diff --git a/ObservationSim/MockObject/SpecDisperser/SpecDisperser.py b/ObservationSim/MockObject/SpecDisperser/SpecDisperser.py index 07d099a60bde65c74043ab03c34f0fbbf1bad585..3f3f52b01a1d9b061099491d5e49f677979411ee 100644 --- a/ObservationSim/MockObject/SpecDisperser/SpecDisperser.py +++ b/ObservationSim/MockObject/SpecDisperser/SpecDisperser.py @@ -122,7 +122,7 @@ class SpecDisperser(object): beam=beam) ### Account for pixel centering of the trace - yfrac_beam = ytrace_beam - floor(ytrace_beam) + yfrac_beam = ytrace_beam - floor(ytrace_beam+0.5) ysens = lam_beam * 0 lam_index = argsort(lam_beam) @@ -155,7 +155,7 @@ class SpecDisperser(object): sensitivity_beam = ysens len_spec_x = len(dx) - len_spec_y = int(ceil(yfrac_beam[-1]) - floor(yfrac_beam[0]) + 1) + len_spec_y = int(ceil(ytrace_beam[-1]) - floor(ytrace_beam[0]) + 1) beam_sh = (self.img_sh[0] + len_spec_y, self.img_sh[1] + len_spec_x) modelf = zeros(product(beam_sh), dtype=float) @@ -165,9 +165,15 @@ class SpecDisperser(object): dxpix = dx - dx[0] + x0[1] - dyc = cast[int](ytrace_beam) + dyc = cast[int](np.floor(ytrace_beam+0.5)) + + dypix = cast[int](np.floor(ytrace_beam - dyc[0] + x0[0] + 0.5)) + + frac_ids = yfrac_beam<0 + + dypix[frac_ids] = dypix[frac_ids] - 1 + yfrac_beam[frac_ids] = 1+yfrac_beam[frac_ids] - dypix = dyc - dyc[0] + x0[0] flat_index = idx[dypix, dxpix] nonz = sensitivity_beam != 0 @@ -185,7 +191,7 @@ class SpecDisperser(object): origin_in[1] = self.origin[1] dx0_in = dx[0] dy0_in = dyc[0] - originOut_x = origin_in[1] + dx0_in + originOut_x = origin_in[1] + dx0_in originOut_y = origin_in[0] + dy0_in if self.flat_cube is None: diff --git a/ObservationSim/MockObject/SpecDisperser/disperse_c/disperse.pyx b/ObservationSim/MockObject/SpecDisperser/disperse_c/disperse.pyx index f5be0b2794ae24d94c1f17f7e50062bf0f1d26b4..41dbf1402e7aa4d756865489898cc738187a094a 100644 --- a/ObservationSim/MockObject/SpecDisperser/disperse_c/disperse.pyx +++ b/ObservationSim/MockObject/SpecDisperser/disperse_c/disperse.pyx @@ -86,12 +86,12 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam, k1 = idxl[k]+j*shg[1]+i if (k1 >= 0) & (k1 < nl): flat_ids = k1*nlamb+k - full[k1] += fl_ij*yfrac[k]*flat_eff_all[flat_ids] + full[k1] += fl_ij*(1-yfrac[k])*flat_eff_all[flat_ids] - k2 = idxl[k]+(j-1)*shg[1]+i + k2 = idxl[k]+(j+1)*shg[1]+i if (k2 >= 0) & (k2 < nl): flat_ids = k2*nlamb+k - full[k2] += fl_ij*(1-yfrac[k])*flat_eff_all[flat_ids] + full[k2] += fl_ij*yfrac[k]*flat_eff_all[flat_ids] else: for i in range(0-x0[1], x0[1]): @@ -109,11 +109,11 @@ def disperse_grism_object(np.ndarray[FTYPE_t, ndim=2] flam, for k in range(nk): k1 = idxl[k]+j*shg[1]+i if (k1 >= 0) & (k1 < nl): - full[k1] += ysens[k]*fl_ij*yfrac[k] + full[k1] += ysens[k]*fl_ij*(1-yfrac[k]) - k2 = idxl[k]+(j-1)*shg[1]+i + k2 = idxl[k]+(j+1)*shg[1]+i if (k2 >= 0) & (k2 < nl): - full[k2] += ysens[k]*fl_ij*(1-yfrac[k]) + full[k2] += ysens[k]*fl_ij*yfrac[k] return True