Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Liu Dezi
csst_msc_sim
Commits
64c00169
Commit
64c00169
authored
Dec 18, 2021
by
Fang Yuedong
Browse files
add unittest script for detect effects
parent
e0fa93a6
Changes
2
Show whitespace changes
Inline
Side-by-side
Catalog/Catalog_example.py
View file @
64c00169
...
@@ -41,7 +41,7 @@ class Catalog_example(CatalogBase):
...
@@ -41,7 +41,7 @@ class Catalog_example(CatalogBase):
config : dict
config : dict
configuration dictionary which is parsed from the input YAML file
configuration dictionary which is parsed from the input YAML file
chip: ObservationSim.Instrument.Chip
chip: ObservationSim.Instrument.Chip
a ObservationSim.Instrument.Chip
object
, can be used to identify the band etc.
a ObservationSim.Instrument.Chip
instance
, can be used to identify the band etc.
**kwargs : dict
**kwargs : dict
other needed input parameters (in key-value pairs), please modify corresponding
other needed input parameters (in key-value pairs), please modify corresponding
initialization call in "ObservationSim.py" as you need.
initialization call in "ObservationSim.py" as you need.
...
...
tests/det_effect_unit_test.py
0 → 100644
View file @
64c00169
import
unittest
import
numpy
as
np
from
ObservationSim.Instrument.Chip
import
Effects
import
galsim
import
matplotlib.pyplot
as
plt
import
os
,
sys
,
math
,
copy
from
numpy.random
import
Generator
,
PCG64
import
warnings
warnings
.
filterwarnings
(
"ignore"
,
'.*Numba.*'
,)
width
=
9216
height
=
9232
if
os
.
path
.
isdir
(
'./output/'
):
pass
else
:
os
.
mkdir
(
'./output/'
)
class
DetTest
(
unittest
.
TestCase
):
def
test_prnu
(
self
):
'''
Unit test for PRNU. Expected result: a randomized GS image contains PRNU with sigma=0.01, mean=1.
'''
print
(
'PRNU Test:'
)
sigma
=
0.01
seed
=
20210911
prnuimg
=
Effects
.
PRNU_Img
(
width
,
height
,
sigma
=
sigma
,
seed
=
seed
)
meanval
,
stdval
=
np
.
mean
(
prnuimg
.
array
),
np
.
std
(
prnuimg
.
array
)
print
(
' Mean & STDDEV of PRNU image are %6.4f & %6.4f.'
%
(
meanval
,
stdval
))
print
(
' PRNU Image Array:'
)
print
(
' '
,
prnuimg
.
array
)
self
.
assertTrue
(
np
.
abs
(
meanval
-
1
)
<
1e-6
)
self
.
assertTrue
(
np
.
abs
(
stdval
-
sigma
)
<
0.002
)
print
(
'
\n
Unit test for PRNU has been passed.'
)
del
prnuimg
def
test_dark
(
self
):
'''
Test add dark current to image. Expected result: an image with dark current 3.4 e- and noise=1.844 e-.
'''
rng_poisson
=
galsim
.
BaseDeviate
(
20210911
)
dark_noise
=
galsim
.
DeviateNoise
(
galsim
.
PoissonDeviate
(
rng_poisson
,
0.02
*
(
150
+
0.5
*
40
)))
img
=
galsim
.
Image
(
200
,
200
,
dtype
=
np
.
float32
,
init_value
=
0
)
print
(
'Initial Mean & STD = %6.3f & %6.3f'
%
(
np
.
mean
(
img
.
array
),
np
.
std
(
img
.
array
)))
img
.
addNoise
(
dark_noise
)
meanval
=
np
.
mean
(
img
.
array
)
stdval
=
np
.
std
(
img
.
array
)
print
(
'Dark added Mean & STD = %6.3f & %6.3f'
%
(
meanval
,
stdval
))
self
.
assertTrue
(
np
.
abs
(
meanval
-
3.4
)
<
0.05
)
self
.
assertTrue
(
np
.
abs
(
stdval
-
1.844
)
<
0.02
)
print
(
'
\n
Unit test for dark current has been passed.'
)
del
img
def
test_satu
(
self
):
'''
Test saturation and bleeding. Expected result: an image with bleeding effect.
'''
img
=
galsim
.
Image
(
500
,
500
,
dtype
=
np
.
float32
)
star
=
galsim
.
Gaussian
(
flux
=
60e5
,
fwhm
=
3
)
img
=
star
.
drawImage
(
image
=
img
,
center
=
(
150
,
200
))
# gal = galsim.Sersic(n=1, half_light_radius=3,flux=50e5)
# img = gal.drawImage(image=img,center=(350,300))
img
.
addNoise
(
galsim
.
