filter_type = "GU"
        if chipID in range(31, 43):    filter_type = 'FGS'
Fang Yuedong's avatar
Fang Yuedong committed
205
206
207
208
209
210
        filter_id = filter_type_list.index(filter_type)

        return filter_id, filter_type

    def getChipLim(self, chipID=None):
        """Calculate the edges in pixel for a given CCD chip on the focal plane
Fang Yuedong's avatar
Fang Yuedong committed
211
        NOTE: There are 5*4 CCD chips in the focus plane for photometric / spectroscopic observation.
Fang Yuedong's avatar
Fang Yuedong committed
212
213
214
215
216
217
        Parameters:
            chipID:         int
                            the index of the chip
        Returns:
            A galsim BoundsD object
        """
218
219
220
221
222
223
224
225
        xmin, xmax, ymin, ymax = 1e10, -1e10, 1e10, -1e10
        xcen = self.x_cen / self.pix_size
        ycen = self.y_cen / self.pix_size
        sign_x = [-1., 1., -1., 1.]
        sign_y = [-1., -1., 1., 1.]
        for i in range(4):
            x = xcen + sign_x[i] * self.npix_x / 2.
            y = ycen + sign_y[i] * self.npix_y / 2.
226
            x, y = _util.rotate_conterclockwise(x0=xcen, y0=ycen, x=x, y=y, angle=self.rotate_angle)
227
228
229
            xmin, xmax = min(xmin, x), max(xmax, x)
            ymin, ymax = min(ymin, y), max(ymax, y)
        return galsim.BoundsD(xmin, xmax, ymin, ymax)
Fang Yuedong's avatar
Fang Yuedong committed
230
231
232
233



    def getSkyCoverage(self, wcs):
Fang Yuedong's avatar
Fang Yuedong committed
234
        # print("In getSkyCoverage: xmin = %.3f, xmax = %.3f, ymin = %.3f, ymax = %.3f"%(self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax))
Fang Yuedong's avatar
Fang Yuedong committed
235
236
237
238
239
240
241
242
243
244
        return super().getSkyCoverage(wcs, self.bound.xmin, self.bound.xmax, self.bound.ymin, self.bound.ymax)


    def getSkyCoverageEnlarged(self, wcs, margin=0.5):
        """The enlarged sky coverage of the chip
        """
        margin /= 60.0
        bound = self.getSkyCoverage(wcs)
        return galsim.BoundsD(bound.xmin - margin, bound.xmax + margin, bound.ymin - margin, bound.ymax + margin)

Fang Yuedong's avatar
Fang Yuedong committed
245
    def isContainObj(self, ra_obj=None, dec_obj=None, x_image=None, y_image=None, wcs=None, margin=1):
Fang Yuedong's avatar
Fang Yuedong committed
246
        # magin in number of pix
Fang Yuedong's avatar
Fang Yuedong committed
247
248
249
250
251
252
253
254
        if (ra_obj is not None) and (dec_obj is not None):
            if wcs is None:
                wcs = self.img.wcs
            pos_obj = wcs.toImage(galsim.CelestialCoord(ra=ra_obj*galsim.degrees, dec=dec_obj*galsim.degrees))
            x_image, y_image = pos_obj.x, pos_obj.y
        elif (x_image is None) or (y_image is None):
            raise ValueError("Either (ra_obj, dec_obj) or (x_image, y_image) should be given")

Fang Yuedong's avatar
Fang Yuedong committed
255
256
        xmin, xmax = self.bound.xmin - margin, self.bound.xmax + margin
        ymin, ymax = self.bound.ymin - margin, self.bound.ymax + margin
Fang Yuedong's avatar
Fang Yuedong committed
257
        if (x_image - xmin) * (x_image - xmax) > 0.0 or (y_image - ymin) * (y_image - ymax) > 0.0:
Fang Yuedong's avatar
Fang Yuedong committed
258
259
260
261
262
263
264
            return False
        return True

    def getChipNoise(self, exptime=150.0):
        noise = self.dark_noise * exptime + self.read_noise**2
        return noise

Zhang Xin's avatar
Zhang Xin committed
265
    def addEffects(self, config, img, chip_output, filt, ra_cen, dec_cen, img_rot, exptime=150., pointing_ID=0, timestamp_obs=1621915200, pointing_type='SCI', sky_map=None, post_flash_map=None, tel=None, logger=None):
266
        # Set random seeds
Fang Yuedong's avatar
Fang Yuedong committed
267
268
269
270
271
272
        SeedGainNonuni=int(config["random_seeds"]["seed_gainNonUniform"])
        SeedBiasNonuni=int(config["random_seeds"]["seed_biasNonUniform"])
        SeedRnNonuni = int(config["random_seeds"]["seed_rnNonUniform"])
        SeedBadColumns = int(config["random_seeds"]["seed_badcolumns"])
        SeedDefective = int(config["random_seeds"]["seed_defective"])
        SeedCosmicRay = int(config["random_seeds"]["seed_CR"])
Fang Yuedong's avatar
Fang Yuedong committed
273
        fullwell = int(self.full_well)
Fang Yuedong's avatar
Fang Yuedong committed
274
        if config["ins_effects"]["add_hotpixels"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
275
276
277
            BoolHotPix = True
        else:
            BoolHotPix = False
Fang Yuedong's avatar
Fang Yuedong committed
278
        if config["ins_effects"]["add_deadpixels"]== True:
Fang Yuedong's avatar
Fang Yuedong committed
279
280
281
            BoolDeadPix = True
        else:
            BoolDeadPix = False
282
        self.logger = logger
Fang Yuedong's avatar
Fang Yuedong committed
283

284
        # Get Poisson noise generator
285
286
        rng_poisson, poisson_noise = chip_utils.get_poisson(
            seed=int(config["random_seeds"]["seed_poisson"]) + pointing_ID*30 + self.chipID, sky_level=0.)
287

288
        # Add sky background
Fang Yuedong's avatar
Fang Yuedong committed
289
        if config["ins_effects"]["add_back"] == True:
290
291
            img, sky_map = chip_utils.add_sky_background(img=img, filt=filt, exptime=exptime, sky_map=sky_map, tel=tel)
            del sky_map
292

Fang Yuedong's avatar
Fang Yuedong committed
293
        # Apply flat-field large scale structure for one chip
Fang Yuedong's avatar
Fang Yuedong committed
294
        if config["ins_effects"]["flat_fielding"] == True:
295
296
297
            chip_utils.log_info(msg="  Creating and applying Flat-Fielding", logger=self.logger)
            chip_utils.log_info(msg=str(img.bounds), logger=self.logger)
            flat_img, flat_normal = chip_utils.get_flat(img=img, seed=int(config["random_seeds"]["seed_flat"]))
298
299
            if self.survey_type == "photometric":
                img *= flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
300
            del flat_normal
Fang Yuedong's avatar
Fang Yuedong committed
301
            if config["output_setting"]["flat_output"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
302
303
                del flat_img

Zhang Xin's avatar
Zhang Xin committed
304
305
306
        if post_flash_map is not None:
            img = img + post_flash_map

Fang Yuedong's avatar
Fang Yuedong committed
307
        # Apply Shutter-effect for one chip
Fang Yuedong's avatar
Fang Yuedong committed
308
        if config["ins_effects"]["shutter_effect"] == True:
309
            chip_utils.log_info(msg="  Apply shutter effect", logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
310
            shuttimg = effects.ShutterEffectArr(img, t_shutter=1.3, dist_bearing=735, dt=1E-3)    # shutter effect normalized image for this chip
311
312
            if self.survey_type == "photometric":
                img *= shuttimg
Fang Yuedong's avatar
Fang Yuedong committed
313
            if config["output_setting"]["shutter_output"] == True:    # output 16-bit shutter effect image with pixel value <=65535
Fang Yuedong's avatar
Fang Yuedong committed
314
315
316
317
                shutt_gsimg = galsim.ImageUS(shuttimg*6E4)
                shutt_gsimg.write("%s/ShutterEffect_%s_1.fits" % (chip_output.subdir, self.chipID))
                del shutt_gsimg
            del shuttimg
318
319
320
321
322
        # # Add Poisson noise to the resulting images
        # # (NOTE): this can only applied to the slitless image
        # # since it dose not use photon shooting to draw stamps
        # if self.survey_type == "spectroscopic":
        #     img.addNoise(poisson_noise)
Fang Yuedong's avatar
Fang Yuedong committed
323
324

        # Add cosmic-rays
325
        if config["ins_effects"]["cosmic_ray"] == True and pointing_type=='SCI':
326
327
328
329
330
            chip_utils.log_info(msg="  Adding Cosmic-Ray", logger=self.logger)
            img, crmap_gsimg, cr_event_num = chip_utils.add_cosmic_rays(img=img, chip=self, exptime=exptime, 
                                                    seed=SeedCosmicRay+pointing_ID*30+self.chipID)
            chip_utils.outputCal(
                chip=self,
Fang Yuedong's avatar
Fang Yuedong committed
331
332
333
334
335
336
337
                img=crmap_gsimg,
                ra_cen=ra_cen,
                dec_cen=dec_cen,
                img_rot=img_rot,
                im_type='CRS',
                pointing_ID=pointing_ID,
                output_dir=chip_output.subdir,
338
                exptime=exptime,
339
340
                project_cycle=config["project_cycle"],
                run_counter=config["run_counter"],
341
                timestamp=timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
342
343
            del crmap_gsimg

344
        # Apply PRNU effect and output PRNU flat file:
Fang Yuedong's avatar
Fang Yuedong committed
345
        if config["ins_effects"]["prnu_effect"] == True:
346
347
348
            chip_utils.log_info(msg="  Applying PRNU effect", logger=self.logger)
            img, prnu_img = chip_utils.add_PRNU(img=img, chip=self, 
                                seed=int(config["random_seeds"]["seed_prnu"]+self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
349
            if config["output_setting"]["prnu_output"] == True:
350
                prnu_img.write("%s/FlatImg_PRNU_%s.fits" % (chip_output.subdir,self.chipID))
Fang Yuedong's avatar
Fang Yuedong committed
351
            if config["output_setting"]["flat_output"] == False:
352
353
                del prnu_img

354
355
356
357
358
359
        # # Add dark current
        # if config["ins_effects"]["add_dark"] == True:
        #     dark_noise = galsim.DeviateNoise(galsim.PoissonDeviate(rng_poisson, self.dark_noise*(exptime+0.5*self.readout_time)))
        #     img.addNoise(dark_noise)

        # Add dark current & Poisson noise
360
        InputDark = False
Fang Yuedong's avatar
Fang Yuedong committed
361
        if config["ins_effects"]["add_dark"] == True:
362
363
364
365
            if InputDark:
                img = chip_utils.add_inputdark(img=img, chip=self, exptime=exptime)
            else:
                img, _ = chip_utils.add_poisson(img=img, chip=self, exptime=exptime, poisson_noise=poisson_noise)
366
367
368
369
370
371
        else:
            img, _ = chip_utils.add_poisson(img=img, chip=self, exptime=exptime, poisson_noise=poisson_noise, dark_noise=0.)

        # Add diffusion & brighter-fatter effects
        if config["ins_effects"]["bright_fatter"] == True:
            img = chip_utils.add_brighter_fatter(img=img)
372
373
374
375
376
377
378

        # Add Hot Pixels or/and Dead Pixels
        rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
        badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
        img = effects.DefectivePixels(img, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

        # Apply Bad lines 
Fang Yuedong's avatar
Fang Yuedong committed
379
        if config["ins_effects"]["add_badcolumns"] == True:
380
            img = effects.BadColumns(img, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)
381
382

        # Apply Nonlinearity on the chip image
Fang Yuedong's avatar
Fang Yuedong committed
383
        if config["ins_effects"]["non_linear"] == True:
384
            chip_utils.log_info(msg="  Applying Non-Linearity on the chip image", logger=self.logger)
385
386
387
            img = effects.NonLinearity(GSImage=img, beta1=5.e-7, beta2=0)

        # Apply CCD Saturation & Blooming
Fang Yuedong's avatar
Fang Yuedong committed
388
        if config["ins_effects"]["saturbloom"] == True:
389
            chip_utils.log_info(msg="  Applying CCD Saturation & Blooming", logger=self.logger)
390
391
392
            img = effects.SaturBloom(GSImage=img, nsect_x=1, nsect_y=1, fullwell=fullwell)

        # Apply CTE Effect
Wei Chengliang's avatar
Wei Chengliang committed
393
394
395
396
397
398
399
400
401
        ###if config["ins_effects"]["cte_trail"] == True:
        ###    chip_utils.log_info(msg="  Apply CTE Effect", logger=self.logger)
        ###    img = effects.CTE_Effect(GSImage=img, threshold=27)

        pre1 = self.prescan_x  #27
        over1= self.overscan_x #71
        pre2 = self.prescan_y  #0 #4
        over2= self.overscan_y #84 #80

Fang Yuedong's avatar
Fang Yuedong committed
402
        if config["ins_effects"]["cte_trail"] == True:
403
            chip_utils.log_info(msg="  Apply CTE Effect", logger=self.logger)
Wei Chengliang's avatar
Wei Chengliang committed
404
405
406
407
408
409
410
411
412
413
414
415
416
            ###img = effects.CTE_Effect(GSImage=img, threshold=27)
            ###CTI_modeling
            ### 2*8 -> 1*16 img-layout
            img = chip_utils.formatOutput(GSImage=img)
            self.nsecy = 1
            self.nsecx = 16

            img_arr = img.array
            ny, nx = img_arr.shape
            dx = int(nx/self.nsecx)
            dy = int(ny/self.nsecy)
            newimg = galsim.Image(nx, int(ny+over2), init_value=0)
            for ichannel in range(16):
Wei Chengliang's avatar
Wei Chengliang committed
417
                print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(pointing_ID, self.chipID, ichannel+1))
Wei Chengliang's avatar
Wei Chengliang committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
                #nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
                noverscan,nsp,nmax = over2,3,10
                beta,w,c = 0.478,84700,0
                t = np.array([0.74,7.7,37],dtype=np.float32)
                rho_trap = np.array([0.6,1.6,1.4],dtype=np.float32)
                trap_seeds = np.array([0,1000,10000],dtype=np.int32) + ichannel + self.chipID*16
                release_seed = 50 + ichannel + pointing_ID*30  + self.chipID*16
                newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(img_arr[:, 0+ichannel*dx:dx+ichannel*dx],dx,dy,noverscan,nsp,nmax,beta,w,c,t,rho_trap,trap_seeds,release_seed)
            newimg.wcs = img.wcs
            del img
            img = newimg

            ### 1*16 -> 2*8 img-layout
            img = chip_utils.formatRevert(GSImage=img)
            self.nsecy = 2
            self.nsecx = 8
434
435
436

        ### prescan & overscan
        if config["ins_effects"]["add_prescan"] == True:
Wei Chengliang's avatar
Wei Chengliang committed
437
438
439
440
441
442
            chip_utils.log_info(msg="  Apply pre/over-scan", logger=self.logger)
            if config["ins_effects"]["cte_trail"] == False:
                img = chip_utils.AddPreScan(GSImage=img, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
            if config["ins_effects"]["cte_trail"] == True:
                img = chip_utils.AddPreScan(GSImage=img, pre1=pre1, pre2=pre2, over1=over1, over2=0)

443
444
        ### 1*16 output
        if config["ins_effects"]["format_output"] == True:
Wei Chengliang's avatar
Wei Chengliang committed
445
            chip_utils.log_info(msg="  Apply 1*16 format", logger=self.logger)
446
447
448
449
450
            img = chip_utils.formatOutput(GSImage=img)
            self.nsecy = 1
            self.nsecx = 16
                    

451
452
        # Add Bias level
        if config["ins_effects"]["add_bias"] == True:
453
            chip_utils.log_info(msg="  Adding Bias level and 16-channel non-uniformity", logger=self.logger)
454
455
456
            if config["ins_effects"]["bias_16channel"] == True:
                img = effects.AddBiasNonUniform16(img, 
                    bias_level=float(self.bias_level), 
457
                    nsecy = self.nsecy, nsecx=self.nsecx, 
458
459
460
461
                    seed=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
            elif config["ins_effects"]["bias_16channel"] == False:
                img += self.bias_level
462
463

        # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
464
465
        if config["ins_effects"]["add_readout"] == True:
            seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID
466
467
468
469
470
            rng_readout = galsim.BaseDeviate(seed)
            readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
            img.addNoise(readout_noise)

        # Apply Gain & Quantization
471
        chip_utils.log_info(msg="  Applying Gain (and 16 channel non-uniformity) & Quantization", logger=self.logger)
472
        if config["ins_effects"]["gain_16channel"] == True:
473
            img, self.gain_channel = effects.ApplyGainNonUniform16(
474
                img, gain=self.gain, 
475
                nsecy = self.nsecy, nsecx=self.nsecx, 
476
477
478
479
480
                seed=SeedGainNonuni+self.chipID,
                logger=self.logger)
        elif config["ins_effects"]["gain_16channel"] == False:
            img /= self.gain
            
481
482
483
484
485
486
487
        img.array[img.array > 65535] = 65535
        img.replaceNegative(replace_value=0)
        img.quantize()

        ######################################################################################
        # Output images for calibration pointing
        ######################################################################################
Fang Yuedong's avatar
Fang Yuedong committed
488
        # Bias output
489
        if config["ins_effects"]["add_bias"] == True and config["output_setting"]["bias_output"] == True and pointing_type=='CAL':
490
491
492
493
            if self.logger is not None:
                self.logger.info("  Output N frame Bias files")
            else:
                print("  Output N frame Bias files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
494
            NBias = int(config["output_setting"]["NBias"])
Fang Yuedong's avatar
Fang Yuedong committed
495
            for i in range(NBias):
Wei Chengliang's avatar
Wei Chengliang committed
496
497
498
499
500
501
502
                ### BiasCombImg, BiasTag = effects.MakeBiasNcomb(
                ###     self.npix_x, self.npix_y, 
                ###     bias_level=float(self.bias_level), 
                ###     ncombine=1, read_noise=self.read_noise, gain=1,
                ###     seed=SeedBiasNonuni+self.chipID,
                ###     logger=self.logger)
                BiasCombImg = galsim.Image(self.npix_x, self.npix_y, init_value=0) ###
Wei Chengliang's avatar
Wei Chengliang committed
503
504
505
506
507
508
                if config["ins_effects"]["add_bias"] == True:
                    biaslevel = self.bias_level
                    overscan = biaslevel-2
                elif config["ins_effects"]["add_bias"] == False:
                    biaslevel = 0
                    overscan = 0
Wei Chengliang's avatar
Wei Chengliang committed
509

510
                # Readout noise for Biases is not generated with random seeds. So readout noise for bias images can't be reproduced.
Fang Yuedong's avatar
Fang Yuedong committed
511
512
513
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
514
515
                            xLen=self.npix_x, yLen=self.npix_y, 
                            exTime=0.01, 
Fang Yuedong's avatar
Fang Yuedong committed
516
                            cr_pixelRatio=0.003*(0.01+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
517
518
519
520
521
522
523
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+1)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
                    BiasCombImg += cr_map
                    del cr_map

Wei Chengliang's avatar
Wei Chengliang committed
524
525
526
527
528
                # Apply Bad lines 
                if config["ins_effects"]["add_badcolumns"] == True:
                    BiasCombImg = effects.BadColumns(BiasCombImg-float(self.bias_level)+5, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger) + float(self.bias_level)-5


Fang Yuedong's avatar
Fang Yuedong committed
529
                # Non-Linearity for Bias
Fang Yuedong's avatar
Fang Yuedong committed
530
                if config["ins_effects"]["non_linear"] == True:
531
532
533
534
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Bias image")
                    else:
                        print("  Applying Non-Linearity on the Bias image", flush=True)
535
536
                    BiasCombImg = effects.NonLinearity(GSImage=BiasCombImg, beta1=5.e-7, beta2=0)

Wei Chengliang's avatar
Wei Chengliang committed
537
                ###########################START
Wei Chengliang's avatar
Wei Chengliang committed
538
539
540
541
542
                pre1 = self.prescan_x  #27
                over1= self.overscan_x #71
                pre2 = self.prescan_y  #0 #4
                over2= self.overscan_y #84 #80

Wei Chengliang's avatar
Wei Chengliang committed
543
544
545
546
547
548
549
550
551
552
553
554
555
                ### prescan & overscan
                if config["ins_effects"]["add_prescan"] == True:
                    chip_utils.log_info(msg="  Apply pre/over-scan", logger=self.logger)
                    BiasCombImg = chip_utils.AddPreScan(GSImage=BiasCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)

                ### 1*16 output
                if config["ins_effects"]["format_output"] == True:
                    chip_utils.log_info(msg="  Apply 1*16 format", logger=self.logger)
                    BiasCombImg = chip_utils.formatOutput(GSImage=BiasCombImg)
                    self.nsecy = 1
                    self.nsecx = 16
                ###########################END

Wei Chengliang's avatar
Wei Chengliang committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
                ### Add Bias level
                if config["ins_effects"]["add_bias"] == True:
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
                    BiasCombImg = effects.AddBiasNonUniform16(BiasCombImg,
                        bias_level=biaslevel,
                        nsecy = self.nsecy, nsecx=self.nsecx,
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
                    rng = galsim.UniformDeviate()
                    ncombine  = 1
                    NoiseBias = galsim.GaussianNoise(rng=rng, sigma=self.read_noise*ncombine**0.5)
                    BiasCombImg.addNoise(NoiseBias)
Fang Yuedong's avatar
Fang Yuedong committed
571

572
                BiasCombImg, self.gain_channel = effects.ApplyGainNonUniform16(BiasCombImg, gain=self.gain,
Wei Chengliang's avatar
Wei Chengliang committed
573
                    nsecy = self.nsecy, nsecx=self.nsecx, 
574
575
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
576
577
                # BiasCombImg = effects.AddOverscan(
                #     BiasCombImg, 
Fang Yuedong's avatar
Fang Yuedong committed
578
                #     overscan=float(config["ins_effects"]["bias_level"])-2, gain=self.gain, 
Fang Yuedong's avatar
Fang Yuedong committed
579
580
581
582
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                BiasCombImg.replaceNegative(replace_value=0)
                BiasCombImg.quantize()
                BiasCombImg = galsim.ImageUS(BiasCombImg)
583
                timestamp_obs += 10 * 60
584
585
                chip_utils.outputCal(
                    chip=self,
Fang Yuedong's avatar
Fang Yuedong committed
586
587
588
589
                    img=BiasCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
590
                    im_type='BIAS',
Fang Yuedong's avatar
Fang Yuedong committed
591
592
                    pointing_ID=pointing_ID,
                    output_dir=chip_output.subdir,
593
                    exptime=0.0,
594
595
                    project_cycle=config["project_cycle"],
                    run_counter=config["run_counter"],
596
                    timestamp=timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
597
598
599
            del BiasCombImg

        # Export combined (ncombine, Vignetting + PRNU) & single vignetting flat-field file
600
        if config["ins_effects"]["flat_fielding"] == True and config["output_setting"]["flat_output"] == True and pointing_type=='CAL':
601
602
603
604
            if self.logger is not None:
                self.logger.info("  Output N frame Flat-Field files")
            else:
                print("  Output N frame Flat-Field files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
605
            NFlat = int(config["output_setting"]["NFlat"])
Fang Yuedong's avatar
Fang Yuedong committed
606
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
607
608
                biaslevel = self.bias_level
                overscan = biaslevel-2
609
            elif config["ins_effects"]["add_bias"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
610
611
                biaslevel = 0
                overscan = 0
612
            darklevel = self.dark_noise*(self.flat_exptime+0.5*self.readout_time)
Fang Yuedong's avatar
Fang Yuedong committed
613
614
615
616
617
618
619
620
            for i in range(NFlat):
                FlatSingle = flat_img * prnu_img + darklevel
                FlatCombImg, FlatTag = effects.MakeFlatNcomb(
                    flat_single_image=FlatSingle, 
                    ncombine=1, 
                    read_noise=self.read_noise,
                    gain=1, 
                    overscan=overscan, 
621
                    biaslevel=0,
622
623
                    seed_bias=SeedDefective+self.chipID,
                    logger=self.logger
Fang Yuedong's avatar
Fang Yuedong committed
624
                    )
Fang Yuedong's avatar
Fang Yuedong committed
625
626
627
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
628
                            xLen=self.npix_x, yLen=self.npix_y, 
629
                            exTime=self.flat_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
630
                            cr_pixelRatio=0.003*(self.flat_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
631
632
633
634
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+3)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
635
                    FlatCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
636
                    del cr_map
Fang Yuedong's avatar
Fang Yuedong committed
637

Wei Chengliang's avatar
Wei Chengliang committed
638
639
640
641
642
643
644
645
646
647
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                FlatCombImg = effects.DefectivePixels(FlatCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

                # Apply Bad lines 
                if config["ins_effects"]["add_badcolumns"] == True:
                    FlatCombImg = effects.BadColumns(FlatCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)


Fang Yuedong's avatar
Fang Yuedong committed
648
                if config["ins_effects"]["non_linear"] == True:
649
650
651
652
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Flat image")
                    else:
                        print("  Applying Non-Linearity on the Flat image", flush=True)
653
                    FlatCombImg = effects.NonLinearity(GSImage=FlatCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
654

Wei Chengliang's avatar
Wei Chengliang committed
655
656
657
658
659
660
661
                ###if config["ins_effects"]["cte_trail"] == True:
                ###    FlatCombImg = effects.CTE_Effect(GSImage=FlatCombImg, threshold=3)
                ###########################START
                pre1 = self.prescan_x  #27
                over1= self.overscan_x #71
                pre2 = self.prescan_y  #0 #4
                over2= self.overscan_y #84 #80
Fang Yuedong's avatar
Fang Yuedong committed
662
                if config["ins_effects"]["cte_trail"] == True:
Wei Chengliang's avatar
Wei Chengliang committed
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                    chip_utils.log_info(msg="  Apply CTE Effect", logger=self.logger)
                    ###img = effects.CTE_Effect(GSImage=img, threshold=27)
                    ###CTI_modeling
                    ### 2*8 -> 1*16 img-layout
                    FlatCombImg = chip_utils.formatOutput(GSImage=FlatCombImg)
                    self.nsecy = 1
                    self.nsecx = 16

                    img_arr = FlatCombImg.array
                    ny, nx = img_arr.shape
                    dx = int(nx/self.nsecx)
                    dy = int(ny/self.nsecy)
                    newimg = galsim.Image(nx, int(ny+over2), init_value=0)
                    for ichannel in range(16):
                        print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(pointing_ID, self.chipID, ichannel+1))
                        #nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
                        noverscan,nsp,nmax = over2,3,10
                        beta,w,c = 0.478,84700,0
                        t = np.array([0.74,7.7,37],dtype=np.float32)
                        rho_trap = np.array([0.6,1.6,1.4],dtype=np.float32)
                        trap_seeds = np.array([0,1000,10000],dtype=np.int32) + ichannel + self.chipID*16
                        release_seed = 50 + ichannel + pointing_ID*30  + self.chipID*16
                        newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(img_arr[:, 0+ichannel*dx:dx+ichannel*dx],dx,dy,noverscan,nsp,nmax,beta,w,c,t,rho_trap,trap_seeds,release_seed)
                    newimg.wcs = FlatCombImg.wcs
                    del FlatCombImg
                    FlatCombImg = newimg

                    ### 1*16 -> 2*8 img-layout
Wei Chengliang's avatar
Wei Chengliang committed
691
                    FlatCombImg = chip_utils.formatRevert(GSImage=FlatCombImg)
Wei Chengliang's avatar
Wei Chengliang committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
                    self.nsecy = 2
                    self.nsecx = 8

                ### prescan & overscan
                if config["ins_effects"]["add_prescan"] == True:
                    chip_utils.log_info(msg="  Apply pre/over-scan", logger=self.logger)
                    if config["ins_effects"]["cte_trail"] == False:
                        FlatCombImg = chip_utils.AddPreScan(GSImage=FlatCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
                    if config["ins_effects"]["cte_trail"] == True:
                        FlatCombImg = chip_utils.AddPreScan(GSImage=FlatCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=0)

                ### 1*16 output
                if config["ins_effects"]["format_output"] == True:
                    chip_utils.log_info(msg="  Apply 1*16 format", logger=self.logger)
                    FlatCombImg = chip_utils.formatOutput(GSImage=FlatCombImg)
                    self.nsecy = 1
                    self.nsecx = 16
                ###########################END
Fang Yuedong's avatar
Fang Yuedong committed
710

711
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
712
                if config["ins_effects"]["add_bias"] == True:
713
714
715
716
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
717
                    # img += float(config["ins_effects"]["bias_level"])
718
719
                    FlatCombImg = effects.AddBiasNonUniform16(FlatCombImg, 
                        bias_level=biaslevel, 
Wei Chengliang's avatar
Wei Chengliang committed
720
                        nsecy = self.nsecy, nsecx=self.nsecx, 
721
722
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
723
724
                
                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
725
                if config["ins_effects"]["add_readout"] == True:
726
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID + 3
727
728
729
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    FlatCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
730

731
                FlatCombImg, self.gain_channel = effects.ApplyGainNonUniform16(FlatCombImg, gain=self.gain,
Wei Chengliang's avatar
Wei Chengliang committed
732
                    nsecy = self.nsecy, nsecx=self.nsecx, 
733
734
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
735
736
737
738
                # FlatCombImg = effects.AddOverscan(FlatCombImg, overscan=overscan, gain=self.gain, widthl=27, widthr=27, widtht=8, widthb=8)
                FlatCombImg.replaceNegative(replace_value=0)
                FlatCombImg.quantize()
                FlatCombImg = galsim.ImageUS(FlatCombImg)
739
                timestamp_obs += 10 * 60
740
741
                chip_utils.outputCal(
                    chip=self,
Fang Yuedong's avatar
Fang Yuedong committed
742
743
744
745
                    img=FlatCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
746
                    im_type='FLAT',
Fang Yuedong's avatar
Fang Yuedong committed
747
748
                    pointing_ID=pointing_ID,
                    output_dir=chip_output.subdir,
749
                    exptime=self.flat_exptime,
750
751
                    project_cycle=config["project_cycle"],
                    run_counter=config["run_counter"],
752
                    timestamp=timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
753

Fang Yuedong's avatar
Fang Yuedong committed
754
755
756
757
758
759
760
            del FlatCombImg, FlatSingle, prnu_img
            # flat_img.replaceNegative(replace_value=0)
            # flat_img.quantize()
            # galsim.ImageUS(flat_img).write("%s/FlatImg_Vignette_%s.fits" % (chip_output.subdir, self.chipID))
            del flat_img

        # Export Dark current images
761
        if config["ins_effects"]["add_dark"] == True and config["output_setting"]["dark_output"] == True and pointing_type=='CAL':
762
763
764
765
            if self.logger is not None:
                self.logger.info("  Output N frame Dark Current files")
            else:
                print("  Output N frame Dark Current files", flush=True)
Fang Yuedong's avatar
Fang Yuedong committed
766
            NDark = int(config["output_setting"]["NDark"])
Fang Yuedong's avatar
Fang Yuedong committed
767
            if config["ins_effects"]["add_bias"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
768
769
                biaslevel = self.bias_level
                overscan = biaslevel-2
770
            elif config["ins_effects"]["add_bias"] == False:
Fang Yuedong's avatar
Fang Yuedong committed
771
772
773
774
775
                biaslevel = 0
                overscan = 0
            for i in range(NDark):
                DarkCombImg, DarkTag = effects.MakeDarkNcomb(
                    self.npix_x, self.npix_y, 
776
                    overscan=overscan, bias_level=0, darkpsec=0.02, exptime=self.dark_exptime+0.5*self.readout_time,
Fang Yuedong's avatar
Fang Yuedong committed
777
                    ncombine=1, read_noise=self.read_noise, 
778
779
                    gain=1, seed_bias=SeedBiasNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
780
781
782
                if config["ins_effects"]["cosmic_ray"] == True:
                    if config["ins_effects"]["cray_differ"] == True:
                        cr_map, cr_event_num = effects.produceCR_Map(
Fang Yuedong's avatar
Fang Yuedong committed
783
                            xLen=self.npix_x, yLen=self.npix_y, 
784
                            exTime=self.dark_exptime+0.5*self.readout_time, 
Fang Yuedong's avatar
Fang Yuedong committed
785
                            cr_pixelRatio=0.003*(self.dark_exptime+0.5*self.readout_time)/150., 
Fang Yuedong's avatar
Fang Yuedong committed
786
787
788
789
                            gain=self.gain, 
                            attachedSizes=self.attachedSizes,
                            seed=SeedCosmicRay+pointing_ID*30+self.chipID+2)
                            # seed: obj-imaging:+0; bias:+1; dark:+2; flat:+3;
Fang Yuedong's avatar
Fang Yuedong committed
790
                    DarkCombImg += cr_map
Fang Yuedong's avatar
Fang Yuedong committed
791
792
793
794
                    cr_map[cr_map > 65535] = 65535
                    cr_map[cr_map < 0] = 0
                    crmap_gsimg = galsim.Image(cr_map, dtype=np.uint16)
                    del cr_map
Wei Chengliang's avatar
Wei Chengliang committed
795
796
797
798
799
800
801
802
803
804
805
806
807
                    ###########################START
                    ### prescan & overscan
                    if config["ins_effects"]["add_prescan"] == True:
                        chip_utils.log_info(msg="  Apply pre/over-scan", logger=self.logger)
                        crmap_gsimg = chip_utils.AddPreScan(GSImage=crmap_gsimg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)

                    ### 1*16 output
                    if config["ins_effects"]["format_output"] == True:
                        chip_utils.log_info(msg="  Apply 1*16 format", logger=self.logger)
                        crmap_gsimg = chip_utils.formatOutput(GSImage=crmap_gsimg)
                        self.nsecy = 1
                        self.nsecx = 16
                    ###########################END
808
809
                    chip_utils.outputCal(
                        chip=self,
Fang Yuedong's avatar
Fang Yuedong committed
810
811
812
813
814
815
816
                        img=crmap_gsimg,
                        ra_cen=ra_cen,
                        dec_cen=dec_cen,
                        img_rot=img_rot,
                        im_type='CRD',
                        pointing_ID=pointing_ID,
                        output_dir=chip_output.subdir,
817
                        exptime=self.dark_exptime,
818
819
                        project_cycle=config["project_cycle"],
                        run_counter=config["run_counter"],
820
                        timestamp=timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
821
                    del crmap_gsimg
Fang Yuedong's avatar
Fang Yuedong committed
822

Wei Chengliang's avatar
Wei Chengliang committed
823
824
825
826
827
828
829
830
831
832
                # Add Hot Pixels or/and Dead Pixels
                rgbadpix = Generator(PCG64(int(SeedDefective+self.chipID)))
                badfraction = 5E-5*(rgbadpix.random()*0.5+0.7)
                DarkCombImg = effects.DefectivePixels(DarkCombImg, IfHotPix=BoolHotPix, IfDeadPix=BoolDeadPix, fraction=badfraction, seed=SeedDefective+self.chipID, biaslevel=0)

                # Apply Bad lines 
                if config["ins_effects"]["add_badcolumns"] == True:
                    DarkCombImg = effects.BadColumns(DarkCombImg, seed=SeedBadColumns, chipid=self.chipID, logger=self.logger)


Fang Yuedong's avatar
Fang Yuedong committed
833
                # Non-Linearity for Dark
Fang Yuedong's avatar
Fang Yuedong committed
834
                if config["ins_effects"]["non_linear"] == True:
835
836
837
838
                    if self.logger is not None:
                        self.logger.info("  Applying Non-Linearity on the Dark image")
                    else:
                        print("  Applying Non-Linearity on the Dark image", flush=True)
839
                    DarkCombImg = effects.NonLinearity(GSImage=DarkCombImg, beta1=5.e-7, beta2=0)
Fang Yuedong's avatar
Fang Yuedong committed
840

Wei Chengliang's avatar
Wei Chengliang committed
841
842
843
844
845
846
847
                ###if config["ins_effects"]["cte_trail"] == True:
                ###    DarkCombImg = effects.CTE_Effect(GSImage=DarkCombImg, threshold=3)
                ###########################START
                pre1 = self.prescan_x  #27
                over1= self.overscan_x #71
                pre2 = self.prescan_y  #0 #4
                over2= self.overscan_y #84 #80
Fang Yuedong's avatar
Fang Yuedong committed
848
                if config["ins_effects"]["cte_trail"] == True:
Wei Chengliang's avatar
Wei Chengliang committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
                    chip_utils.log_info(msg="  Apply CTE Effect", logger=self.logger)
                    ###img = effects.CTE_Effect(GSImage=img, threshold=27)
                    ###CTI_modeling
                    ### 2*8 -> 1*16 img-layout
                    DarkCombImg = chip_utils.formatOutput(GSImage=DarkCombImg)
                    self.nsecy = 1
                    self.nsecx = 16

                    img_arr = DarkCombImg.array
                    ny, nx = img_arr.shape
                    dx = int(nx/self.nsecx)
                    dy = int(ny/self.nsecy)
                    newimg = galsim.Image(nx, int(ny+over2), init_value=0)
                    for ichannel in range(16):
                        print('\n***add CTI effects: pointing-{:} chip-{:} channel-{:}***'.format(pointing_ID, self.chipID, ichannel+1))
                        #nx,ny,noverscan,nsp,nmax = 4608,4616,84,3,10
                        noverscan,nsp,nmax = over2,3,10
                        beta,w,c = 0.478,84700,0
                        t = np.array([0.74,7.7,37],dtype=np.float32)
                        rho_trap = np.array([0.6,1.6,1.4],dtype=np.float32)
                        trap_seeds = np.array([0,1000,10000],dtype=np.int32) + ichannel + self.chipID*16
                        release_seed = 50 + ichannel + pointing_ID*30  + self.chipID*16
                        newimg.array[:, 0+ichannel*dx:dx+ichannel*dx] = CTI_sim(img_arr[:, 0+ichannel*dx:dx+ichannel*dx],dx,dy,noverscan,nsp,nmax,beta,w,c,t,rho_trap,trap_seeds,release_seed)
                    newimg.wcs = DarkCombImg.wcs
                    del DarkCombImg
                    DarkCombImg = newimg

                    ### 1*16 -> 2*8 img-layout
                    DarkCombImg = chip_utils.formatRevert(GSImage=DarkCombImg)
                    self.nsecy = 2
                    self.nsecx = 8

                ### prescan & overscan
                if config["ins_effects"]["add_prescan"] == True:
                    chip_utils.log_info(msg="  Apply pre/over-scan", logger=self.logger)
                    if config["ins_effects"]["cte_trail"] == False:
                        DarkCombImg = chip_utils.AddPreScan(GSImage=DarkCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=over2)
                    if config["ins_effects"]["cte_trail"] == True:
                        DarkCombImg = chip_utils.AddPreScan(GSImage=DarkCombImg, pre1=pre1, pre2=pre2, over1=over1, over2=0)

                ### 1*16 output
                if config["ins_effects"]["format_output"] == True:
                    chip_utils.log_info(msg="  Apply 1*16 format", logger=self.logger)
                    DarkCombImg = chip_utils.formatOutput(GSImage=DarkCombImg)
                    self.nsecy = 1
                    self.nsecx = 16
                ###########################END
Fang Yuedong's avatar
Fang Yuedong committed
896

897
                # Add Bias level
Fang Yuedong's avatar
Fang Yuedong committed
898
                if config["ins_effects"]["add_bias"] == True:
899
900
901
902
                    if self.logger is not None:
                        self.logger.info("  Adding Bias level and 16-channel non-uniformity")
                    else:
                        print("  Adding Bias level and 16-channel non-uniformity")
Fang Yuedong's avatar
Fang Yuedong committed
903
                    # img += float(config["ins_effects"]["bias_level"])
904
905
                    DarkCombImg = effects.AddBiasNonUniform16(DarkCombImg, 
                        bias_level=biaslevel, 
Wei Chengliang's avatar
Wei Chengliang committed
906
                        nsecy = self.nsecy, nsecx=self.nsecx, 
907
908
                        seed=SeedBiasNonuni+self.chipID,
                        logger=self.logger)
909
910

                # Add Read-out Noise
Fang Yuedong's avatar
Fang Yuedong committed
911
                if config["ins_effects"]["add_readout"] == True:
912
                    seed = int(config["random_seeds"]["seed_readout"]) + pointing_ID*30 + self.chipID + 2
913
914
915
                    rng_readout = galsim.BaseDeviate(seed)
                    readout_noise = galsim.GaussianNoise(rng=rng_readout, sigma=self.read_noise)
                    DarkCombImg.addNoise(readout_noise)
Fang Yuedong's avatar
Fang Yuedong committed
916

917
                DarkCombImg, self.gain_channel = effects.ApplyGainNonUniform16(
Fang Yuedong's avatar
Fang Yuedong committed
918
                    DarkCombImg, gain=self.gain, 
Wei Chengliang's avatar
Wei Chengliang committed
919
                    nsecy = self.nsecy, nsecx=self.nsecx, 
920
921
                    seed=SeedGainNonuni+self.chipID,
                    logger=self.logger)
Fang Yuedong's avatar
Fang Yuedong committed
922
923
924
925
926
927
928
                # DarkCombImg = effects.AddOverscan(
                #     DarkCombImg, 
                #     overscan=overscan, gain=self.gain, 
                #     widthl=27, widthr=27, widtht=8, widthb=8)
                DarkCombImg.replaceNegative(replace_value=0)
                DarkCombImg.quantize()
                DarkCombImg = galsim.ImageUS(DarkCombImg)
929
                timestamp_obs += 10 * 60
930
                chip_utils.outputCal(
931
                    chip=self,
Fang Yuedong's avatar
Fang Yuedong committed
932
933
934
935
                    img=DarkCombImg,
                    ra_cen=ra_cen,
                    dec_cen=dec_cen,
                    img_rot=img_rot,
Xin Zhang's avatar
Xin Zhang committed
936
                    im_type='DARK',
Fang Yuedong's avatar
Fang Yuedong committed
937
938
                    pointing_ID=pointing_ID,
                    output_dir=chip_output.subdir,
939
                    exptime=self.dark_exptime,
940
941
                    project_cycle=config["project_cycle"],
                    run_counter=config["run_counter"],
942
                    timestamp = timestamp_obs)
Fang Yuedong's avatar
Fang Yuedong committed
943
944
945
946
            del DarkCombImg
        # img = galsim.ImageUS(img)

        # # 16 output channel, with each a single image file
Fang Yuedong's avatar
Fang Yuedong committed
947
        # if config["ins_effects"]["readout16"] == True:
Fang Yuedong's avatar
Fang Yuedong committed
948
949
950
951
952
953
954
955
956
957
958
959
        #     print("  16 Output Channel simulation")
        #     for coli in [0, 1]:
        #         for rowi in range(8):
        #             sub_img = effects.readout16(
        #                 GSImage=img, 
        #                 rowi=rowi, 
        #                 coli=coli, 
        #                 overscan_value=self.overscan)
        #             rowcoltag = str(rowi) + str(coli)
        #             img_name_root = chip_output.img_name.split(".")[0]
        #             sub_img.write("%s/%s_%s.fits" % (chip_output.subdir, img_name_root, rowcoltag))
        #     del sub_img
Zhang Xin's avatar
Zhang Xin committed
960
        return img
961