GaussianNoise
(
sigma
=
7
))
# plt.imshow(img.array)
# plt.show()
filename1
=
os
.
path
.
join
(
'output'
,
'test_satu_initimg.fits'
)
img
.
write
(
filename1
)
newimg
=
Effects
.
SaturBloom
(
img
,
fullwell
=
9e4
)
# plt.imshow(newimg.array)
# plt.show()
filename2
=
os
.
path
.
join
(
'output'
,
'test_satu_bleedimg.fits'
)
newimg
.
write
(
filename2
)
del
img
,
newimg
,
star
def
test_nonlinear
(
self
):
'''
Test non-linear effect. Expected result: an image with non-linearity effect.
'''
imgarr
=
np
.
arange
(
1
,
9e4
,
4
).
reshape
((
150
,
150
))
img
=
galsim
.
Image
(
copy
.
deepcopy
(
imgarr
))
filename1
=
os
.
path
.
join
(
'output'
,
'test_nonlinear_initimg.fits'
)
img
.
write
(
filename1
)
newimg
=
Effects
.
NonLinearity
(
img
,
beta1
=
5E-7
,
beta2
=
0
)
filename2
=
os
.
path
.
join
(
'output'
,
'test_nonlinear_finalimg.fits'
)
newimg
.
write
(
filename2
)
plt
.
scatter
(
imgarr
.
flatten
(),
newimg
.
array
.
flatten
(),
s
=
2
,
alpha
=
0.5
)
plt
.
plot
([
-
1e3
,
9e4
],[
-
1e3
,
9e4
],
color
=
'black'
,
lw
=
1
,
ls
=
'--'
)
plt
.
xlabel
(
'input (e-)'
)
plt
.
ylabel
(
'output (e-)'
)
plt
.
savefig
(
'./output/test_nonlinearity.png'
,
dpi
=
200
)
plt
.
show
()
del
img
,
newimg
,
imgarr
def
test_badpixel_HtrDtr
(
self
):
img
=
galsim
.
Image
(
500
,
500
,
init_value
=
1000
)
rgbadpix
=
Generator
(
PCG64
(
20210911
))
badfraction
=
5E-5
*
(
rgbadpix
.
random
()
*
0.5
+
0.7
)
img
=
Effects
.
DefectivePixels
(
img
,
IfHotPix
=
True
,
IfDeadPix
=
True
,
fraction
=
badfraction
,
seed
=
20210911
,
biaslevel
=
0
)
img
.
write
(
'./output/test_badpixel_HtrDtr.fits'
)
del
img
def
test_badpixel_HfsDtr
(
self
):
img
=
galsim
.
Image
(
500
,
500
,
init_value
=
1000
)
rgbadpix
=
Generator
(
PCG64
(
20210911
))
badfraction
=
5E-5
*
(
rgbadpix
.
random
()
*
0.5
+
0.7
)
img
=
Effects
.
DefectivePixels
(
img
,
IfHotPix
=
False
,
IfDeadPix
=
True
,
fraction
=
badfraction
,
seed
=
20210911
,
biaslevel
=
0
)
img
.
write
(
'./output/test_badpixel_HfsDtr.fits'
)
del
img
def
test_badpixel_HtrDfs
(
self
):
img
=
galsim
.
Image
(
500
,
500
,
init_value
=
1000
)
rgbadpix
=
Generator
(
PCG64
(
20210911
))
badfraction
=
5E-5
*
(
rgbadpix
.
random
()
*
0.5
+
0.7
)
img
=
Effects
.
DefectivePixels
(
img
,
IfHotPix
=
True
,
IfDeadPix
=
False
,
fraction
=
badfraction
,
seed
=
20210911
,
biaslevel
=
0
)
img
.
write
(
'./output/test_badpixel_HtrDfs.fits'
)
del
img
def
test_badpixel_HfsDfs
(
self
):
img
=
galsim
.
Image
(
500
,
500
,
init_value
=
1000
)
rgbadpix
=
Generator
(
PCG64
(
20210911
))
badfraction
=
5E-5
*
(
rgbadpix
.
random
()
*
0.5
+
0.7
)
img
=
Effects
.
DefectivePixels
(
img
,
IfHotPix
=
False
,
IfDeadPix
=
False
,
fraction
=
badfraction
,
seed
=
20210911
,
biaslevel
=
0
)
img
.
write
(
'./output/test_badpixel_HfsDfs.fits'
)
del
img
def
test_badlines
(
self
):
img
=
galsim
.
Image
(
500
,
500
,
init_value
=-
1000
)
img
.
addNoise
(
galsim
.
GaussianNoise
(
sigma
=
7
))
newimg
=
Effects
.
BadColumns
(
copy
.
deepcopy
(
img
),
seed
=
20210911
)
newimg
.
write
(
'./output/test_badlines.fits'
)
del
newimg
,
img
def
test_cte
(
self
):
img
=
galsim
.
Image
(
200
,
200
,
init_value
=
1000
)
img
.
array
[
50
,
80
]
=
1e4
img
.
array
[
150
,
150
]
=
3e4
newimgcol
=
Effects
.
CTE_Effect
(
copy
.
deepcopy
(
img
),
direction
=
'column'
)
newimgrow
=
Effects
.
CTE_Effect
(
copy
.
deepcopy
(
img
),
direction
=
'row'
)
newimgcol
.
write
(
'./output/test_ctecol.fits'
)
newimgrow
.
write
(
'./output/test_cterow.fits'
)
del
img
,
newimgcol
,
newimgrow
def
test_readnoise
(
self
):
img
=
galsim
.
Image
(
200
,
200
,
init_value
=
1000
)
seed
=
20210911
rng_readout
=
galsim
.
BaseDeviate
(
seed
)
readout_noise
=
galsim
.
GaussianNoise
(
rng
=
rng_readout
,
sigma
=
5
)
img
.
addNoise
(
readout_noise
)
img
.
write
(
'./output/test_readnoise.fits'
)
stdval
=
np
.
std
(
img
.
array
)
self
.
assertTrue
(
np
.
abs
(
stdval
-
5
)
<
0.01
*
5
)
print
(
'
\n
Unit test for readout noise has been passed.'
)
del
img
def
test_addbias
(
self
):
img
=
galsim
.
Image
(
200
,
200
,
init_value
=
0
)
img
=
Effects
.
AddBiasNonUniform16
(
img
,
bias_level
=
500
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
20210911
)
img
.
write
(
'./output/test_addbias.fits'
)
del
img
def
test_apply16gains
(
self
):
img
=
galsim
.
Image
(
500
,
500
,
init_value
=
100
)
img
=
Effects
.
ApplyGainNonUniform16
(
img
,
gain
=
1.5
,
nsecy
=
2
,
nsecx
=
8
,
seed
=
202102
)
img
.
write
(
"./output/test_apply16gains.fits"
)
rightedge
=
int
(
500
/
8
)
*
8
print
(
'gain=%6.2f'
%
1.5
)
meanimg
=
np
.
mean
(
img
.
array
[:,:
rightedge
])
sigmaimg
=
np
.
std
(
img
.
array
[:,:
rightedge
])
print
(
'mean, sigma = %6.2f, %6.2f'
%
(
meanimg
,
sigmaimg
))
self
.
assertTrue
(
np
.
abs
(
meanimg
-
100
/
1.5
)
<
1
)
self
.
assertTrue
(
np
.
abs
(
sigmaimg
/
meanimg
-
0.01
)
<
0.001
)
print
(
'
\n
Unit test for applying 16 channel gains has been passed.'
)
del
img
def
test_cosmicray
(
self
):
attachedSizes
=
np
.
loadtxt
(
'../ObservationSim/Instrument/Chip/wfc-cr-attachpixel.dat'
)
cr_map
=
Effects
.
produceCR_Map
(
xLen
=
500
,
yLen
=
500
,
exTime
=
150
+
0.5
*
40
,
cr_pixelRatio
=
0.003
*
(
1
+
0.5
*
40
/
150
),
gain
=
1
,
attachedSizes
=
attachedSizes
,
seed
=
20210911
)
crimg
=
galsim
.
Image
(
cr_map
)
crimg
.
write
(
'./output/test_cosmicray.fits'
)
del
cr_map
,
crimg
def
test_shutter
(
self
):
img
=
galsim
.
Image
(
5000
,
5000
,
init_value
=
1000
)
shuttimg
=
Effects
.
ShutterEffectArr
(
img
,
t_exp
=
150
,
t_shutter
=
1.3
,
dist_bearing
=
735
,
dt
=
1E-3
)
# shutter effect normalized image for this chip
img
*=
shuttimg
img
.
write
(
'./output/test_shutter.fits'
)
del
img
def
test_vignette
(
self
):
img
=
galsim
.
Image
(
2000
,
2000
,
init_value
=
1000
)
print
(
img
.
bounds
)
# # img.bounds = galsim.BoundsI(1, width, 1, height)
img
.
setOrigin
(
10000
,
10000
)
flat_img
=
Effects
.
MakeFlatSmooth
(
img
.
bounds
,
20210911
)
flat_normal
=
flat_img
/
np
.
mean
(
flat_img
.
array
)
flat_normal
.
write
(
'./output/test_vignette.fits'
)
del
flat_img
,
img
,
flat_normal
if
__name__
==
'__main__'
:
unittest
.
main
()
\ No newline at end of file
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment