Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Liu Dezi
csst_msc_sim
Commits
fd6c3108
Commit
fd6c3108
authored
May 02, 2023
by
Fang Yuedong
Committed by
Zhang Xin
May 02, 2023
Browse files
Release v2.0
parent
ca7fb5db
Changes
71
Hide whitespace changes
Inline
Side-by-side
ObservationSim/Instrument/data/ccd/chip_definition.json
0 → 100644
View file @
fd6c3108
{
"31"
:
{
"chip_name"
:
"FGS1A-D1"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
-325.395
,
"y_cen"
:
-47.82
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"32"
:
{
"chip_name"
:
"FGS1A-D2"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
-325.395
,
"y_cen"
:
22.7
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"33"
:
{
"chip_name"
:
"FGS1B-D1"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
-325.395
,
"y_cen"
:
93.195
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"34"
:
{
"chip_name"
:
"FGS1B-D2"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
-325.395
,
"y_cen"
:
163.69
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"35"
:
{
"chip_name"
:
"FGS2A-D1"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
325.395
,
"y_cen"
:
47.82
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"36"
:
{
"chip_name"
:
"FGS2A-D2"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
325.395
,
"y_cen"
:
-22.7
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"37"
:
{
"chip_name"
:
"FGS2B-D1"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
325.395
,
"y_cen"
:
-93.195
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"38"
:
{
"chip_name"
:
"FGS2B-D2"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
325.395
,
"y_cen"
:
-163.69
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"39"
:
{
"chip_name"
:
"FGS3-D1"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
-273.35
,
"y_cen"
:
211.36
,
"rotate_angle"
:
90.0
,
"n_psf_samples"
:
100
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"40"
:
{
"chip_name"
:
"FGS3-D2"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
-202.805
,
"y_cen"
:
211.36
,
"rotate_angle"
:
90.0
,
"n_psf_samples"
:
100
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"41"
:
{
"chip_name"
:
"FGS4-D1"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
151.03
,
"y_cen"
:
-233.885
,
"rotate_angle"
:
90.0
,
"n_psf_samples"
:
100
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"42"
:
{
"chip_name"
:
"FGS4-D2"
,
"pix_size"
:
0.0075
,
"pix_scale"
:
0.0555
,
"npix_x"
:
11264
,
"npix_y"
:
7680
,
"x_cen"
:
80.51
,
"y_cen"
:
-233.885
,
"rotate_angle"
:
90.0
,
"n_psf_samples"
:
100
,
"dark_exptime"
:
300.0
,
"falt_exptime"
:
150.0
,
"readout_time"
:
0.01
,
"df_strength"
:
2.3
,
"bias_level"
:
2000.0
,
"gain"
:
1.0
,
"full_well"
:
90000
},
"1"
:
{
"chip_name"
:
"GI-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
251.5
,
"y_cen"
:
-202.6
,
"rotate_angle"
:
-1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"2"
:
{
"chip_name"
:
"GV-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
251.5
,
"y_cen"
:
-101.3
,
"rotate_angle"
:
-1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"3"
:
{
"chip_name"
:
"GU-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
251.5
,
"y_cen"
:
0.0
,
"rotate_angle"
:
-1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"4"
:
{
"chip_name"
:
"GU-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
251.5
,
"y_cen"
:
101.3
,
"rotate_angle"
:
-1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"5"
:
{
"chip_name"
:
"GV-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
251.5
,
"y_cen"
:
202.6
,
"rotate_angle"
:
-1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"6"
:
{
"chip_name"
:
"y-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
146.25
,
"y_cen"
:
-202.6
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"7"
:
{
"chip_name"
:
"i-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
146.25
,
"y_cen"
:
-101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"8"
:
{
"chip_name"
:
"g-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
146.25
,
"y_cen"
:
0.0
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"9"
:
{
"chip_name"
:
"r-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
146.25
,
"y_cen"
:
101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"10"
:
{
"chip_name"
:
"GI-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
154.0
,
"y_cen"
:
202.6
,
"rotate_angle"
:
-1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"11"
:
{
"chip_name"
:
"z-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
48.75
,
"y_cen"
:
-202.6
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"12"
:
{
"chip_name"
:
"NUV-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
48.75
,
"y_cen"
:
-101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"13"
:
{
"chip_name"
:
"NUV-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
48.75
,
"y_cen"
:
0.0
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"14"
:
{
"chip_name"
:
"u-1"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
48.75
,
"y_cen"
:
101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"15"
:
{
"chip_name"
:
"y-4"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
48.75
,
"y_cen"
:
202.6
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"16"
:
{
"chip_name"
:
"y-3"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-48.75
,
"y_cen"
:
-202.6
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"17"
:
{
"chip_name"
:
"u-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-48.75
,
"y_cen"
:
-101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"18"
:
{
"chip_name"
:
"NUV-3"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-48.75
,
"y_cen"
:
0.0
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"19"
:
{
"chip_name"
:
"NUV-4"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-48.75
,
"y_cen"
:
101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"20"
:
{
"chip_name"
:
"z-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-48.75
,
"y_cen"
:
202.6
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"21"
:
{
"chip_name"
:
"GI-3"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-154.0
,
"y_cen"
:
-202.6
,
"rotate_angle"
:
1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"22"
:
{
"chip_name"
:
"r-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-146.25
,
"y_cen"
:
-101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"23"
:
{
"chip_name"
:
"g-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-146.25
,
"y_cen"
:
0.0
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"24"
:
{
"chip_name"
:
"i-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-146.25
,
"y_cen"
:
101.3
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"25"
:
{
"chip_name"
:
"y-2"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-146.25
,
"y_cen"
:
202.6
,
"rotate_angle"
:
0.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"26"
:
{
"chip_name"
:
"GV-3"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-251.5
,
"y_cen"
:
-202.6
,
"rotate_angle"
:
1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"27"
:
{
"chip_name"
:
"GU-3"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-251.5
,
"y_cen"
:
-101.3
,
"rotate_angle"
:
1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"28"
:
{
"chip_name"
:
"GU-4"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-251.5
,
"y_cen"
:
0.0
,
"rotate_angle"
:
1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"29"
:
{
"chip_name"
:
"GV-4"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-251.5
,
"y_cen"
:
101.3
,
"rotate_angle"
:
1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
},
"30"
:
{
"chip_name"
:
"GI-4"
,
"pix_size"
:
0.01
,
"pix_scale"
:
0.074
,
"npix_x"
:
9216
,
"npix_y"
:
9232
,
"x_cen"
:
-251.5
,
"y_cen"
:
202.6
,
"rotate_angle"
:
1.0
,
"n_psf_samples"
:
900
,
"dark_exptime"
:
300
,
"flat_exptime"
:
150
,
"readout_time"
:
40
,
"df_strength"
:
2.3
,
"bias_level"
:
500
,
"gain"
:
1.1
,
"full_well"
:
90000
}
}
\ No newline at end of file
ObservationSim/Instrument/data/field_distortion/FieldDistModelGlobal_mainFP_v1.0.pickle
0 → 100644
View file @
fd6c3108
File added
ObservationSim/Instrument/data/field_distortion/FieldDistModelGlobal_pr4_fgs1.pickle
0 → 100644
View file @
fd6c3108
File added
ObservationSim/Instrument/data/field_distortion/FieldDistModelGlobal_pr4_fgs2.pickle
0 → 100644
View file @
fd6c3108
File added
ObservationSim/Instrument/data/field_distortion/FieldDistModelGlobal_pr4_fgs3.pickle
0 → 100644
View file @
fd6c3108
File added
ObservationSim/Instrument/data/field_distortion/FieldDistModelGlobal_pr4_fgs4.pickle
0 → 100644
View file @
fd6c3108
File added
ObservationSim/Instrument/data/field_distortion/__init__.py
0 → 100644
View file @
fd6c3108
ObservationSim/Instrument/data/field_distortion/__pycache__/__init__.cpython-39.pyc
0 → 100644
View file @
fd6c3108
File added
ObservationSim/Instrument/data/filters/fgs_sub.list
0 → 100644
View file @
fd6c3108
3000
4500
4750
5000
6000
6500
7500
8500
11000
\ No newline at end of file
ObservationSim/Instrument/data/throughputs/fgs_throughput.txt
0 → 100644
View file @
fd6c3108
# fgs_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
2030.00 0.00000
2040.00 0.00000
2050.00 0.00000
2060.00 0.00000
2070.00 0.00000
2080.00 0.00000
2090.00 0.00000
2100.00 0.00000
2110.00 0.00000
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.00001
2160.00 0.00001
2170.00 0.00001
2180.00 0.00001
2190.00 0.00001
2200.00 0.00001
2210.00 0.00001
2220.00 0.00002
2230.00 0.00002
2240.00 0.00002
2250.00 0.00002
2260.00 0.00003
2270.00 0.00003
2280.00 0.00003
2290.00 0.00004
2300.00 0.00004
2310.00 0.00005
2320.00 0.00005
2330.00 0.00006
2340.00 0.00006
2350.00 0.00007
2360.00 0.00007
2370.00 0.00008
2380.00 0.00008
2390.00 0.00009
2400.00 0.00010
2410.00 0.00011
2420.00 0.00011
2430.00 0.00012
2440.00 0.00013
2450.00 0.00014
2460.00 0.00015
2470.00 0.00016
2480.00 0.00017
2490.00 0.00018
2500.00 0.00019
2510.00 0.00019
2520.00 0.00020
2530.00 0.00021
2540.00 0.00022
2550.00 0.00023
2560.00 0.00023
2570.00 0.00022
2580.00 0.00022
2590.00 0.00021
2600.00 0.00021
2610.00 0.00021
2620.00 0.00021
2630.00 0.00021
2640.00 0.00020
2650.00 0.00020
2660.00 0.00019
2670.00 0.00018
2680.00 0.00017
2690.00 0.00017
2700.00 0.00017
2710.00 0.00016
2720.00 0.00016
2730.00 0.00016
2740.00 0.00015
2750.00 0.00015
2760.00 0.00015
2770.00 0.00016
2780.00 0.00016
2790.00 0.00017
2800.00 0.00017
2810.00 0.00018
2820.00 0.00019
2830.00 0.00019
2840.00 0.00019
2850.00 0.00020
2860.00 0.00020
2870.00 0.00021
2880.00 0.00021
2890.00 0.00022
2900.00 0.00022
2910.00 0.00023
2920.00 0.00023
2930.00 0.00023
2940.00 0.00023
2950.00 0.00023
2960.00 0.00022
2970.00 0.00022
2980.00 0.00022
2990.00 0.00023
3.000000000000000000e+03 6.330812045813337396e-02
3.020000000000000000e+03 7.670753732263933811e-02
3.040000000000000000e+03 9.457913538725945535e-02
3.060000000000000000e+03 1.105372967685317592e-01
3.080000000000000000e+03 1.215876025117385434e-01
3.100000000000000000e+03 1.389672390312199912e-01
3.120000000000000000e+03 1.548650104743574119e-01
3.140000000000000000e+03 1.640442971960397456e-01
3.160000000000000000e+03 1.741930486442928860e-01
3.180000000000000000e+03 1.961257608548894471e-01
3.200000000000000000e+03 2.126123985149099282e-01
3.220000000000000000e+03 2.240846159413707739e-01
3.240000000000000000e+03 2.341222206386793514e-01
3.260000000000000000e+03 2.473473146680077173e-01
3.280000000000000000e+03 2.745360934284346577e-01
3.300000000000000000e+03 3.183086156598757266e-01
3.320000000000000000e+03 3.490051635873731573e-01
3.340000000000000000e+03 3.584389645493231136e-01
3.360000000000000000e+03 3.670722141894850465e-01
3.380000000000000000e+03 3.848601057255426339e-01
3.400000000000000000e+03 3.930832812193503223e-01
3.420000000000000000e+03 3.959170003201946675e-01
3.440000000000000000e+03 3.869439373769253399e-01
3.460000000000000000e+03 3.800336768323384629e-01
3.480000000000000000e+03 3.913153410850532254e-01
3.500000000000000000e+03 3.911448284461088165e-01
3.520000000000000000e+03 3.821299767417433713e-01
3.540000000000000000e+03 3.649787404087624365e-01
3.560000000000000000e+03 3.510985641831776416e-01
3.580000000000000000e+03 3.335438354240993220e-01
3.600000000000000000e+03 3.247943385500417501e-01
3.620000000000000000e+03 3.229360094194214104e-01
3.640000000000000000e+03 3.150634301845712248e-01
3.660000000000000000e+03 3.113848380582427411e-01
3.680000000000000000e+03 3.122022537429203770e-01
3.700000000000000000e+03 3.116217669176988836e-01
3.720000000000000000e+03 3.048772307120263259e-01
3.740000000000000000e+03 3.037785583961263858e-01
3.760000000000000000e+03 3.154303356914772705e-01
3.780000000000000000e+03 3.255325925687380662e-01
3.800000000000000000e+03 3.264902551728756652e-01
3.820000000000000000e+03 3.307967579681854731e-01
3.840000000000000000e+03 3.441822280754525121e-01
3.860000000000000000e+03 3.562799265950001848e-01
3.880000000000000000e+03 3.698810755509576720e-01
3.900000000000000000e+03 3.831557928385191936e-01
3.920000000000000000e+03 3.906082419359617197e-01
3.940000000000000000e+03 3.971628421019942068e-01
3.960000000000000000e+03 4.092462479862696845e-01
3.980000000000000000e+03 4.197953207663929209e-01
4.000000000000000000e+03 4.283314763335623332e-01
4.020000000000000000e+03 4.385490684074989098e-01
4.040000000000000000e+03 4.508391884655688631e-01
4.060000000000000000e+03 4.645617832389959956e-01
4.080000000000000000e+03 4.808966283632188365e-01
4.100000000000000000e+03 4.969737082794632999e-01
4.120000000000000000e+03 5.103332043888777481e-01
4.140000000000000000e+03 5.276038587486608922e-01
4.160000000000000000e+03 5.473026924613549893e-01
4.180000000000000000e+03 5.652568378983251485e-01
4.200000000000000000e+03 5.806005651337102780e-01
4.220000000000000000e+03 5.903466706846162149e-01
4.240000000000000000e+03 6.013259161859484392e-01
4.260000000000000000e+03 6.116676934616835926e-01
4.280000000000000000e+03 6.230723546471242935e-01
4.300000000000000000e+03 6.337683557884759011e-01
4.320000000000000000e+03 6.418998404044518047e-01
4.340000000000000000e+03 6.498941060820193627e-01
4.360000000000000000e+03 6.532370766962771746e-01
4.380000000000000000e+03 6.584168605572161548e-01
4.400000000000000000e+03 6.623832077987570344e-01
4.420000000000000000e+03 6.637032492759566971e-01
4.440000000000000000e+03 6.625928763230863883e-01
4.460000000000000000e+03 6.550664013283420406e-01
4.480000000000000000e+03 6.458614738891323981e-01
4.500000000000000000e+03 6.355518019916817085e-01
4.520000000000000000e+03 6.219272586521428225e-01
4.540000000000000000e+03 6.080489229191166078e-01
4.560000000000000000e+03 5.943746991424413428e-01
4.580000000000000000e+03 5.842844039273258350e-01
4.600000000000000000e+03 5.753944892073880046e-01
4.620000000000000000e+03 5.671720542032158141e-01
4.640000000000000000e+03 5.642419538720495620e-01
4.660000000000000000e+03 5.615862886193648817e-01
4.680000000000000000e+03 5.569096633489849513e-01
4.700000000000000000e+03 5.561119196612702709e-01
4.720000000000000000e+03 5.575673732184446285e-01
4.740000000000000000e+03 5.591322084872266673e-01
4.760000000000000000e+03 5.697554334390410036e-01
4.780000000000000000e+03 5.683525396406713392e-01
4.800000000000000000e+03 5.696960107745417945e-01
4.820000000000000000e+03 5.800592351147152437e-01
4.840000000000000000e+03 5.872527835376745164e-01
4.860000000000000000e+03 5.946846974239301531e-01
4.880000000000000000e+03 6.030204096264187852e-01
4.900000000000000000e+03 6.138975750423433242e-01
4.920000000000000000e+03 6.247826287419537827e-01
4.940000000000000000e+03 6.333104087704682916e-01
4.960000000000000000e+03 6.408367374674480699e-01
4.980000000000000000e+03 6.459501416982532662e-01
5.000000000000000000e+03 6.516698291495482964e-01
5.020000000000000000e+03 6.518080308202535145e-01
5.040000000000000000e+03 6.532712923346204459e-01
5.060000000000000000e+03 6.538447970502083706e-01
5.080000000000000000e+03 6.496735216634323962e-01
5.100000000000000000e+03 6.436688719354790589e-01
5.120000000000000000e+03 6.377366259982214514e-01
5.140000000000000000e+03 6.323700953191770946e-01
5.160000000000000000e+03 6.300503567451554154e-01
5.180000000000000000e+03 6.301189034891401253e-01
5.200000000000000000e+03 6.283446118520072954e-01
5.220000000000000000e+03 6.266360532956244400e-01
5.240000000000000000e+03 6.232276058151379194e-01
5.260000000000000000e+03 6.244308022322327956e-01
5.280000000000000000e+03 6.248724307930481059e-01
5.300000000000000000e+03 6.258149046943198845e-01
5.320000000000000000e+03 6.250463130955835611e-01
5.340000000000000000e+03 6.223741452974395072e-01
5.360000000000000000e+03 6.212597845964885623e-01
5.380000000000000000e+03 6.209861969073811050e-01
5.400000000000000000e+03 6.177958767393054718e-01
5.420000000000000000e+03 6.132338416418634530e-01
5.440000000000000000e+03 6.083217679188620552e-01
5.460000000000000000e+03 6.012603597017081025e-01
5.480000000000000000e+03 5.940061547963575439e-01
5.500000000000000000e+03 5.841448702792774172e-01
5.520000000000000000e+03 5.756456145431929627e-01
5.540000000000000000e+03 5.648028604329227154e-01
5.560000000000000000e+03 5.549481672930591802e-01
5.580000000000000000e+03 5.504339608010132556e-01
5.600000000000000000e+03 5.435111143109307985e-01
5.620000000000000000e+03 5.357476709746004095e-01
5.640000000000000000e+03 5.320148855071296090e-01
5.660000000000000000e+03 5.305971987546633795e-01
5.680000000000000000e+03 5.299307527523110517e-01
5.700000000000000000e+03 5.346642314745955193e-01
5.720000000000000000e+03 5.430049747935866700e-01
5.740000000000000000e+03 5.558472631010458187e-01
5.760000000000000000e+03 5.669705280463437358e-01
5.780000000000000000e+03 5.776084154271731164e-01
5.800000000000000000e+03 5.846068867977080030e-01
5.820000000000000000e+03 5.841426001125640255e-01
5.840000000000000000e+03 5.836784599053755906e-01
5.860000000000000000e+03 5.804189712888555563e-01
5.880000000000000000e+03 5.756940009671260849e-01
5.900000000000000000e+03 5.693182480810373702e-01
5.920000000000000000e+03 5.611052256713775499e-01
5.940000000000000000e+03 5.523048765312131847e-01
5.960000000000000000e+03 5.437306577323383072e-01
5.980000000000000000e+03 5.376371945410282072e-01
6.000000000000000000e+03 5.339523585903820369e-01
6.020000000000000000e+03 5.310235535682374941e-01
6.040000000000000000e+03 5.293611314324186967e-01
6.060000000000000000e+03 5.256837343916562766e-01
6.080000000000000000e+03 5.231569040388276415e-01
6.100000000000000000e+03 5.191150751161285326e-01
6.120000000000000000e+03 5.153621981380848149e-01
6.140000000000000000e+03 5.128734859390938761e-01
6.160000000000000000e+03 5.084410244339570006e-01
6.180000000000000000e+03 5.048611772358244654e-01
6.200000000000000000e+03 5.006861472431808346e-01
6.220000000000000000e+03 4.960558780734578010e-01
6.240000000000000000e+03 4.900570417343015350e-01
6.260000000000000000e+03 4.830150485163599017e-01
6.280000000000000000e+03 4.770585338663891894e-01
6.300000000000000000e+03 4.714641482003744111e-01
6.320000000000000000e+03 4.638887736233234804e-01
6.340000000000000000e+03 4.566966192255730306e-01
6.360000000000000000e+03 4.506189218033286314e-01
6.380000000000000000e+03 4.460796083285573643e-01
6.400000000000000000e+03 4.384459460600405589e-01
6.420000000000000000e+03 4.331915864885545475e-01
6.440000000000000000e+03 4.279303987220463013e-01
6.460000000000000000e+03 4.227449336119846746e-01
6.480000000000000000e+03 4.204051336069846712e-01
6.500000000000000000e+03 4.150341880711640452e-01
6.520000000000000000e+03 4.108533980246649731e-01
6.540000000000000000e+03 4.064237858210493770e-01
6.560000000000000000e+03 4.009942600174490335e-01
6.580000000000000000e+03 3.969206078670676208e-01
6.600000000000000000e+03 3.921941041785945159e-01
6.620000000000000000e+03 3.901572913901848461e-01
6.640000000000000000e+03 3.838818332277898482e-01
6.660000000000000000e+03 3.810472472273133127e-01
6.680000000000000000e+03 3.776929839247752940e-01
6.700000000000000000e+03 3.736463752561881568e-01
6.720000000000000000e+03 3.695741552685452569e-01
6.740000000000000000e+03 3.645821012155553986e-01
6.760000000000000000e+03 3.592049937500626511e-01
6.780000000000000000e+03 3.529097185814455973e-01
6.800000000000000000e+03 3.450700831901369892e-01
6.820000000000000000e+03 3.369151616324637111e-01
6.840000000000000000e+03 3.281033029595681882e-01
6.860000000000000000e+03 3.185352705634660886e-01
6.880000000000000000e+03 3.100990766653634045e-01
6.900000000000000000e+03 3.027636582135314613e-01
6.920000000000000000e+03 2.986803434058665774e-01
6.940000000000000000e+03 2.973311905406896272e-01
6.960000000000000000e+03 2.951659284284126605e-01
6.980000000000000000e+03 2.963826489307986312e-01
7.000000000000000000e+03 2.961879034028243596e-01
7.020000000000000000e+03 2.969209343829541936e-01
7.040000000000000000e+03 2.971311859308420344e-01
7.060000000000000000e+03 2.971074025707563515e-01
7.080000000000000000e+03 2.989979227303383724e-01
7.100000000000000000e+03 2.997423693977802617e-01
7.120000000000000000e+03 3.012606277644150343e-01
7.140000000000000000e+03 3.046461180094032772e-01
7.160000000000000000e+03 3.050279658318308940e-01
7.180000000000000000e+03 3.084475199188941308e-01
7.200000000000000000e+03 3.102379542923985878e-01
7.220000000000000000e+03 3.134101659412124596e-01
7.240000000000000000e+03 3.151539334892823896e-01
7.260000000000000000e+03 3.175207509574417553e-01
7.280000000000000000e+03 3.187048622233846218e-01
7.300000000000000000e+03 3.188527701469067166e-01
7.320000000000000000e+03 3.219798323513023419e-01
7.340000000000000000e+03 3.234702314235740062e-01
7.360000000000000000e+03 3.229390842565718067e-01
7.380000000000000000e+03 3.254616904399315058e-01
7.400000000000000000e+03 3.287265528015929639e-01
7.420000000000000000e+03 3.284602333599662694e-01
7.440000000000000000e+03 3.302148782338085731e-01
7.460000000000000000e+03 3.308622008749660393e-01
7.480000000000000000e+03 3.332497780337516646e-01
7.500000000000000000e+03 3.341795178746836958e-01
7.520000000000000000e+03 3.344349988534341955e-01
7.540000000000000000e+03 3.332260762211604055e-01
7.560000000000000000e+03 3.331830608070346922e-01
7.580000000000000000e+03 3.298711135874501377e-01
7.600000000000000000e+03 3.269689508224936647e-01
7.620000000000000000e+03 3.234669526455535848e-01
7.640000000000000000e+03 3.188945876469818641e-01
7.660000000000000000e+03 3.144740486886982711e-01
7.680000000000000000e+03 3.113076564346033970e-01
7.700000000000000000e+03 3.055636426807978867e-01
7.720000000000000000e+03 2.994744442254859695e-01
7.740000000000000000e+03 2.936319897951902846e-01
7.760000000000000000e+03 2.845595920183053851e-01
7.780000000000000000e+03 2.806121050327816113e-01
7.800000000000000000e+03 2.745157052825408228e-01
7.820000000000000000e+03 2.651318850419535078e-01
7.840000000000000000e+03 2.585209636065871064e-01
7.860000000000000000e+03 2.530669587481049199e-01
7.880000000000000000e+03 2.464881627405064446e-01
7.900000000000000000e+03 2.406743817710244038e-01
7.920000000000000000e+03 2.354438585039373977e-01
7.940000000000000000e+03 2.285275463972708532e-01
7.960000000000000000e+03 2.234443732732284416e-01
7.980000000000000000e+03 2.195122817344314359e-01
8.000000000000000000e+03 2.136943301987624388e-01
8.020000000000000000e+03 2.084856610606970195e-01
8.040000000000000000e+03 2.043419981916429762e-01
8.060000000000000000e+03 1.993875197984136816e-01
8.080000000000000000e+03 1.955335064521863953e-01
8.100000000000000000e+03 1.922159831039149391e-01
8.120000000000000000e+03 1.869017018935093533e-01
8.140000000000000000e+03 1.820400563909129188e-01
8.160000000000000000e+03 1.774780237778252057e-01
8.180000000000000000e+03 1.737060281058993849e-01
8.200000000000000000e+03 1.694588745985709799e-01
8.220000000000000000e+03 1.653843071978200463e-01
8.240000000000000000e+03 1.592560711484660163e-01
8.260000000000000000e+03 1.565567838750303864e-01
8.280000000000000000e+03 1.506990508160362674e-01
8.300000000000000000e+03 1.480953078201978357e-01
8.320000000000000000e+03 1.437376111902471110e-01
8.340000000000000000e+03 1.404729058447849455e-01
8.360000000000000000e+03 1.372592291057102287e-01
8.380000000000000000e+03 1.329058031558858766e-01
8.400000000000000000e+03 1.307410302822971104e-01
8.420000000000000000e+03 1.264611232238202765e-01
8.440000000000000000e+03 1.242766651401362027e-01
8.460000000000000000e+03 1.208566585603343957e-01
8.480000000000000000e+03 1.211408952218965274e-01
8.500000000000000000e+03 1.159971059148543898e-01
8.520000000000000000e+03 1.156794110135086762e-01
8.540000000000000000e+03 1.134926750170283521e-01
8.560000000000000000e+03 1.102168508025114235e-01
8.580000000000000000e+03 1.084476661433103895e-01
8.600000000000000000e+03 1.063678996107481761e-01
8.620000000000000000e+03 1.067784882985486489e-01
8.640000000000000000e+03 1.041553336430688093e-01
8.660000000000000000e+03 1.020402109396171680e-01
8.680000000000000000e+03 1.006314137768552081e-01
8.700000000000000000e+03 9.857542022709921137e-02
8.720000000000000000e+03 9.653418561820979737e-02
8.740000000000000000e+03 9.570772023030221787e-02
8.760000000000000000e+03 9.502518967909456826e-02
8.780000000000000000e+03 9.125704318931475434e-02
8.800000000000000000e+03 9.053609484137646601e-02
8.820000000000000000e+03 8.903474462460286842e-02
8.840000000000000000e+03 8.712263207902269657e-02
8.860000000000000000e+03 8.702615551048560605e-02
8.880000000000000000e+03 8.614488367494706200e-02
8.900000000000000000e+03 8.469071208522860328e-02
8.920000000000000000e+03 8.452032332293747674e-02
8.940000000000000000e+03 8.354251730142032983e-02
8.960000000000000000e+03 8.312831618683128032e-02
8.980000000000000000e+03 8.397758417473982773e-02
9.000000000000000000e+03 8.299107975344817423e-02
9.020000000000000000e+03 8.341212235828138200e-02
9.040000000000000000e+03 8.276247063841721263e-02
9.060000000000000000e+03 8.380120937568864836e-02
9.080000000000000000e+03 8.390936894661546464e-02
9.100000000000000000e+03 8.306611052508089399e-02
9.120000000000000000e+03 8.322584853144904260e-02
9.140000000000000000e+03 8.302444095302498328e-02
9.160000000000000000e+03 8.358664328270840049e-02
9.180000000000000000e+03 8.373778874958179297e-02
9.200000000000000000e+03 8.329015253129340435e-02
9.220000000000000000e+03 8.379895247790730695e-02
9.240000000000000000e+03 8.293657732715227493e-02
9.260000000000000000e+03 8.342705472074199435e-02
9.280000000000000000e+03 8.389855332904598562e-02
9.300000000000000000e+03 8.353722389692258554e-02
9.320000000000000000e+03 8.371628414300567866e-02
9.340000000000000000e+03 8.353284327405011145e-02
9.360000000000000000e+03 8.372392941746052697e-02
9.380000000000000000e+03 8.420777408855252555e-02
9.400000000000000000e+03 8.365869767404586488e-02
9.420000000000000000e+03 8.368499745363083830e-02
9.440000000000000000e+03 8.286521510379278588e-02
9.460000000000000000e+03 8.216160124306329249e-02
9.480000000000000000e+03 8.098376645095871351e-02
9.500000000000000000e+03 7.900884993664369915e-02
9.520000000000000000e+03 7.739515770405083761e-02
9.540000000000000000e+03 7.470269968877611688e-02
9.560000000000000000e+03 7.290537365533740488e-02
9.580000000000000000e+03 7.111739872391897865e-02
9.600000000000000000e+03 6.753647699994888565e-02
9.620000000000000000e+03 6.462253741359788584e-02
9.640000000000000000e+03 6.114839144175982649e-02
9.660000000000000000e+03 5.836441585067562304e-02
9.680000000000000000e+03 5.520030743697974113e-02
9.700000000000000000e+03 5.151802857504592797e-02
9.720000000000000000e+03 4.809081912036581447e-02
9.740000000000000000e+03 4.507763293296207507e-02
9.760000000000000000e+03 4.186747962506227883e-02
9.780000000000000000e+03 3.873394191998657393e-02
9.800000000000000000e+03 3.537927365930625123e-02
9.820000000000000000e+03 3.228212663204375887e-02
9.840000000000000000e+03 2.927699054486324060e-02
9.860000000000000000e+03 2.657915917384370483e-02
9.880000000000000000e+03 2.408316715582172265e-02
9.900000000000000000e+03 2.154984942805426157e-02
9.920000000000000000e+03 1.938369744705135608e-02
9.940000000000000000e+03 1.757698930679396643e-02
9.960000000000000000e+03 1.609397304462095724e-02
9.980000000000000000e+03 1.469027658303642334e-02
1.000000000000000000e+04 1.368666642185365455e-02
1.002000000000000000e+04 1.291044201036543014e-02
1.004000000000000000e+04 1.216390108682897757e-02
1.006000000000000000e+04 1.150121547147748766e-02
1.008000000000000000e+04 1.076443214145479839e-02
1.010000000000000000e+04 1.005329208594590157e-02
1.012000000000000000e+04 9.398529569841272344e-03
1.014000000000000000e+04 8.732196281031586252e-03
1.016000000000000000e+04 8.141224219461267592e-03
1.018000000000000000e+04 7.544605863533185297e-03
1.020000000000000000e+04 6.921036505864287293e-03
1.022000000000000000e+04 6.371952630320352508e-03
1.024000000000000000e+04 5.812210196609848140e-03
1.026000000000000000e+04 5.370073253453029778e-03
1.028000000000000000e+04 4.877044428434076061e-03
1.030000000000000000e+04 4.396319799938341356e-03
1.032000000000000000e+04 3.991872206723765318e-03
1.034000000000000000e+04 3.600811182396204679e-03
1.036000000000000000e+04 3.245860720593829116e-03
1.038000000000000000e+04 2.915740832931405704e-03
1.040000000000000000e+04 2.615374215278883432e-03
1.042000000000000000e+04 2.362676314302520827e-03
1.044000000000000000e+04 2.134084766313759044e-03
1.046000000000000000e+04 1.947779905279889640e-03
1.048000000000000000e+04 1.809367063179470863e-03
1.050000000000000000e+04 1.684137565890356757e-03
1.052000000000000000e+04 1.592386385136092394e-03
1.054000000000000000e+04 1.502396623571386827e-03
1.056000000000000000e+04 1.412937374254588435e-03
1.058000000000000000e+04 1.332566704508197962e-03
1.060000000000000000e+04 1.249076612780975057e-03
1.062000000000000000e+04 1.168011100011822874e-03
1.064000000000000000e+04 1.093403142437080530e-03
1.066000000000000000e+04 1.017231975596058101e-03
1.068000000000000000e+04 9.541878197899651909e-04
1.070000000000000000e+04 8.818853783550537799e-04
1.072000000000000000e+04 8.177561499277094569e-04
1.074000000000000000e+04 7.580692671650877913e-04
1.076000000000000000e+04 7.049075738400470458e-04
1.078000000000000000e+04 6.549480091503107494e-04
1.080000000000000000e+04 6.044486155346169261e-04
1.082000000000000000e+04 5.592755411023689945e-04
1.084000000000000000e+04 5.213102213921029819e-04
1.086000000000000000e+04 4.846714550727942755e-04
1.088000000000000000e+04 4.552350096777482550e-04
1.090000000000000000e+04 4.268609951691339915e-04
1.092000000000000000e+04 4.049802108627010948e-04
1.094000000000000000e+04 3.869359935817117866e-04
1.096000000000000000e+04 3.759120063398248800e-04
1.098000000000000000e+04 3.689708894652466136e-04
1.100000000000000000e+04 3.650072107129869185e-04
ObservationSim/Instrument/data/throughputs/g_throughput.txt
View file @
fd6c3108
# g_css
# g_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -14,102 +15,102 @@
2120.00 0.00000
2130.00 0.00000
2140.00 0.00000
2150.00 0.0000
0
2160.00 0.0000
0
2170.00 0.0000
0
2180.00 0.0000
0
2190.00 0.0000
0
2200.00 0.0000
0
2210.00 0.0000
0
2220.00 0.0000
0
2230.00 0.0000
0
2240.00 0.0000
0
2250.00 0.0000
0
2260.00 0.0000
0
2270.00 0.0000
0
2280.00 0.0000
0
2290.00 0.0000
0
2300.00 0.0000
0
2310.00 0.0000
0
2320.00 0.0000
0
2330.00 0.0000
0
2340.00 0.0000
0
2350.00 0.0000
0
2360.00 0.0000
0
2370.00 0.0000
0
2380.00 0.0000
0
2390.00 0.0000
0
2400.00 0.000
0
0
2410.00 0.000
00
2420.00 0.000
00
2430.00 0.000
00
2440.00 0.000
00
2450.00 0.000
00
2460.00 0.000
00
2470.00 0.000
00
2480.00 0.000
00
2490.00 0.000
00
2500.00 0.000
00
2510.00 0.000
00
2520.00 0.000
0
0
2530.00 0.000
00
2540.00 0.000
00
2550.00 0.000
00
2560.00 0.000
00
2570.00 0.000
00
2580.00 0.000
00
2590.00 0.000
00
2600.00 0.000
00
2610.00 0.000
00
2620.00 0.000
00
2630.00 0.000
00
2640.00 0.000
0
0
2650.00 0.000
0
0
2660.00 0.000
00
2670.00 0.000
00
2680.00 0.000
00
2690.00 0.000
00
2700.00 0.000
00
2710.00 0.000
00
2720.00 0.000
00
2730.00 0.000
00
2740.00 0.000
00
2750.00 0.000
00
2760.00 0.000
00
2770.00 0.000
00
2780.00 0.000
00
2790.00 0.000
00
2800.00 0.000
00
2810.00 0.000
00
2820.00 0.000
00
2830.00 0.000
00
2840.00 0.000
00
2850.00 0.000
0
0
2860.00 0.000
0
0
2870.00 0.000
00
2880.00 0.000
00
2890.00 0.000
00
2900.00 0.000
00
2910.00 0.000
00
2920.00 0.000
00
2930.00 0.000
00
2940.00 0.000
00
2950.00 0.000
00
2960.00 0.000
00
2970.00 0.000
00
2980.00 0.000
00
2990.00 0.000
00
3000.00 0.000
00
3010.00 0.000
00
3020.00 0.000
00
3030.00 0.000
00
3040.00 0.000
00
3050.00 0.0000
0
3060.00 0.0000
0
3070.00 0.0000
0
3080.00 0.0000
0
3090.00 0.0000
0
3100.00 0.0000
0
2150.00 0.0000
1
2160.00 0.0000
1
2170.00 0.0000
1
2180.00 0.0000
1
2190.00 0.0000
1
2200.00 0.0000
1
2210.00 0.0000
1
2220.00 0.0000
2
2230.00 0.0000
2
2240.00 0.0000
2
2250.00 0.0000
2
2260.00 0.0000
3
2270.00 0.0000
3
2280.00 0.0000
3
2290.00 0.0000
4
2300.00 0.0000
4
2310.00 0.0000
5
2320.00 0.0000
5
2330.00 0.0000
6
2340.00 0.0000
6
2350.00 0.0000
7
2360.00 0.0000
7
2370.00 0.0000
8
2380.00 0.0000
8
2390.00 0.0000
9
2400.00 0.000
1
0
2410.00 0.000
11
2420.00 0.000
11
2430.00 0.000
12
2440.00 0.000
13
2450.00 0.000
14
2460.00 0.000
15
2470.00 0.000
16
2480.00 0.000
17
2490.00 0.000
18
2500.00 0.000
19
2510.00 0.000
19
2520.00 0.000
2
0
2530.00 0.000
21
2540.00 0.000
22
2550.00 0.000
23
2560.00 0.000
23
2570.00 0.000
22
2580.00 0.000
22
2590.00 0.000
21
2600.00 0.000
21
2610.00 0.000
21
2620.00 0.000
21
2630.00 0.000
21
2640.00 0.000
2
0
2650.00 0.000
2
0
2660.00 0.000
19
2670.00 0.000
18
2680.00 0.000
17
2690.00 0.000
17
2700.00 0.000
17
2710.00 0.000
16
2720.00 0.000
16
2730.00 0.000
16
2740.00 0.000
15
2750.00 0.000
15
2760.00 0.000
15
2770.00 0.000
16
2780.00 0.000
16
2790.00 0.000
17
2800.00 0.000
17
2810.00 0.000
18
2820.00 0.000
19
2830.00 0.000
19
2840.00 0.000
19
2850.00 0.000
2
0
2860.00 0.000
2
0
2870.00 0.000
21
2880.00 0.000
21
2890.00 0.000
22
2900.00 0.000
22
2910.00 0.000
23
2920.00 0.000
23
2930.00 0.000
23
2940.00 0.000
23
2950.00 0.000
23
2960.00 0.000
22
2970.00 0.000
22
2980.00 0.000
22
2990.00 0.000
23
3000.00 0.000
23
3010.00 0.000
29
3020.00 0.000
29
3030.00 0.000
23
3040.00 0.000
15
3050.00 0.0000
8
3060.00 0.0000
3
3070.00 0.0000
2
3080.00 0.0000
1
3090.00 0.0000
1
3100.00 0.0000
1
3110.00 0.00000
3120.00 0.00000
3130.00 0.00000
...
...
@@ -184,194 +185,194 @@
3820.00 0.00000
3830.00 0.00000
3840.00 0.00000
3850.00 0.0000
0
3860.00 0.0000
0
3870.00 0.0000
0
3880.00 0.0000
0
3890.00 0.0000
0
3900.00 0.0000
0
3910.00 0.000
00
3920.00 0.000
00
3930.00 0.000
0
0
3940.00 0.00
0
00
3950.00 0.00
000
3960.00 0.00
000
3970.00 0.00
000
3980.00 0.0
0000
3990.00 0.0
0000
4000.00 0.0
0000
4010.00 0.
00000
4020.00 0.
04006
4030.00 0.
12152
4040.00 0.
20475
4050.00 0.
28977
4060.00 0.3
7657
4070.00 0.
42288
4080.00 0.
42736
4090.00 0.4
3186
4100.00 0.4
363
6
4110.00 0.4
4008
4120.00 0.44
382
4130.00 0.4
4756
4140.00 0.45
131
4150.00 0.4550
6
4160.00 0.4
5883
4170.00 0.46
261
4180.00 0.4
6639
4190.00 0.47
019
4200.00 0.4
7399
4210.00 0.4
76
80
4220.00 0.4
7961
4230.00 0.4
8243
4240.00 0.
48525
4250.00 0.
48808
4260.00 0.
4909
2
4270.00 0.
49376
4280.00 0.
49661
4290.00 0.
49947
4300.00 0.5
0233
4310.00 0.5
0513
4320.00 0.5
0793
4330.00 0.5
1074
4340.00 0.5
1356
4350.00 0.5
1638
4360.00 0.5
1921
4370.00 0.5
2
20
4
4380.00 0.5
2488
4390.00 0.5
2773
4400.00 0.5
30
58
4410.00 0.5
3337
4420.00 0.5
3616
4430.00 0.5
3896
4440.00 0.5
4177
4450.00 0.5
4458
4460.00 0.5
4740
4470.00 0.5
5022
4480.00 0.5
5305
4490.00 0.5
5588
4500.00 0.5
5872
4510.00 0.5
6107
4520.00 0.5
6344
4530.00 0.5
658
0
4540.00 0.5
6817
4550.00 0.57
054
4560.00 0.57
292
4570.00 0.57
530
4580.00 0.5
7769
4590.00 0.5
8008
4600.00 0.5
8248
4610.00 0.5
8480
4620.00 0.5
8714
4630.00 0.5
894
7
4640.00 0.5
9182
4650.00 0.5
9416
4660.00 0.5
965
1
4670.00 0.5
9886
4680.00 0.
60122
4690.00 0.
60358
4700.00 0.
60595
4710.00 0.
60810
4720.00 0.
61026
4730.00 0.61
243
4740.00 0.
61459
4750.00 0.
61668
4760.00 0.
61805
4770.00 0.
61942
4780.00 0.
62078
4790.00 0.
62215
4800.00 0.
62352
4810.00 0.
6246
7
4820.00 0.
62
582
4830.00 0.
62698
4840.00 0.
62813
4850.00 0.6
2928
4860.00 0.6
3043
4870.00 0.6
315
8
4880.00 0.6
3274
4890.00 0.6
3389
4900.00 0.6
350
4
4910.00 0.63
590
4920.00 0.63
677
4930.00 0.6
3763
4940.00 0.6
3850
4950.00 0.6
3936
4960.00 0.6
4022
4970.00 0.6
4109
4980.00 0.6
419
5
4990.00 0.6
4282
5000.00 0.6
4368
5010.00 0.6
4433
5020.00 0.6
4498
5030.00 0.6
4562
5040.00 0.6
4627
5050.00 0.6
469
2
5060.00 0.6
4757
5070.00 0.6
4822
5080.00 0.6
4886
5090.00 0.6
4951
5100.00 0.6
5016
5110.00 0.6
5095
5120.00 0.6
5174
5130.00 0.6
5254
5140.00 0.
65333
5150.00 0.
65412
5160.00 0.
65491
5170.00 0.
65570
5180.00 0.
65650
5190.00 0.
6572
9
5200.00 0.
65808
5210.00 0.
65866
5220.00 0.6
5923
5230.00 0.659
81
5240.00 0.6
6038
5250.00 0.6
60
96
5260.00 0.6
6154
5270.00 0.6
6211
5280.00 0.6
6269
5290.00 0.6
6326
5300.00 0.6
6384
5310.00 0.6
6406
5320.00 0.
66427
5330.00 0.
66449
5340.00 0.
66470
5350.00 0.
66492
5360.00 0.
66514
5370.00 0.
66535
5380.00 0.
66557
5390.00 0.
6657
8
5400.00 0.
66600
5410.00 0.6
6622
5420.00 0.6
664
3
5430.00 0.6
6665
5440.00 0.6
6686
5450.00 0.667
08
5460.00 0.6
6730
5470.00 0.
66
75
1
5480.00 0.
66773
5490.00 0.
55662
5500.00 0.
4454
4
5510.00 0.
33422
5520.00 0.
22291
5530.00 0.
11150
5540.00 0.0
0000
5550.00 0.0
0000
5560.00 0.00
000
5570.00 0.00
000
5580.00 0.00
000
5590.00 0.000
00
5600.00 0.000
00
5610.00 0.000
00
5620.00 0.000
00
5630.00 0.000
00
5640.00 0.0000
0
5650.00 0.0000
0
5660.00 0.0000
0
5670.00 0.0000
0
5680.00 0.0000
0
5690.00 0.0000
0
5700.00 0.0000
0
5710.00 0.0000
0
5720.00 0.0000
0
3850.00 0.0000
1
3860.00 0.0000
1
3870.00 0.0000
2
3880.00 0.0000
3
3890.00 0.0000
6
3900.00 0.0000
9
3910.00 0.000
15
3920.00 0.000
26
3930.00 0.000
5
0
3940.00 0.00
1
00
3950.00 0.00
205
3960.00 0.00
437
3970.00 0.00
962
3980.00 0.0
2183
3990.00 0.0
4851
4000.00 0.0
9436
4010.00 0.
15746
4020.00 0.
22882
4030.00 0.
29197
4040.00 0.
33603
4050.00 0.
35924
4060.00 0.3
6793
4070.00 0.
37436
4080.00 0.
38515
4090.00 0.4
0138
4100.00 0.4
197
6
4110.00 0.4
3396
4120.00 0.44
410
4130.00 0.4
5148
4140.00 0.45
555
4150.00 0.45
9
50
4160.00 0.4
6325
4170.00 0.46
808
4180.00 0.4
7311
4190.00 0.47
932
4200.00 0.4
8490
4210.00 0.4
8
80
9
4220.00 0.4
9160
4230.00 0.4
9607
4240.00 0.
50154
4250.00 0.
50660
4260.00 0.
5118
2
4270.00 0.
51588
4280.00 0.
51954
4290.00 0.
52298
4300.00 0.5
2681
4310.00 0.5
3111
4320.00 0.5
3565
4330.00 0.5
4065
4340.00 0.5
4552
4350.00 0.5
4842
4360.00 0.5
5056
4370.00 0.5
53
20
4380.00 0.5
5497
4390.00 0.5
5628
4400.00 0.558
10
4410.00 0.5
6022
4420.00 0.5
6418
4430.00 0.5
6784
4440.00 0.5
7139
4450.00 0.5
7177
4460.00 0.5
7109
4470.00 0.5
7056
4480.00 0.5
7073
4490.00 0.5
7231
4500.00 0.5
7505
4510.00 0.5
7659
4520.00 0.5
7743
4530.00 0.5
772
0
4540.00 0.5
7605
4550.00 0.57
356
4560.00 0.57
143
4570.00 0.57
015
4580.00 0.5
6881
4590.00 0.5
6722
4600.00 0.5
6571
4610.00 0.5
6305
4620.00 0.5
6048
4630.00 0.5
591
7
4640.00 0.5
5810
4650.00 0.5
5639
4660.00 0.5
551
1
4670.00 0.5
5352
4680.00 0.
55241
4690.00 0.
55337
4700.00 0.
55467
4710.00 0.
55663
4720.00 0.
55920
4730.00 0.
5
61
96
4740.00 0.
56446
4750.00 0.
57075
4760.00 0.
57642
4770.00 0.
57513
4780.00 0.
57322
4790.00 0.
57242
4800.00 0.
57303
4810.00 0.
5790
7
4820.00 0.58
63
2
4830.00 0.
59307
4840.00 0.
59971
4850.00 0.6
0540
4860.00 0.6
1026
4870.00 0.6
144
8
4880.00 0.6
1726
4890.00 0.6
2186
4900.00 0.6
265
4
4910.00 0.63
196
4920.00 0.63
856
4930.00 0.6
4481
4940.00 0.6
5124
4950.00 0.6
5668
4960.00 0.6
6159
4970.00 0.6
6490
4980.00 0.6
674
5
4990.00 0.6
7020
5000.00 0.6
7297
5010.00 0.6
7341
5020.00 0.6
7379
5030.00 0.6
7496
5040.00 0.6
7633
5050.00 0.6
781
2
5060.00 0.6
8082
5070.00 0.6
8378
5080.00 0.6
8717
5090.00 0.6
9072
5100.00 0.6
9383
5110.00 0.6
9629
5120.00 0.6
9830
5130.00 0.6
9963
5140.00 0.
70051
5150.00 0.
70226
5160.00 0.
70355
5170.00 0.
70512
5180.00 0.
70682
5190.00 0.
7066
9
5200.00 0.
70497
5210.00 0.
70215
5220.00 0.6
9898
5230.00 0.6
9
59
7
5240.00 0.6
9425
5250.00 0.696
55
5260.00 0.6
9875
5270.00 0.6
9979
5280.00 0.6
9936
5290.00 0.6
9911
5300.00 0.6
9912
5310.00 0.6
9944
5320.00 0.
70162
5330.00 0.
70301
5340.00 0.
70379
5350.00 0.
70471
5360.00 0.
70421
5370.00 0.
70443
5380.00 0.
70456
5390.00 0.
7031
8
5400.00 0.
70132
5410.00 0.6
9908
5420.00 0.6
959
3
5430.00 0.6
9241
5440.00 0.6
8567
5450.00 0.667
43
5460.00 0.6
2882
5470.00 0.
562
75
5480.00 0.
47122
5490.00 0.
36060
5500.00 0.
2497
4
5510.00 0.
15776
5520.00 0.
08989
5530.00 0.
04709
5540.00 0.0
2357
5550.00 0.0
1164
5560.00 0.00
594
5570.00 0.00
313
5580.00 0.00
172
5590.00 0.000
99
5600.00 0.000
58
5610.00 0.000
35
5620.00 0.000
22
5630.00 0.000
14
5640.00 0.0000
9
5650.00 0.0000
6
5660.00 0.0000
4
5670.00 0.0000
3
5680.00 0.0000
2
5690.00 0.0000
1
5700.00 0.0000
1
5710.00 0.0000
1
5720.00 0.0000
1
5730.00 0.00000
5740.00 0.00000
5750.00 0.00000
...
...
@@ -599,115 +600,115 @@
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.0000
0
8010.00 0.0000
0
8020.00 0.0000
0
8030.00 0.0000
0
8040.00 0.0000
0
8000.00 0.0000
2
8010.00 0.0000
4
8020.00 0.0000
2
8030.00 0.0000
2
8040.00 0.0000
2
8050.00 0.00000
8060.00 0.00000
8070.00 0.0000
0
8080.00 0.0000
0
8090.00 0.0000
0
8070.00 0.0000
4
8080.00 0.0000
4
8090.00 0.0000
2
8100.00 0.00000
8110.00 0.0000
0
8120.00 0.0000
0
8130.00 0.0000
0
8140.00 0.0000
0
8150.00 0.0000
0
8160.00 0.0000
0
8170.00 0.0000
0
8180.00 0.0000
0
8190.00 0.0000
0
8200.00 0.0000
0
8210.00 0.0000
0
8220.00 0.0000
0
8110.00 0.0000
1
8120.00 0.0000
1
8130.00 0.0000
2
8140.00 0.0000
2
8150.00 0.0000
3
8160.00 0.0000
2
8170.00 0.0000
1
8180.00 0.0000
1
8190.00 0.0000
2
8200.00 0.0000
2
8210.00 0.0000
1
8220.00 0.0000
1
8230.00 0.00000
8240.00 0.0000
0
8250.00 0.0000
0
8260.00 0.0000
0
8270.00 0.0000
0
8280.00 0.0000
0
8290.00 0.0000
0
8300.00 0.0000
0
8310.00 0.0000
0
8320.00 0.0000
0
8330.00 0.0000
0
8340.00 0.0000
0
8350.00 0.0000
0
8360.00 0.0000
0
8370.00 0.0000
0
8380.00 0.0000
0
8390.00 0.0000
0
8400.00 0.0000
0
8410.00 0.0000
0
8420.00 0.0000
0
8430.00 0.0000
0
8440.00 0.0000
0
8450.00 0.0000
0
8460.00 0.0000
0
8470.00 0.0000
0
8480.00 0.0000
0
8490.00 0.0000
0
8500.00 0.0000
0
8510.00 0.0000
0
8520.00 0.0000
0
8530.00 0.0000
0
8540.00 0.0000
0
8550.00 0.0000
0
8560.00 0.0000
0
8570.00 0.0000
0
8580.00 0.0000
0
8590.00 0.0000
0
8600.00 0.0000
0
8610.00 0.0000
0
8620.00 0.0000
0
8630.00 0.0000
0
8640.00 0.0000
0
8650.00 0.0000
0
8660.00 0.0000
0
8670.00 0.0000
0
8240.00 0.0000
1
8250.00 0.0000
1
8260.00 0.0000
2
8270.00 0.0000
1
8280.00 0.0000
1
8290.00 0.0000
1
8300.00 0.0000
2
8310.00 0.0000
1
8320.00 0.0000
1
8330.00 0.0000
1
8340.00 0.0000
1
8350.00 0.0000
1
8360.00 0.0000
2
8370.00 0.0000
1
8380.00 0.0000
1
8390.00 0.0000
2
8400.00 0.0000
1
8410.00 0.0000
1
8420.00 0.0000
2
8430.00 0.0000
1
8440.00 0.0000
1
8450.00 0.0000
1
8460.00 0.0000
1
8470.00 0.0000
2
8480.00 0.0000
1
8490.00 0.0000
2
8500.00 0.0000
2
8510.00 0.0000
1
8520.00 0.0000
1
8530.00 0.0000
1
8540.00 0.0000
1
8550.00 0.0000
1
8560.00 0.0000
2
8570.00 0.0000
1
8580.00 0.0000
1
8590.00 0.0000
1
8600.00 0.0000
1
8610.00 0.0000
1
8620.00 0.0000
1
8630.00 0.0000
1
8640.00 0.0000
1
8650.00 0.0000
1
8660.00 0.0000
1
8670.00 0.0000
1
8680.00 0.00000
8690.00 0.00000
8700.00 0.0000
0
8700.00 0.0000
1
8710.00 0.00000
8720.00 0.0000
0
8730.00 0.0000
0
8720.00 0.0000
1
8730.00 0.0000
1
8740.00 0.00000
8750.00 0.00000
8760.00 0.0000
0
8770.00 0.0000
0
8780.00 0.0000
0
8790.00 0.0000
0
8800.00 0.0000
0
8810.00 0.0000
0
8820.00 0.0000
0
8830.00 0.0000
0
8840.00 0.0000
0
8850.00 0.0000
0
8860.00 0.0000
0
8870.00 0.0000
0
8880.00 0.0000
0
8760.00 0.0000
1
8770.00 0.0000
1
8780.00 0.0000
1
8790.00 0.0000
1
8800.00 0.0000
1
8810.00 0.0000
1
8820.00 0.0000
1
8830.00 0.0000
1
8840.00 0.0000
1
8850.00 0.0000
1
8860.00 0.0000
1
8870.00 0.0000
1
8880.00 0.0000
1
8890.00 0.00000
8900.00 0.0000
0
8910.00 0.0000
0
8920.00 0.0000
0
8900.00 0.0000
1
8910.00 0.0000
1
8920.00 0.0000
1
8930.00 0.00000
8940.00 0.0000
0
8950.00 0.0000
0
8960.00 0.0000
0
8970.00 0.0000
0
8940.00 0.0000
1
8950.00 0.0000
1
8960.00 0.0000
1
8970.00 0.0000
1
8980.00 0.00000
8990.00 0.00000
9000.00 0.00000
9010.00 0.0000
0
9010.00 0.0000
1
9020.00 0.00000
9030.00 0.00000
9040.00 0.00000
9050.00 0.00000
9060.00 0.00000
9070.00 0.00000
9080.00 0.0000
0
9080.00 0.0000
1
9090.00 0.00000
9100.00 0.00000
9110.00 0.00000
...
...
ObservationSim/Instrument/data/throughputs/i_throughput.txt
View file @
fd6c3108
# i_css
# i_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -458,227 +459,227 @@
6560.00 0.00000
6570.00 0.00000
6580.00 0.00000
6590.00 0.0000
0
6600.00 0.0000
0
6610.00 0.0000
0
6620.00 0.0000
0
6630.00 0.0000
0
6640.00 0.0000
0
6650.00 0.0000
0
6660.00 0.0000
0
6670.00 0.0000
0
6680.00 0.000
00
6690.00 0.000
00
6700.00 0.000
00
6710.00 0.000
00
6720.00 0.000
00
6730.00 0.000
00
6740.00 0.000
00
6750.00 0.00
000
6760.00 0.00
000
6770.00 0.00
000
6780.00 0.00
000
6790.00 0.00
000
6800.00 0.0
0000
6810.00 0.0
0000
6820.00 0.0
0000
6830.00 0.0
0000
6840.00 0.0
0000
6850.00 0.0
0000
6860.00 0.
04595
6870.00 0.1
3800
6880.00 0.2
3026
6890.00 0.3
2274
6900.00 0.
41542
6910.00 0.
5082
6
6920.00 0.
60128
6930.00 0.
64820
6940.00 0.
64886
6950.00 0.
64952
6960.00 0.
65018
6970.00 0.6
5084
6980.00 0.6
5151
6990.00 0.6
5217
7000.00 0.6
5283
7010.00 0.6
5335
7020.00 0.6
5386
7030.00 0.6
5438
7040.00 0.6
5489
7050.00 0.6
5541
7060.00 0.6
559
2
7070.00 0.6
5644
7080.00 0.6
5695
7090.00 0.6
5747
7100.00 0.6
5798
7110.00 0.6
5843
7120.00 0.6
588
7
7130.00 0.65
931
7140.00 0.65
975
7150.00 0.6
6019
7160.00 0.6
6063
7170.00 0.6
6108
7180.00 0.6
6152
7190.00 0.6
6196
7200.00 0.6
6240
7210.00 0.6
6262
7220.00 0.662
84
7230.00 0.663
06
7240.00 0.663
28
7250.00 0.66
350
7260.00 0.66
372
7270.00 0.66
39
5
7280.00 0.66
417
7290.00 0.66
439
7300.00 0.66
461
7310.00 0.66
483
7320.00 0.6
6505
7330.00 0.6
6527
7340.00 0.6
6549
7350.00 0.6
6571
7360.00 0.6
6593
7370.00 0.6
6615
7380.00 0.6
663
7
7390.00 0.6
6660
7400.00 0.6
668
2
7410.00 0.6
6689
7420.00 0.6
669
6
7430.00 0.6
6704
7440.00 0.6
6711
7450.00 0.6
6718
7460.00 0.6
6726
7470.00 0.6
67
33
7480.00 0.6
6740
7490.00 0.6
6748
7500.00 0.6
6755
7510.00 0.6
6755
7520.00 0.6
6755
7530.00 0.6
6755
7540.00 0.6
675
5
7550.00 0.6
6755
7560.00 0.6
6755
7570.00 0.6
6755
7580.00 0.6
6755
7590.00 0.6
6755
7600.00 0.6
675
5
7610.00 0.6
6755
7620.00 0.
66755
7630.00 0.
66755
7640.00 0.
66755
7650.00 0.
66755
7660.00 0.
66755
7670.00 0.
66755
7680.00 0.
66755
7690.00 0.
66755
7700.00 0.
66755
7710.00 0.
66733
7720.00 0.
667
11
7730.00 0.
66689
7740.00 0.
6666
7
7750.00 0.
66645
7760.00 0.
66623
7770.00 0.
66601
7780.00 0.
66579
7790.00 0.
6
655
6
7800.00 0.
6653
4
7810.00 0.
66490
7820.00 0.
66446
7830.00 0.
6640
2
7840.00 0.
66358
7850.00 0.
66314
7860.00 0.
66269
7870.00 0.
66225
7880.00 0.
66181
7890.00 0.
66137
7900.00 0.
66093
7910.00 0.
66027
7920.00 0.
65960
7930.00 0.
65894
7940.00 0.6
5828
7950.00 0.6
5762
7960.00 0.6
56
95
7970.00 0.6
5629
7980.00 0.6
556
3
7990.00 0.6
5497
8000.00 0.654
30
8010.00 0.6
5364
8020.00 0.6
5298
8030.00 0.6
5232
8040.00 0.6
5165
8050.00 0.6
5099
8060.00 0.6
5033
8070.00 0.6
4967
8080.00 0.6
4900
8090.00 0.6
4834
8100.00 0.6
476
8
8110.00 0.6466
5
8120.00 0.6
4562
8130.00 0.6
4459
8140.00 0.6
4356
8150.00 0.6
4253
8160.00 0.6
4150
8170.00 0.6
4047
8180.00 0.6
3944
8190.00 0.6
3841
8200.00 0.6
3738
8210.00 0.6
3605
8220.00 0.6
3473
8230.00 0.6
3340
8240.00 0.6
3208
8250.00 0.6
3075
8260.00 0.6
2943
8270.00 0.6
2810
8280.00 0.6
2678
8290.00 0.6
2545
8300.00 0.6
2413
8310.00 0.622
51
8320.00 0.
58640
8330.00 0.
51
606
8340.00 0.
44608
8350.00 0.
37646
8360.00 0.
30721
8370.00 0.
23831
8380.00 0.
1
69
77
8390.00 0.
10159
8400.00 0.
03377
8410.00 0.
00000
8420.00 0.
00000
8430.00 0.
00000
8440.00 0.
00000
8450.00 0.0
0000
8460.00 0.0
0000
8470.00 0.0
0000
8480.00 0.0
0000
8490.00 0.0
000
0
8500.00 0.0
0000
8510.00 0.0
0000
8520.00 0.00
000
8530.00 0.00
000
8540.00 0.00
00
0
8550.00 0.00
000
8560.00 0.00
000
8570.00 0.00
000
8580.00 0.00
000
8590.00 0.000
00
8600.00 0.000
00
8610.00 0.000
00
8620.00 0.000
00
8630.00 0.000
00
8640.00 0.000
00
8650.00 0.000
00
8660.00 0.000
00
8670.00 0.000
00
8680.00 0.0000
0
8690.00 0.0000
0
8700.00 0.0000
0
8710.00 0.0000
0
8720.00 0.0000
0
8730.00 0.0000
0
8740.00 0.0000
0
8750.00 0.0000
0
8760.00 0.0000
0
6590.00 0.0000
1
6600.00 0.0000
1
6610.00 0.0000
1
6620.00 0.0000
2
6630.00 0.0000
3
6640.00 0.0000
4
6650.00 0.0000
7
6660.00 0.0000
8
6670.00 0.0000
9
6680.00 0.000
14
6690.00 0.000
18
6700.00 0.000
25
6710.00 0.000
35
6720.00 0.000
49
6730.00 0.000
68
6740.00 0.000
95
6750.00 0.00
136
6760.00 0.00
199
6770.00 0.00
294
6780.00 0.00
445
6790.00 0.00
684
6800.00 0.0
1071
6810.00 0.0
1708
6820.00 0.0
2711
6830.00 0.0
4282
6840.00 0.0
6652
6850.00 0.0
9888
6860.00 0.
14166
6870.00 0.1
9419
6880.00 0.2
5385
6890.00 0.3
1733
6900.00 0.
37981
6910.00 0.
4379
6
6920.00 0.
48951
6930.00 0.
53083
6940.00 0.
56324
6950.00 0.
58455
6960.00 0.
59682
6970.00 0.6
0561
6980.00 0.6
0940
6990.00 0.6
0835
7000.00 0.6
0618
7010.00 0.6
0527
7020.00 0.6
0577
7030.00 0.6
0793
7040.00 0.6
1200
7050.00 0.6
1709
7060.00 0.6
232
2
7070.00 0.6
3095
7080.00 0.6
3821
7090.00 0.6
4292
7100.00 0.6
4626
7110.00 0.6
4878
7120.00 0.6
499
7
7130.00 0.65
232
7140.00 0.65
406
7150.00 0.6
5226
7160.00 0.6
5081
7170.00 0.6
5292
7180.00 0.6
5541
7190.00 0.6
5667
7200.00 0.6
5711
7210.00 0.6
5967
7220.00 0.662
07
7230.00 0.663
13
7240.00 0.663
74
7250.00 0.66
539
7260.00 0.66
680
7270.00 0.66
68
5
7280.00 0.66
702
7290.00 0.66
646
7300.00 0.66
629
7310.00 0.66
932
7320.00 0.6
7278
7330.00 0.6
7504
7340.00 0.6
7726
7350.00 0.6
7778
7360.00 0.6
7831
7370.00 0.6
8199
7380.00 0.6
857
7
7390.00 0.6
8984
7400.00 0.6
936
2
7410.00 0.6
9332
7420.00 0.6
927
6
7430.00 0.6
9385
7440.00 0.6
9474
7450.00 0.6
9416
7460.00 0.6
9332
7470.00 0.6
94
33
7480.00 0.6
9497
7490.00 0.6
9420
7500.00 0.6
9362
7510.00 0.6
9276
7520.00 0.6
9222
7530.00 0.6
9099
7540.00 0.6
902
5
7550.00 0.6
9202
7560.00 0.6
9383
7570.00 0.6
9339
7580.00 0.6
9343
7590.00 0.6
9509
7600.00 0.6
970
5
7610.00 0.6
9930
7620.00 0.
70161
7630.00 0.
70368
7640.00 0.
70584
7650.00 0.
70841
7660.00 0.
71096
7670.00 0.
71507
7680.00 0.
71902
7690.00 0.
71999
7700.00 0.
72073
7710.00 0.
72065
7720.00 0.
720
11
7730.00 0.
71996
7740.00 0.
7195
7
7750.00 0.
71536
7760.00 0.
71111
7770.00 0.
71377
7780.00 0.
71623
7790.00 0.
71
655
7800.00 0.
7172
4
7810.00 0.
71336
7820.00 0.
70964
7830.00 0.
7096
2
7840.00 0.
70961
7850.00 0.
71095
7860.00 0.
71248
7870.00 0.
71171
7880.00 0.
71055
7890.00 0.
70995
7900.00 0.
70901
7910.00 0.
70812
7920.00 0.
70705
7930.00 0.
70299
7940.00 0.6
9865
7950.00 0.6
9705
7960.00 0.695
56
7970.00 0.6
9552
7980.00 0.6
957
3
7990.00 0.6
9293
8000.00 0.6
90
54
8010.00 0.6
8913
8020.00 0.6
8773
8030.00 0.6
8869
8040.00 0.6
8958
8050.00 0.6
8922
8060.00 0.6
8897
8070.00 0.6
9058
8080.00 0.6
9198
8090.00 0.6
9425
8100.00 0.6
965
8
8110.00 0.6
9
466
8120.00 0.6
9258
8130.00 0.6
9134
8140.00 0.6
9023
8150.00 0.6
8944
8160.00 0.6
8843
8170.00 0.6
8879
8180.00 0.6
8882
8190.00 0.6
8806
8200.00 0.6
8653
8210.00 0.6
8482
8220.00 0.6
8292
8230.00 0.6
7639
8240.00 0.6
7012
8250.00 0.6
7081
8260.00 0.6
7174
8270.00 0.6
6608
8280.00 0.6
6080
8290.00 0.6
6262
8300.00 0.6
6391
8310.00 0.6
59
22
8320.00 0.
65126
8330.00 0.6
4
06
4
8340.00 0.
62381
8350.00 0.
59850
8360.00 0.
56510
8370.00 0.
52167
8380.00 0.
4
69
83
8390.00 0.
41697
8400.00 0.
36189
8410.00 0.
30067
8420.00 0.
24099
8430.00 0.
18838
8440.00 0.
13948
8450.00 0.0
9907
8460.00 0.0
6956
8470.00 0.0
4814
8480.00 0.0
3312
8490.00 0.0
222
0
8500.00 0.0
1492
8510.00 0.0
1022
8520.00 0.00
717
8530.00 0.00
507
8540.00 0.00
36
0
8550.00 0.00
259
8560.00 0.00
188
8570.00 0.00
137
8580.00 0.00
101
8590.00 0.000
78
8600.00 0.000
58
8610.00 0.000
46
8620.00 0.000
36
8630.00 0.000
28
8640.00 0.000
21
8650.00 0.000
17
8660.00 0.000
12
8670.00 0.000
11
8680.00 0.0000
8
8690.00 0.0000
6
8700.00 0.0000
5
8710.00 0.0000
4
8720.00 0.0000
2
8730.00 0.0000
3
8740.00 0.0000
2
8750.00 0.0000
2
8760.00 0.0000
1
8770.00 0.00000
8780.00 0.0000
0
8790.00 0.0000
0
8780.00 0.0000
1
8790.00 0.0000
1
8800.00 0.00000
8810.00 0.00000
8820.00 0.00000
...
...
ObservationSim/Instrument/data/throughputs/nuv_throughput.txt
View file @
fd6c3108
# NUV_css
# NUV_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -49,79 +50,79 @@
2470.00 0.00000
2480.00 0.00000
2490.00 0.00000
2500.00 0.0
2686
2510.00 0.0
811
0
2520.00 0.
13603
2530.00 0.1
6427
2540.00 0.16
530
2550.00 0.1
6634
2560.00 0.1
6730
2570.00 0.1
6827
2580.00 0.1
6924
2590.00 0.17
021
2600.00 0.17
118
2610.00 0.1
7154
2620.00 0.1
7190
2630.00 0.1
7225
2640.00 0.1
7261
2650.00 0.1
7297
2660.00 0.1
7347
2670.00 0.17
3
96
2680.00 0.17
446
2690.00 0.17
496
2700.00 0.1
7545
2710.00 0.17
685
2720.00 0.17
826
2730.00 0.17
966
2740.00 0.1810
7
2750.00 0.1
8247
2760.00 0.1
8444
2770.00 0.1
8641
2780.00 0.18
838
2790.00 0.1
9036
2800.00 0.19
234
2810.00 0.
19411
2820.00 0.
19589
2830.00 0.
1976
7
2840.00 0.
19945
2850.00 0.2
0123
2860.00 0.2
0239
2870.00 0.2
0387
2880.00 0.2
0558
2890.00 0.2
0729
2900.00 0.2
0902
2910.00 0.2
0996
2920.00 0.2
1091
2930.00 0.2
118
5
2940.00 0.2
1280
2950.00 0.21
375
2960.00 0.2
1448
2970.00 0.2
1522
2980.00 0.2
1595
2990.00 0.2
1669
3000.00 0.2
1742
3010.00 0.2
180
8
3020.00 0.2
1874
3030.00 0.21
940
3040.00 0.2
2006
3050.00 0.2
2071
3060.00 0.22
137
3070.00 0.22
203
3080.00 0.222
68
3090.00 0.22
334
3100.00 0.224
00
3110.00 0.22
473
3120.00 0.22
546
3130.00 0.22
619
3140.00 0.22
692
3150.00 0.2
2765
3160.00 0.2
2823
3170.00 0.22
880
3180.00 0.22
938
3190.00 0.229
95
3200.00 0.17
289
3210.00 0.1154
3
3220.00 0.057
80
2500.00 0.0
0000
2510.00 0.0
289
0
2520.00 0.
07842
2530.00 0.1
3705
2540.00 0.16
934
2550.00 0.1
7568
2560.00 0.1
8201
2570.00 0.1
7908
2580.00 0.1
7612
2590.00 0.17
743
2600.00 0.17
874
2610.00 0.1
8320
2620.00 0.1
8767
2630.00 0.1
8694
2640.00 0.1
8622
2650.00 0.1
8415
2660.00 0.1
8222
2670.00 0.179
1
6
2680.00 0.17
609
2690.00 0.17
934
2700.00 0.1
8261
2710.00 0.17
972
2720.00 0.17
677
2730.00 0.17
248
2740.00 0.1
6
810
2750.00 0.1
7060
2760.00 0.1
7365
2770.00 0.1
7828
2780.00 0.18
296
2790.00 0.1
8927
2800.00 0.19
566
2810.00 0.
20374
2820.00 0.
21194
2830.00 0.
2114
7
2840.00 0.
21098
2850.00 0.2
1570
2860.00 0.2
1978
2870.00 0.2
2200
2880.00 0.2
2424
2890.00 0.2
2634
2900.00 0.2
2844
2910.00 0.2
2980
2920.00 0.2
3116
2930.00 0.2
257
5
2940.00 0.2
2034
2950.00 0.21
453
2960.00 0.2
0850
2970.00 0.2
0439
2980.00 0.2
0027
2990.00 0.2
0086
3000.00 0.2
0144
3010.00 0.2
029
8
3020.00 0.2
0452
3030.00 0.21
077
3040.00 0.2
1701
3050.00 0.2
1982
3060.00 0.22
262
3070.00 0.22
042
3080.00 0.2
18
22
3090.00 0.22
159
3100.00 0.224
95
3110.00 0.22
649
3120.00 0.22
802
3130.00 0.22
460
3140.00 0.22
117
3150.00 0.2
1898
3160.00 0.2
1664
3170.00 0.22
178
3180.00 0.22
692
3190.00 0.229
01
3200.00 0.17
332
3210.00 0.1154
1
3220.00 0.057
63
3230.00 0.00000
3240.00 0.00000
3250.00 0.00000
...
...
ObservationSim/Instrument/data/throughputs/r_throughput.txt
View file @
fd6c3108
# r_css
# r_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -311,12 +312,12 @@
5090.00 0.00000
5100.00 0.00000
5110.00 0.00000
5120.00 0.0000
0
5130.00 0.0000
0
5140.00 0.0000
0
5150.00 0.0000
0
5160.00 0.0000
0
5170.00 0.0000
0
5120.00 0.0000
1
5130.00 0.0000
1
5140.00 0.0000
1
5150.00 0.0000
1
5160.00 0.0000
1
5170.00 0.0000
1
5180.00 0.00000
5190.00 0.00000
5200.00 0.00000
...
...
@@ -329,228 +330,228 @@
5270.00 0.00000
5280.00 0.00000
5290.00 0.00000
5300.00 0.0000
0
5310.00 0.0000
0
5320.00 0.0000
0
5330.00 0.0000
0
5340.00 0.0000
0
5350.00 0.0000
0
5360.00 0.0000
0
5370.00 0.000
00
5380.00 0.000
00
5390.00 0.000
00
5400.00 0.00
00
0
5410.00 0.00
000
5420.00 0.0
0000
5430.00 0.0
0000
5440.00 0.0
0000
5450.00 0.
00000
5460.00 0.
00000
5470.00 0.
111
25
5480.00 0.
22258
5490.00 0.
33397
5500.00 0.
44544
5510.00 0.5
5704
5520.00 0.
6687
4
5530.00 0.6
6902
5540.00 0.6
6931
5550.00 0.6
696
0
5560.00 0.6
6989
5570.00 0.6
7018
5580.00 0.6
7046
5590.00 0.6
7075
5600.00 0.6
7104
5610.00 0.6
7104
5620.00 0.6
7104
5630.00 0.6
7104
5640.00 0.6
7104
5650.00 0.6
7104
5660.00 0.6
7104
5670.00 0.6
7104
5680.00 0.6
7104
5690.00 0.6
7104
5700.00 0.6
7104
5710.00 0.6
710
4
5720.00 0.6
710
4
5730.00 0.6
7104
5740.00 0.6
7104
5750.00 0.6
7104
5760.00 0.671
04
5770.00 0.671
04
5780.00 0.6
7104
5790.00 0.6
710
4
5800.00 0.6
7104
5810.00 0.6
7104
5820.00 0.6
7104
5830.00 0.6
7
10
4
5840.00 0.6
7104
5850.00 0.6
7104
5860.00 0.67
104
5870.00 0.6
7104
5880.00 0.6
7104
5890.00 0.6
7104
5900.00 0.6
7104
5910.00 0.6
7082
5920.00 0.6
7061
5930.00 0.6
7039
5940.00 0.6
7018
5950.00 0.6
6996
5960.00 0.6
6974
5970.00 0.
66953
5980.00 0.
66931
5990.00 0.
66910
6000.00 0.
66888
6010.00 0.
66852
6020.00 0.6
6816
6030.00 0.6
6780
6040.00 0.6
6744
6050.00 0.6
6708
6060.00 0.6
6672
6070.00 0.6
6636
6080.00 0.6
6600
6090.00 0.
66564
6100.00 0.
66528
6110.00 0.
6650
6
6120.00 0.
66485
6130.00 0.
66463
6140.00 0.
66442
6150.00 0.
66420
6160.00 0.
66398
6170.00 0.
66377
6180.00 0.
66355
6190.00 0.
66334
6200.00 0.
66312
6210.00 0.
66290
6220.00 0.
66269
6230.00 0.
66247
6240.00 0.
66226
6250.00 0.
66204
6260.00 0.
66182
6270.00 0.
66161
6280.00 0.
66139
6290.00 0.
66118
6300.00 0.
66
09
6
6310.00 0.
66067
6320.00 0.
66038
6330.00 0.
66010
6340.00 0.
65981
6350.00 0.
65952
6360.00 0.
65923
6370.00 0.
65894
6380.00 0.
65866
6390.00 0.
65837
6400.00 0.
65808
6410.00 0.
65758
6420.00 0.
65707
6430.00 0.6
5657
6440.00 0.6
5606
6450.00 0.6
5556
6460.00 0.6
5506
6470.00 0.6
5455
6480.00 0.6
5405
6490.00 0.6
5354
6500.00 0.6
5304
6510.00 0.6
5225
6520.00 0.6
5146
6530.00 0.6
50
66
6540.00 0.6
4987
6550.00 0.6
4908
6560.00 0.6
4829
6570.00 0.647
50
6580.00 0.6
4670
6590.00 0.6
4591
6600.00 0.6
4512
6610.00 0.6
4433
6620.00 0.6
4354
6630.00 0.6
427
4
6640.00 0.6
4195
6650.00 0.6
4116
6660.00 0.6
403
7
6670.00 0.6
3958
6680.00 0.6
3878
6690.00 0.6
3799
6700.00 0.6
3720
6710.00 0.6
367
0
6720.00 0.6
3619
6730.00 0.6
3569
6740.00 0.6
3518
6750.00 0.6
3468
6760.00 0.6
3418
6770.00 0.6
336
7
6780.00 0.6
3317
6790.00 0.6
326
6
6800.00 0.6
3216
6810.00 0.6
3115
6820.00 0.6
3014
6830.00 0.6
2914
6840.00 0.6281
3
6850.00 0.6
2712
6860.00 0.6
26
11
6870.00 0.6
2
51
0
6880.00 0.
57952
6890.00 0.
48957
6900.00 0.
39991
6910.00 0.
31057
6920.00 0.
22150
6930.00 0.
13270
6940.00 0.
04417
6950.00 0.
00000
6960.00 0.
00000
6970.00 0.
0000
0
6980.00 0.0
0000
6990.00 0.0
0000
7000.00 0.0
0000
7010.00 0.0
0000
7020.00 0.0
0000
7030.00 0.00
000
7040.00 0.00
000
7050.00 0.00
000
7060.00 0.00
000
7070.00 0.00
000
7080.00 0.00
000
7090.00 0.00
000
7100.00 0.000
00
7110.00 0.000
00
7120.00 0.000
00
7130.00 0.000
00
7140.00 0.000
00
7150.00 0.000
00
7160.00 0.000
00
7170.00 0.000
00
7180.00 0.000
00
7190.00 0.000
00
7200.00 0.000
0
0
7210.00 0.0000
0
7220.00 0.0000
0
7230.00 0.0000
0
7240.00 0.0000
0
7250.00 0.0000
0
7260.00 0.0000
0
7270.00 0.0000
0
7280.00 0.0000
0
7290.00 0.0000
0
7300.00 0.0000
0
7310.00 0.0000
0
7320.00 0.0000
0
7330.00 0.0000
0
7340.00 0.0000
0
7350.00 0.0000
0
7360.00 0.0000
0
7370.00 0.0000
0
7380.00 0.0000
0
7390.00 0.0000
0
7400.00 0.0000
0
7410.00 0.0000
0
7420.00 0.0000
0
7430.00 0.0000
0
7440.00 0.0000
0
7450.00 0.0000
0
7460.00 0.0000
0
7470.00 0.0000
0
7480.00 0.0000
0
7490.00 0.0000
0
7500.00 0.0000
0
7510.00 0.0000
0
5300.00 0.0000
1
5310.00 0.0000
1
5320.00 0.0000
1
5330.00 0.0000
2
5340.00 0.0000
3
5350.00 0.0000
5
5360.00 0.0000
9
5370.00 0.000
16
5380.00 0.000
31
5390.00 0.000
66
5400.00 0.00
15
0
5410.00 0.00
395
5420.00 0.0
1166
5430.00 0.0
3307
5440.00 0.0
7854
5450.00 0.
14926
5460.00 0.
23899
5470.00 0.
33
25
6
5480.00 0.
41052
5490.00 0.
46942
5500.00 0.
51316
5510.00 0.5
4712
5520.00 0.
5775
4
5530.00 0.6
0334
5540.00 0.6
2365
5550.00 0.6
393
0
5560.00 0.6
4902
5570.00 0.6
5482
5580.00 0.6
5288
5590.00 0.6
4276
5600.00 0.6
2930
5610.00 0.6
1532
5620.00 0.6
0637
5630.00 0.6
0599
5640.00 0.6
1270
5650.00 0.6
2476
5660.00 0.6
3883
5670.00 0.6
5060
5680.00 0.6
5817
5690.00 0.6
6197
5700.00 0.6
6176
5710.00 0.6
595
4
5720.00 0.6
581
4
5730.00 0.6
6021
5740.00 0.6
6449
5750.00 0.6
6846
5760.00 0.671
19
5770.00 0.671
99
5780.00 0.6
6919
5790.00 0.6
639
4
5800.00 0.6
5767
5810.00 0.6
5139
5820.00 0.6
4820
5830.00 0.6
5
10
6
5840.00 0.6
5767
5850.00 0.6
6682
5860.00 0.67
617
5870.00 0.6
8388
5880.00 0.6
8869
5890.00 0.6
8975
5900.00 0.6
8857
5910.00 0.6
8569
5920.00 0.6
8383
5930.00 0.6
8380
5940.00 0.6
8630
5950.00 0.6
9038
5960.00 0.6
9529
5970.00 0.
70020
5980.00 0.
70338
5990.00 0.
70456
6000.00 0.
70354
6010.00 0.
70066
6020.00 0.6
9712
6030.00 0.6
9494
6040.00 0.6
9399
6050.00 0.6
9320
6060.00 0.6
9388
6070.00 0.6
9624
6080.00 0.6
9898
6090.00 0.
70077
6100.00 0.
70221
6110.00 0.
7038
6
6120.00 0.
70518
6130.00 0.
70747
6140.00 0.
70999
6150.00 0.
71149
6160.00 0.
71301
6170.00 0.
71518
6180.00 0.
71703
6190.00 0.
71840
6200.00 0.
71953
6210.00 0.
72052
6220.00 0.
72152
6230.00 0.
72192
6240.00 0.
72250
6250.00 0.
72269
6260.00 0.
72254
6270.00 0.
72336
6280.00 0.
72378
6290.00 0.
72403
6300.00 0.
724
09
6310.00 0.
72262
6320.00 0.
72125
6330.00 0.
72066
6340.00 0.
72042
6350.00 0.
72120
6360.00 0.
72182
6370.00 0.
72298
6380.00 0.
72341
6390.00 0.
71960
6400.00 0.
71461
6410.00 0.
71000
6420.00 0.
70473
6430.00 0.6
9886
6440.00 0.6
9369
6450.00 0.6
8920
6460.00 0.6
8565
6470.00 0.6
8573
6480.00 0.6
8694
6490.00 0.6
8660
6500.00 0.6
8667
6510.00 0.6
8760
6520.00 0.6
8845
6530.00 0.6
88
66
6540.00 0.6
8844
6550.00 0.6
8662
6560.00 0.6
8462
6570.00 0.6
83
47
6580.00 0.6
8216
6590.00 0.6
8049
6600.00 0.6
7869
6610.00 0.6
7935
6620.00 0.6
7989
6630.00 0.6
763
4
6640.00 0.6
7264
6650.00 0.6
7151
6660.00 0.6
700
7
6670.00 0.6
6786
6680.00 0.6
6532
6690.00 0.6
6222
6700.00 0.6
5913
6710.00 0.6
566
0
6720.00 0.6
5451
6730.00 0.6
5243
6740.00 0.6
5085
6750.00 0.6
5020
6760.00 0.6
5004
6770.00 0.6
507
7
6780.00 0.6
5145
6790.00 0.6
518
6
6800.00 0.6
5081
6810.00 0.6
4842
6820.00 0.6
4393
6830.00 0.6
3715
6840.00 0.628
9
1
6850.00 0.6
1936
6860.00 0.611
29
6870.00 0.6
06
51
6880.00 0.
60553
6890.00 0.
60666
6900.00 0.
60476
6910.00 0.
59163
6920.00 0.
55628
6930.00 0.
49411
6940.00 0.
40862
6950.00 0.
30991
6960.00 0.
21906
6970.00 0.
1442
0
6980.00 0.0
9015
6990.00 0.0
5548
7000.00 0.0
3389
7010.00 0.0
2119
7020.00 0.0
1362
7030.00 0.00
897
7040.00 0.00
608
7050.00 0.00
421
7060.00 0.00
296
7070.00 0.00
216
7080.00 0.00
158
7090.00 0.00
118
7100.00 0.000
89
7110.00 0.000
68
7120.00 0.000
53
7130.00 0.000
42
7140.00 0.000
33
7150.00 0.000
26
7160.00 0.000
21
7170.00 0.000
17
7180.00 0.000
14
7190.00 0.000
12
7200.00 0.000
1
0
7210.00 0.0000
8
7220.00 0.0000
7
7230.00 0.0000
6
7240.00 0.0000
5
7250.00 0.0000
4
7260.00 0.0000
4
7270.00 0.0000
3
7280.00 0.0000
3
7290.00 0.0000
3
7300.00 0.0000
2
7310.00 0.0000
2
7320.00 0.0000
2
7330.00 0.0000
2
7340.00 0.0000
1
7350.00 0.0000
1
7360.00 0.0000
1
7370.00 0.0000
1
7380.00 0.0000
1
7390.00 0.0000
1
7400.00 0.0000
1
7410.00 0.0000
1
7420.00 0.0000
1
7430.00 0.0000
1
7440.00 0.0000
1
7450.00 0.0000
1
7460.00 0.0000
1
7470.00 0.0000
1
7480.00 0.0000
1
7490.00 0.0000
1
7500.00 0.0000
1
7510.00 0.0000
1
7520.00 0.00000
7530.00 0.00000
7540.00 0.00000
...
...
@@ -599,65 +600,65 @@
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.0000
0
8010.00 0.0000
0
8020.00 0.0000
0
8030.00 0.0000
0
8040.00 0.0000
0
8050.00 0.0000
0
8060.00 0.0000
0
8000.00 0.0000
1
8010.00 0.0000
1
8020.00 0.0000
1
8030.00 0.0000
1
8040.00 0.0000
1
8050.00 0.0000
1
8060.00 0.0000
1
8070.00 0.00000
8080.00 0.00000
8090.00 0.0000
0
8100.00 0.0000
0
8090.00 0.0000
1
8100.00 0.0000
1
8110.00 0.00000
8120.00 0.0000
0
8130.00 0.0000
0
8140.00 0.0000
0
8120.00 0.0000
1
8130.00 0.0000
1
8140.00 0.0000
1
8150.00 0.00000
8160.00 0.00000
8170.00 0.0000
0
8180.00 0.0000
0
8190.00 0.0000
0
8200.00 0.0000
0
8210.00 0.0000
0
8220.00 0.0000
0
8230.00 0.0000
0
8240.00 0.0000
0
8250.00 0.0000
0
8260.00 0.0000
0
8270.00 0.0000
0
8280.00 0.0000
0
8290.00 0.0000
0
8300.00 0.0000
0
8310.00 0.0000
0
8320.00 0.0000
0
8330.00 0.0000
0
8340.00 0.0000
0
8350.00 0.0000
0
8360.00 0.0000
0
8370.00 0.0000
0
8380.00 0.0000
0
8390.00 0.0000
0
8170.00 0.0000
1
8180.00 0.0000
1
8190.00 0.0000
1
8200.00 0.0000
1
8210.00 0.0000
1
8220.00 0.0000
1
8230.00 0.0000
1
8240.00 0.0000
1
8250.00 0.0000
1
8260.00 0.0000
1
8270.00 0.0000
2
8280.00 0.0000
1
8290.00 0.0000
1
8300.00 0.0000
1
8310.00 0.0000
1
8320.00 0.0000
1
8330.00 0.0000
1
8340.00 0.0000
1
8350.00 0.0000
1
8360.00 0.0000
1
8370.00 0.0000
1
8380.00 0.0000
1
8390.00 0.0000
1
8400.00 0.00000
8410.00 0.00000
8420.00 0.0000
0
8430.00 0.0000
0
8440.00 0.0000
0
8450.00 0.0000
0
8420.00 0.0000
1
8430.00 0.0000
1
8440.00 0.0000
1
8450.00 0.0000
1
8460.00 0.00000
8470.00 0.0000
0
8480.00 0.0000
0
8490.00 0.0000
0
8500.00 0.0000
0
8470.00 0.0000
1
8480.00 0.0000
1
8490.00 0.0000
1
8500.00 0.0000
1
8510.00 0.00000
8520.00 0.0000
0
8520.00 0.0000
1
8530.00 0.00000
8540.00 0.00000
8550.00 0.00000
8560.00 0.00000
8570.00 0.00000
8580.00 0.0000
0
8580.00 0.0000
1
8590.00 0.00000
8600.00 0.00000
8610.00 0.00000
...
...
@@ -665,17 +666,17 @@
8630.00 0.00000
8640.00 0.00000
8650.00 0.00000
8660.00 0.0000
0
8670.00 0.0000
0
8660.00 0.0000
1
8670.00 0.0000
1
8680.00 0.00000
8690.00 0.00000
8700.00 0.0000
0
8700.00 0.0000
1
8710.00 0.00000
8720.00 0.00000
8730.00 0.0000
0
8730.00 0.0000
1
8740.00 0.00000
8750.00 0.00000
8760.00 0.0000
0
8760.00 0.0000
1
8770.00 0.00000
8780.00 0.00000
8790.00 0.00000
...
...
ObservationSim/Instrument/data/throughputs/u_throughput.txt
View file @
fd6c3108
# u_css
# u_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -106,124 +107,124 @@
3040.00 0.00000
3050.00 0.00000
3060.00 0.00000
3070.00 0.0000
0
3080.00 0.0000
0
3090.00 0.0000
0
3100.00 0.0000
0
3110.00 0.000
00
3120.00 0.000
00
3130.00 0.000
00
3140.00 0.00
00
0
3150.00 0.00
000
3160.00 0.00
000
3170.00 0.0
0000
3180.00 0.0
6881
3190.00 0.
13797
3200.00 0.
20747
3210.00 0.
27703
3220.00 0.
27743
3230.00 0.2778
2
3240.00 0.2
7822
3250.00 0.2
7861
3260.00 0.27
909
3270.00 0.2
7
95
7
3280.00 0.
28005
3290.00 0.28
052
3300.00 0.
28100
3310.00 0.
28137
3320.00 0.
28174
3330.00 0.
28211
3340.00 0.
28247
3350.00 0.
28283
3360.00 0.
28309
3370.00 0.
28335
3380.00 0.
28
360
3390.00 0.
28385
3400.00 0.
28410
3410.00 0.
28424
3420.00 0.
28437
3430.00 0.
28451
3440.00 0.
28464
3450.00 0.
28476
3460.00 0.
28488
3470.00 0.
28500
3480.00 0.
28511
3490.00 0.
28
52
2
3500.00 0.
28532
3510.00 0.
2855
2
3520.00 0.
28572
3530.00 0.
28592
3540.00 0.
28611
3550.00 0.
28630
3560.00 0.
28659
3570.00 0.
28688
3580.00 0.
28716
3590.00 0.
28744
3600.00 0.
2876
1
3610.00 0.
28688
3620.00 0.
28615
3630.00 0.
28
541
3640.00 0.
28
46
7
3650.00 0.
2839
3
3660.00 0.
28382
3670.00 0.
28372
3680.00 0.
28361
3690.00 0.
28350
3700.00 0.
28339
3710.00 0.
28468
3720.00 0.
28598
3730.00 0.
28727
3740.00 0.
28857
3750.00 0.
2898
7
3760.00 0.
2916
1
3770.00 0.
2933
5
3780.00 0.
29510
3790.00 0.
29685
3800.00 0.
29860
3810.00 0.
29981
3820.00 0.3
010
3
3830.00 0.3
0224
3840.00 0.3
0346
3850.00 0.3
0468
3860.00 0.3
0590
3870.00 0.3
0712
3880.00 0.3
0835
3890.00 0.3
0
95
8
3900.00 0.3
1081
3910.00 0.3
1316
3920.00 0.3
1551
3930.00 0.3
1786
3940.00 0.3
2022
3950.00 0.3
2
25
9
3960.00 0.3
2485
3970.00 0.3
2712
3980.00 0.
3
29
39
3990.00 0.
33166
4000.00 0.
33394
4010.00 0.33
601
4020.00 0.
33807
4030.00 0.
34014
4040.00 0.30
799
4050.00 0.
24101
4060.00 0.
17296
4070.00 0.
10427
4080.00 0.0
3492
4090.00 0.00
000
4100.00 0.00
000
4110.00 0.000
00
4120.00 0.000
00
4130.00 0.000
00
4140.00 0.000
00
4150.00 0.000
00
4160.00 0.000
00
4170.00 0.0000
0
4180.00 0.0000
0
4190.00 0.0000
0
4200.00 0.0000
0
4210.00 0.0000
0
4220.00 0.0000
0
4230.00 0.0000
0
4240.00 0.0000
0
3070.00 0.0000
1
3080.00 0.0000
1
3090.00 0.0000
3
3100.00 0.0000
7
3110.00 0.000
14
3120.00 0.000
28
3130.00 0.000
56
3140.00 0.00
11
0
3150.00 0.00
223
3160.00 0.00
472
3170.00 0.0
1042
3180.00 0.0
2190
3190.00 0.
04190
3200.00 0.
08056
3210.00 0.
12185
3220.00 0.
16669
3230.00 0.2
0
778
3240.00 0.2
3999
3250.00 0.2
6389
3260.00 0.27
898
3270.00 0.295
19
3280.00 0.
30854
3290.00 0.
3
28
94
3300.00 0.
34872
3310.00 0.
35846
3320.00 0.
36782
3330.00 0.
36385
3340.00 0.
36002
3350.00 0.
35646
3360.00 0.
35286
3370.00 0.
35634
3380.00 0.360
11
3390.00 0.
36259
3400.00 0.
36459
3410.00 0.
36476
3420.00 0.
36386
3430.00 0.
35734
3440.00 0.
35107
3450.00 0.
34668
3460.00 0.
34357
3470.00 0.
34944
3480.00 0.
35524
3490.00 0.
35
52
9
3500.00 0.
35436
3510.00 0.
3518
2
3520.00 0.
34861
3530.00 0.
34490
3540.00 0.
34165
3550.00 0.
34203
3560.00 0.
34307
3570.00 0.
34341
3580.00 0.
34401
3590.00 0.
34655
3600.00 0.
3484
1
3610.00 0.
35149
3620.00 0.
35432
3630.00 0.
3
541
5
3640.00 0.
35
46
3
3650.00 0.
3564
3
3660.00 0.
35858
3670.00 0.
36209
3680.00 0.
36554
3690.00 0.
36682
3700.00 0.
36791
3710.00 0.
36581
3720.00 0.
36333
3730.00 0.
36299
3740.00 0.
36246
3750.00 0.
3686
7
3760.00 0.
3751
1
3770.00 0.
3801
5
3780.00 0.
38586
3790.00 0.
38633
3800.00 0.
38714
3810.00 0.
38734
3820.00 0.3
867
3
3830.00 0.3
8847
3840.00 0.3
9011
3850.00 0.3
9062
3860.00 0.3
9202
3870.00 0.3
9367
3880.00 0.3
9491
3890.00 0.395
54
3900.00 0.3
9594
3910.00 0.3
9508
3920.00 0.3
9452
3930.00 0.3
9304
3940.00 0.3
8925
3950.00 0.3
83
25
3960.00 0.3
6781
3970.00 0.3
3940
3980.00 0.29
857
3990.00 0.
24542
4000.00 0.
18812
4010.00 0.
1
33
45
4020.00 0.
08722
4030.00 0.
05312
4040.00 0.
0
30
33
4050.00 0.
01673
4060.00 0.
00939
4070.00 0.
00539
4080.00 0.0
0315
4090.00 0.00
188
4100.00 0.00
115
4110.00 0.000
74
4120.00 0.000
49
4130.00 0.000
33
4140.00 0.000
23
4150.00 0.000
16
4160.00 0.000
11
4170.00 0.0000
8
4180.00 0.0000
5
4190.00 0.0000
4
4200.00 0.0000
2
4210.00 0.0000
2
4220.00 0.0000
1
4230.00 0.0000
1
4240.00 0.0000
1
4250.00 0.00000
4260.00 0.00000
4270.00 0.00000
...
...
@@ -543,23 +544,23 @@
7410.00 0.00000
7420.00 0.00000
7430.00 0.00000
7440.00 0.0000
0
7450.00 0.0000
0
7460.00 0.0000
0
7470.00 0.0000
0
7480.00 0.0000
0
7490.00 0.0000
0
7500.00 0.0000
0
7510.00 0.0000
0
7520.00 0.0000
0
7530.00 0.0000
0
7540.00 0.0000
0
7550.00 0.0000
0
7560.00 0.0000
0
7570.00 0.0000
0
7580.00 0.0000
0
7590.00 0.0000
0
7600.00 0.0000
0
7440.00 0.0000
1
7450.00 0.0000
1
7460.00 0.0000
1
7470.00 0.0000
1
7480.00 0.0000
1
7490.00 0.0000
1
7500.00 0.0000
1
7510.00 0.0000
1
7520.00 0.0000
1
7530.00 0.0000
1
7540.00 0.0000
2
7550.00 0.0000
2
7560.00 0.0000
1
7570.00 0.0000
1
7580.00 0.0000
1
7590.00 0.0000
1
7600.00 0.0000
1
7610.00 0.00000
7620.00 0.00000
7630.00 0.00000
...
...
@@ -575,19 +576,19 @@
7730.00 0.00000
7740.00 0.00000
7750.00 0.00000
7760.00 0.0000
0
7770.00 0.0000
0
7780.00 0.0000
0
7790.00 0.0000
0
7800.00 0.0000
0
7810.00 0.000
0
0
7820.00 0.000
0
0
7830.00 0.0000
0
7840.00 0.0000
0
7850.00 0.0000
0
7860.00 0.0000
0
7870.00 0.0000
0
7880.00 0.0000
0
7760.00 0.0000
1
7770.00 0.0000
1
7780.00 0.0000
2
7790.00 0.0000
4
7800.00 0.0000
7
7810.00 0.000
1
0
7820.00 0.000
1
0
7830.00 0.0000
9
7840.00 0.0000
6
7850.00 0.0000
3
7860.00 0.0000
1
7870.00 0.0000
1
7880.00 0.0000
1
7890.00 0.00000
7900.00 0.00000
7910.00 0.00000
...
...
@@ -599,140 +600,140 @@
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.0000
0
8010.00 0.0000
0
8020.00 0.0000
0
8030.00 0.0000
0
8040.00 0.0000
0
8050.00 0.0000
0
8060.00 0.0000
0
8070.00 0.0000
0
8080.00 0.0000
0
8090.00 0.0000
0
8100.00 0.0000
0
8110.00 0.0000
0
8120.00 0.0000
0
8130.00 0.0000
0
8140.00 0.0000
0
8150.00 0.0000
0
8160.00 0.0000
0
8170.00 0.0000
0
8180.00 0.0000
0
8190.00 0.0000
0
8200.00 0.0000
0
8210.00 0.0000
0
8220.00 0.0000
0
8230.00 0.0000
0
8240.00 0.0000
0
8250.00 0.0000
0
8260.00 0.0000
0
8270.00 0.0000
0
8280.00 0.0000
0
8290.00 0.0000
0
8300.00 0.0000
0
8310.00 0.0000
0
8320.00 0.0000
0
8330.00 0.0000
0
8340.00 0.0000
0
8350.00 0.0000
0
8360.00 0.0000
0
8370.00 0.0000
0
8380.00 0.0000
0
8390.00 0.0000
0
8400.00 0.0000
0
8410.00 0.0000
0
8420.00 0.0000
0
8430.00 0.0000
0
8440.00 0.0000
0
8450.00 0.0000
0
8460.00 0.0000
0
8470.00 0.0000
0
8480.00 0.0000
0
8490.00 0.0000
0
8500.00 0.0000
0
8510.00 0.0000
0
8520.00 0.0000
0
8530.00 0.0000
0
8540.00 0.0000
0
8550.00 0.0000
0
8560.00 0.0000
0
8570.00 0.0000
0
8580.00 0.0000
0
8590.00 0.0000
0
8600.00 0.0000
0
8610.00 0.0000
0
8620.00 0.0000
0
8630.00 0.0000
0
8640.00 0.0000
0
8650.00 0.0000
0
8660.00 0.0000
0
8670.00 0.0000
0
8680.00 0.0000
0
8690.00 0.0000
0
8700.00 0.0000
0
8710.00 0.0000
0
8720.00 0.0000
0
8730.00 0.0000
0
8740.00 0.0000
0
8750.00 0.0000
0
8760.00 0.0000
0
8770.00 0.0000
0
8780.00 0.0000
0
8790.00 0.0000
0
8800.00 0.0000
0
8810.00 0.0000
0
8820.00 0.0000
0
8830.00 0.0000
0
8840.00 0.0000
0
8850.00 0.0000
0
8860.00 0.0000
0
8870.00 0.0000
0
8880.00 0.0000
0
8890.00 0.0000
0
8900.00 0.0000
0
8910.00 0.0000
0
8920.00 0.0000
0
8930.00 0.0000
0
8940.00 0.0000
0
8950.00 0.0000
0
8960.00 0.0000
0
8970.00 0.0000
0
8980.00 0.0000
0
8990.00 0.0000
0
9000.00 0.0000
0
9010.00 0.0000
0
9020.00 0.0000
0
9030.00 0.0000
0
9040.00 0.0000
0
9050.00 0.0000
0
9060.00 0.0000
0
9070.00 0.0000
0
9080.00 0.0000
0
9090.00 0.0000
0
9100.00 0.0000
0
9110.00 0.0000
0
9120.00 0.0000
0
9130.00 0.0000
0
9140.00 0.0000
0
9150.00 0.0000
0
9160.00 0.0000
0
9170.00 0.0000
0
9180.00 0.0000
0
9190.00 0.0000
0
9200.00 0.0000
0
9210.00 0.0000
0
9220.00 0.0000
0
9230.00 0.0000
0
9240.00 0.0000
0
9250.00 0.0000
0
9260.00 0.0000
0
9270.00 0.0000
0
9280.00 0.0000
0
9290.00 0.0000
0
9300.00 0.0000
0
9310.00 0.0000
0
9320.00 0.0000
0
9330.00 0.0000
0
8000.00 0.0000
3
8010.00 0.0000
3
8020.00 0.0000
3
8030.00 0.0000
3
8040.00 0.0000
2
8050.00 0.0000
3
8060.00 0.0000
3
8070.00 0.0000
3
8080.00 0.0000
3
8090.00 0.0000
2
8100.00 0.0000
3
8110.00 0.0000
2
8120.00 0.0000
2
8130.00 0.0000
2
8140.00 0.0000
3
8150.00 0.0000
3
8160.00 0.0000
2
8170.00 0.0000
2
8180.00 0.0000
2
8190.00 0.0000
2
8200.00 0.0000
2
8210.00 0.0000
2
8220.00 0.0000
2
8230.00 0.0000
2
8240.00 0.0000
2
8250.00 0.0000
2
8260.00 0.0000
2
8270.00 0.0000
2
8280.00 0.0000
2
8290.00 0.0000
2
8300.00 0.0000
2
8310.00 0.0000
2
8320.00 0.0000
2
8330.00 0.0000
2
8340.00 0.0000
2
8350.00 0.0000
2
8360.00 0.0000
2
8370.00 0.0000
2
8380.00 0.0000
2
8390.00 0.0000
2
8400.00 0.0000
2
8410.00 0.0000
2
8420.00 0.0000
2
8430.00 0.0000
2
8440.00 0.0000
2
8450.00 0.0000
2
8460.00 0.0000
2
8470.00 0.0000
2
8480.00 0.0000
2
8490.00 0.0000
3
8500.00 0.0000
3
8510.00 0.0000
3
8520.00 0.0000
3
8530.00 0.0000
3
8540.00 0.0000
3
8550.00 0.0000
3
8560.00 0.0000
3
8570.00 0.0000
3
8580.00 0.0000
3
8590.00 0.0000
3
8600.00 0.0000
3
8610.00 0.0000
3
8620.00 0.0000
3
8630.00 0.0000
4
8640.00 0.0000
3
8650.00 0.0000
3
8660.00 0.0000
3
8670.00 0.0000
3
8680.00 0.0000
3
8690.00 0.0000
3
8700.00 0.0000
3
8710.00 0.0000
3
8720.00 0.0000
3
8730.00 0.0000
2
8740.00 0.0000
2
8750.00 0.0000
3
8760.00 0.0000
2
8770.00 0.0000
2
8780.00 0.0000
2
8790.00 0.0000
2
8800.00 0.0000
2
8810.00 0.0000
2
8820.00 0.0000
2
8830.00 0.0000
2
8840.00 0.0000
2
8850.00 0.0000
2
8860.00 0.0000
2
8870.00 0.0000
2
8880.00 0.0000
2
8890.00 0.0000
2
8900.00 0.0000
2
8910.00 0.0000
2
8920.00 0.0000
2
8930.00 0.0000
2
8940.00 0.0000
2
8950.00 0.0000
2
8960.00 0.0000
2
8970.00 0.0000
3
8980.00 0.0000
3
8990.00 0.0000
3
9000.00 0.0000
3
9010.00 0.0000
3
9020.00 0.0000
3
9030.00 0.0000
3
9040.00 0.0000
3
9050.00 0.0000
3
9060.00 0.0000
3
9070.00 0.0000
3
9080.00 0.0000
3
9090.00 0.0000
3
9100.00 0.0000
3
9110.00 0.0000
3
9120.00 0.0000
2
9130.00 0.0000
2
9140.00 0.0000
2
9150.00 0.0000
2
9160.00 0.0000
2
9170.00 0.0000
2
9180.00 0.0000
2
9190.00 0.0000
2
9200.00 0.0000
1
9210.00 0.0000
1
9220.00 0.0000
1
9230.00 0.0000
1
9240.00 0.0000
1
9250.00 0.0000
1
9260.00 0.0000
1
9270.00 0.0000
1
9280.00 0.0000
1
9290.00 0.0000
1
9300.00 0.0000
1
9310.00 0.0000
1
9320.00 0.0000
1
9330.00 0.0000
1
9340.00 0.00000
9350.00 0.00000
9360.00 0.00000
...
...
ObservationSim/Instrument/data/throughputs/y_throughput.txt
View file @
fd6c3108
# y_css
# y_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -271,19 +272,19 @@
4690.00 0.00000
4700.00 0.00000
4710.00 0.00000
4720.00 0.0000
0
4730.00 0.0000
0
4740.00 0.0000
0
4750.00 0.0000
0
4760.00 0.0000
0
4770.00 0.0000
0
4780.00 0.0000
0
4790.00 0.0000
0
4800.00 0.0000
0
4810.00 0.0000
0
4820.00 0.0000
0
4830.00 0.0000
0
4840.00 0.0000
0
4720.00 0.0000
1
4730.00 0.0000
1
4740.00 0.0000
1
4750.00 0.0000
1
4760.00 0.0000
1
4770.00 0.0000
1
4780.00 0.0000
2
4790.00 0.0000
2
4800.00 0.0000
2
4810.00 0.0000
2
4820.00 0.0000
2
4830.00 0.0000
1
4840.00 0.0000
1
4850.00 0.00000
4860.00 0.00000
4870.00 0.00000
...
...
@@ -312,12 +313,12 @@
5100.00 0.00000
5110.00 0.00000
5120.00 0.00000
5130.00 0.0000
0
5140.00 0.0000
0
5150.00 0.0000
0
5160.00 0.0000
0
5170.00 0.0000
0
5180.00 0.0000
0
5130.00 0.0000
1
5140.00 0.0000
1
5150.00 0.0000
1
5160.00 0.0000
1
5170.00 0.0000
1
5180.00 0.0000
1
5190.00 0.00000
5200.00 0.00000
5210.00 0.00000
...
...
@@ -345,19 +346,19 @@
5430.00 0.00000
5440.00 0.00000
5450.00 0.00000
5460.00 0.0000
0
5470.00 0.0000
0
5480.00 0.0000
0
5490.00 0.0000
0
5500.00 0.0000
0
5510.00 0.0000
0
5520.00 0.0000
0
5530.00 0.0000
0
5540.00 0.0000
0
5550.00 0.0000
0
5560.00 0.0000
0
5570.00 0.0000
0
5580.00 0.0000
0
5460.00 0.0000
1
5470.00 0.0000
1
5480.00 0.0000
1
5490.00 0.0000
2
5500.00 0.0000
3
5510.00 0.0000
3
5520.00 0.0000
3
5530.00 0.0000
3
5540.00 0.0000
3
5550.00 0.0000
2
5560.00 0.0000
1
5570.00 0.0000
1
5580.00 0.0000
1
5590.00 0.00000
5600.00 0.00000
5610.00 0.00000
...
...
@@ -368,22 +369,22 @@
5660.00 0.00000
5670.00 0.00000
5680.00 0.00000
5690.00 0.0000
0
5700.00 0.0000
0
5710.00 0.0000
0
5720.00 0.0000
0
5730.00 0.0000
0
5740.00 0.0000
0
5750.00 0.0000
0
5760.00 0.0000
0
5770.00 0.0000
0
5780.00 0.0000
0
5790.00 0.0000
0
5800.00 0.0000
0
5810.00 0.0000
0
5820.00 0.0000
0
5830.00 0.0000
0
5840.00 0.0000
0
5690.00 0.0000
1
5700.00 0.0000
1
5710.00 0.0000
1
5720.00 0.0000
1
5730.00 0.0000
1
5740.00 0.0000
1
5750.00 0.0000
1
5760.00 0.0000
1
5770.00 0.0000
1
5780.00 0.0000
1
5790.00 0.0000
2
5800.00 0.0000
2
5810.00 0.0000
2
5820.00 0.0000
2
5830.00 0.0000
1
5840.00 0.0000
1
5850.00 0.00000
5860.00 0.00000
5870.00 0.00000
...
...
@@ -397,8 +398,8 @@
5950.00 0.00000
5960.00 0.00000
5970.00 0.00000
5980.00 0.0000
0
5990.00 0.0000
0
5980.00 0.0000
1
5990.00 0.0000
1
6000.00 0.00000
6010.00 0.00000
6020.00 0.00000
...
...
@@ -436,13 +437,13 @@
6340.00 0.00000
6350.00 0.00000
6360.00 0.00000
6370.00 0.0000
0
6380.00 0.0000
0
6390.00 0.0000
0
6400.00 0.0000
0
6410.00 0.0000
0
6420.00 0.0000
0
6430.00 0.0000
0
6370.00 0.0000
1
6380.00 0.0000
1
6390.00 0.0000
1
6400.00 0.0000
1
6410.00 0.0000
1
6420.00 0.0000
1
6430.00 0.0000
1
6440.00 0.00000
6450.00 0.00000
6460.00 0.00000
...
...
@@ -452,16 +453,16 @@
6500.00 0.00000
6510.00 0.00000
6520.00 0.00000
6530.00 0.0000
0
6540.00 0.0000
0
6550.00 0.0000
0
6560.00 0.0000
0
6570.00 0.0000
0
6580.00 0.0000
0
6590.00 0.0000
0
6600.00 0.0000
0
6610.00 0.0000
0
6620.00 0.0000
0
6530.00 0.0000
1
6540.00 0.0000
1
6550.00 0.0000
1
6560.00 0.0000
1
6570.00 0.0000
1
6580.00 0.0000
1
6590.00 0.0000
1
6600.00 0.0000
1
6610.00 0.0000
1
6620.00 0.0000
1
6630.00 0.00000
6640.00 0.00000
6650.00 0.00000
...
...
@@ -582,11 +583,11 @@
7800.00 0.00000
7810.00 0.00000
7820.00 0.00000
7830.00 0.0000
0
7840.00 0.0000
0
7850.00 0.0000
0
7860.00 0.0000
0
7870.00 0.0000
0
7830.00 0.0000
1
7840.00 0.0000
1
7850.00 0.0000
1
7860.00 0.0000
1
7870.00 0.0000
1
7880.00 0.00000
7890.00 0.00000
7900.00 0.00000
...
...
@@ -599,304 +600,304 @@
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.0000
0
8010.00 0.0000
0
8020.00 0.0000
0
8030.00 0.0000
0
8040.00 0.0000
0
8050.00 0.0000
0
8060.00 0.0000
0
8070.00 0.0000
0
8080.00 0.0000
0
8090.00 0.0000
0
8100.00 0.0000
0
8110.00 0.0000
0
8000.00 0.0000
2
8010.00 0.0000
1
8020.00 0.0000
2
8030.00 0.0000
2
8040.00 0.0000
1
8050.00 0.0000
2
8060.00 0.0000
1
8070.00 0.0000
2
8080.00 0.0000
1
8090.00 0.0000
1
8100.00 0.0000
1
8110.00 0.0000
1
8120.00 0.00000
8130.00 0.0000
0
8140.00 0.0000
0
8130.00 0.0000
2
8140.00 0.0000
1
8150.00 0.00000
8160.00 0.0000
0
8170.00 0.0000
0
8180.00 0.0000
0
8190.00 0.0000
0
8200.00 0.0000
0
8210.00 0.0000
0
8220.00 0.0000
0
8230.00 0.0000
0
8240.00 0.0000
0
8250.00 0.0000
0
8260.00 0.0000
0
8270.00 0.0000
0
8280.00 0.0000
0
8290.00 0.0000
0
8300.00 0.0000
0
8310.00 0.0000
0
8320.00 0.0000
0
8330.00 0.0000
0
8340.00 0.0000
0
8350.00 0.0000
0
8360.00 0.0000
0
8370.00 0.0000
0
8380.00 0.0000
0
8390.00 0.0000
0
8400.00 0.0000
0
8410.00 0.0000
0
8420.00 0.0000
0
8430.00 0.0000
0
8440.00 0.0000
0
8450.00 0.0000
0
8460.00 0.0000
0
8470.00 0.0000
0
8480.00 0.0000
0
8160.00 0.0000
1
8170.00 0.0000
1
8180.00 0.0000
2
8190.00 0.0000
3
8200.00 0.0000
2
8210.00 0.0000
2
8220.00 0.0000
2
8230.00 0.0000
2
8240.00 0.0000
1
8250.00 0.0000
1
8260.00 0.0000
2
8270.00 0.0000
1
8280.00 0.0000
1
8290.00 0.0000
2
8300.00 0.0000
1
8310.00 0.0000
2
8320.00 0.0000
2
8330.00 0.0000
2
8340.00 0.0000
1
8350.00 0.0000
2
8360.00 0.0000
1
8370.00 0.0000
2
8380.00 0.0000
2
8390.00 0.0000
1
8400.00 0.0000
2
8410.00 0.0000
2
8420.00 0.0000
1
8430.00 0.0000
1
8440.00 0.0000
1
8450.00 0.0000
1
8460.00 0.0000
1
8470.00 0.0000
1
8480.00 0.0000
1
8490.00 0.00000
8500.00 0.0000
0
8510.00 0.0000
0
8520.00 0.0000
0
8530.00 0.0000
0
8540.00 0.0000
0
8550.00 0.0000
0
8560.00 0.0000
0
8570.00 0.0000
0
8580.00 0.0000
0
8590.00 0.0000
0
8600.00 0.0000
0
8610.00 0.0000
0
8620.00 0.0000
0
8630.00 0.0000
0
8640.00 0.0000
0
8650.00 0.0000
0
8660.00 0.0000
0
8670.00 0.0000
0
8680.00 0.0000
0
8690.00 0.0000
0
8700.00 0.0000
0
8710.00 0.0000
0
8720.00 0.0000
0
8730.00 0.0000
0
8740.00 0.0000
0
8750.00 0.0000
0
8760.00 0.0000
0
8770.00 0.0000
0
8780.00 0.0000
0
8790.00 0.0000
0
8800.00 0.0000
0
8810.00 0.0000
0
8820.00 0.0000
0
8830.00 0.0000
0
8840.00 0.0000
0
8850.00 0.0000
0
8860.00 0.0000
0
8870.00 0.0000
0
8880.00 0.0000
0
8890.00 0.0000
0
8900.00 0.0000
0
8910.00 0.0000
0
8920.00 0.0000
0
8930.00 0.0000
0
8940.00 0.0000
0
8950.00 0.0000
0
8960.00 0.0000
0
8970.00 0.0000
0
8980.00 0.000
0
0
8990.00 0.000
00
9000.00 0.000
00
9010.00 0.000
0
0
9020.00 0.000
00
9030.00 0.000
00
9040.00 0.000
00
9050.00 0.00
000
9060.00 0.00
000
9070.00 0.00
000
9080.00 0.00
000
9090.00 0.0
0000
9100.00 0.0
0000
9110.00 0.000
00
9120.00 0.0
0000
9130.00 0.0
0000
9140.00 0.0
000
0
9150.00 0.0
000
0
9160.00 0.0
0000
9170.00 0.0
0000
9180.00 0.0
0000
9190.00 0.0
0000
9200.00 0.0
3879
9210.00 0.0
7
68
4
9220.00 0.
11415
9230.00 0.
15073
9240.00 0.1
8658
9250.00 0.
22168
9260.00 0.
25605
9270.00 0.2
8969
9280.00 0.
32
259
9290.00 0.
35475
9300.00 0.
35107
9310.00 0.
34
72
4
9320.00 0.
34342
9330.00 0.
33959
9340.00 0.
3357
6
9350.00 0.
33194
9360.00 0.
32811
9370.00 0.
32428
9380.00 0.
32045
9390.00 0.3
1663
9400.00 0.3
1280
9410.00 0.30
905
9420.00 0.30
529
9430.00 0.30
154
9440.00 0.
29779
9450.00 0.29
403
9460.00 0.29
028
9470.00 0.2
8652
9480.00 0.2
8277
9490.00 0.2
7902
9500.00 0.2
7526
9510.00 0.2
7136
9520.00 0.2
6746
9530.00 0.2
635
6
9540.00 0.2
5966
9550.00 0.2
557
6
9560.00 0.2
5186
9570.00 0.2
4796
9580.00 0.2
4406
9590.00 0.2
4016
9600.00 0.2
3626
9610.00 0.2
3
29
4
9620.00 0.2
2963
9630.00 0.2
2632
9640.00 0.2
2301
9650.00 0.2
1970
9660.00 0.2
1638
9670.00 0.2
1
30
7
9680.00 0.2
0976
9690.00 0.2
0645
9700.00 0.2
0314
9710.00 0.
19990
9720.00 0.
19666
9730.00 0.
19342
9740.00 0.
19018
9750.00 0.
18694
9760.00 0.
1837
1
9770.00 0.1
8047
9780.00 0.1
7723
9790.00 0.1
7399
9800.00 0.1
7075
9810.00 0.1
67
81
9820.00 0.1
6486
9830.00 0.1
6192
9840.00 0.1
5898
9850.00 0.1
5603
9860.00 0.1
5309
9870.00 0.15
014
9880.00 0.1
4720
9890.00 0.1
4426
9900.00 0.1
4131
9910.00 0.1
3829
9920.00 0.1
3528
9930.00 0.1
3226
9940.00 0.1
29
24
9950.00 0.1
262
2
9960.00 0.1
2321
9970.00 0.1
2019
9980.00 0.1
1717
9990.00 0.1
1415
10000.00 0.1
1114
10010.00 0.1
0856
10020.00 0.1
0598
10030.00 0.1
0341
10040.00 0.1
0083
10050.00 0.
09826
10060.00 0.09
56
8
10070.00 0.
09310
10080.00 0.
0905
3
10090.00 0.
08795
10100.00 0.0
8538
10110.00 0.0
8280
10120.00 0.0
8022
10130.00 0.0
7765
10140.00 0.0
7507
10150.00 0.0
7250
10160.00 0.0
6992
10170.00 0.0
6734
10180.00 0.0
6477
10190.00 0.06
219
10200.00 0.0
5962
10210.00 0.0
5770
10220.00 0.0
5579
10230.00 0.0
5388
10240.00 0.051
9
6
10250.00 0.05
005
10260.00 0.0
4813
10270.00 0.0
4622
10280.00 0.0
4431
10290.00 0.04
239
10300.00 0.04
048
10310.00 0.0
3908
10320.00 0.0
3768
10330.00 0.0
3628
10340.00 0.0
3489
10350.00 0.03
34
9
10360.00 0.03
209
10370.00 0.03
069
10380.00 0.0
2929
10390.00 0.0
2789
10400.00 0.0
265
0
10410.00 0.02
547
10420.00 0.02
44
4
10430.00 0.02
340
10440.00 0.02
237
10450.00 0.02
134
10460.00 0.0
1939
10470.00 0.0
1665
10480.00 0.0
141
0
10490.00 0.0
1174
10500.00 0.0
0957
10510.00 0.0
0793
10520.00 0.0
0636
10530.00 0.0
0484
10540.00 0.0
0339
10550.00 0.0
019
9
10560.00 0.0
0065
10570.00 0.0
0000
10580.00 0.0
0000
10590.00 0.0
0000
10600.00 0.0
0000
10610.00 0.0
0000
10620.00 0.0
0000
10630.00 0.0
0000
10640.00 0.0
0000
10650.00 0.0
000
0
10660.00 0.0
0000
10670.00 0.0
0000
10680.00 0.0
0000
10690.00 0.0
0000
10700.00 0.0
0000
10710.00 0.0
00
00
10720.00 0.0
0000
10730.00 0.0
0000
10740.00 0.00
000
10750.00 0.00
000
10760.00 0.00
000
10770.00 0.00
000
10780.00 0.00
000
10790.00 0.00
000
10800.00 0.00
000
10810.00 0.00
000
10820.00 0.00
000
10830.00 0.00
000
10840.00 0.00
00
0
10850.00 0.00
000
10860.00 0.00
000
10870.00 0.00
000
10880.00 0.00
000
10890.00 0.00
000
10900.00 0.00
000
10910.00 0.00
000
10920.00 0.00
000
10930.00 0.00
000
10940.00 0.00
000
10950.00 0.00
000
10960.00 0.000
0
0
10970.00 0.000
00
10980.00 0.000
00
10990.00 0.000
00
8500.00 0.0000
1
8510.00 0.0000
1
8520.00 0.0000
1
8530.00 0.0000
1
8540.00 0.0000
1
8550.00 0.0000
1
8560.00 0.0000
1
8570.00 0.0000
1
8580.00 0.0000
1
8590.00 0.0000
1
8600.00 0.0000
1
8610.00 0.0000
1
8620.00 0.0000
1
8630.00 0.0000
1
8640.00 0.0000
1
8650.00 0.0000
1
8660.00 0.0000
1
8670.00 0.0000
1
8680.00 0.0000
1
8690.00 0.0000
1
8700.00 0.0000
1
8710.00 0.0000
1
8720.00 0.0000
1
8730.00 0.0000
1
8740.00 0.0000
1
8750.00 0.0000
1
8760.00 0.0000
1
8770.00 0.0000
1
8780.00 0.0000
1
8790.00 0.0000
1
8800.00 0.0000
1
8810.00 0.0000
1
8820.00 0.0000
1
8830.00 0.0000
1
8840.00 0.0000
1
8850.00 0.0000
1
8860.00 0.0000
2
8870.00 0.0000
2
8880.00 0.0000
2
8890.00 0.0000
2
8900.00 0.0000
2
8910.00 0.0000
3
8920.00 0.0000
3
8930.00 0.0000
4
8940.00 0.0000
5
8950.00 0.0000
6
8960.00 0.0000
7
8970.00 0.0000
8
8980.00 0.000
1
0
8990.00 0.000
12
9000.00 0.000
15
9010.00 0.000
2
0
9020.00 0.000
29
9030.00 0.000
42
9040.00 0.000
67
9050.00 0.00
113
9060.00 0.00
206
9070.00 0.00
379
9080.00 0.00
654
9090.00 0.0
1016
9100.00 0.0
1473
9110.00 0.0
2
00
9
9120.00 0.0
2491
9130.00 0.0
2787
9140.00 0.0
308
0
9150.00 0.0
336
0
9160.00 0.0
3736
9170.00 0.0
4152
9180.00 0.0
4629
9190.00 0.0
5196
9200.00 0.0
5965
9210.00 0.068
97
9220.00 0.
08142
9230.00 0.
09667
9240.00 0.1
1727
9250.00 0.
14703
9260.00 0.
18512
9270.00 0.2
2564
9280.00 0.259
14
9290.00 0.
27504
9300.00 0.
27413
9310.00 0.
266
72
9320.00 0.
25628
9330.00 0.
25043
9340.00 0.
2505
6
9350.00 0.
25780
9360.00 0.
26953
9370.00 0.
28027
9380.00 0.
29300
9390.00 0.3
0125
9400.00 0.3
0476
9410.00 0.30
774
9420.00 0.30
754
9430.00 0.30
457
9440.00 0.
30033
9450.00 0.29
852
9460.00 0.29
537
9470.00 0.2
9414
9480.00 0.2
9372
9490.00 0.2
9135
9500.00 0.2
9245
9510.00 0.2
9120
9520.00 0.2
9163
9530.00 0.2
877
6
9540.00 0.2
8561
9550.00 0.2
821
6
9560.00 0.2
7887
9570.00 0.2
7618
9580.00 0.2
7160
9590.00 0.2
6462
9600.00 0.2
5744
9610.00 0.2
5
29
5
9620.00 0.2
4872
9630.00 0.2
4309
9640.00 0.2
4029
9650.00 0.2
3722
9660.00 0.2
3592
9670.00 0.2
3
30
3
9680.00 0.2
3185
9690.00 0.2
2828
9700.00 0.2
2377
9710.00 0.
22119
9720.00 0.
21880
9730.00 0.
21568
9740.00 0.
21221
9750.00 0.
20819
9760.00 0.
2042
1
9770.00 0.1
9998
9780.00 0.1
9609
9790.00 0.1
9067
9800.00 0.1
8498
9810.00 0.1
80
81
9820.00 0.1
7709
9830.00 0.1
7290
9840.00 0.1
6863
9850.00 0.1
6594
9860.00 0.1
6317
9870.00 0.15
992
9880.00 0.1
5856
9890.00 0.1
5453
9900.00 0.1
5212
9910.00 0.1
4915
9920.00 0.1
4682
9930.00 0.1
4462
9940.00 0.1
4
24
5
9950.00 0.1
403
2
9960.00 0.1
3813
9970.00 0.1
3557
9980.00 0.1
3274
9990.00 0.1
2956
10000.00 0.1
2631
10010.00 0.1
2358
10020.00 0.1
2131
10030.00 0.1
1828
10040.00 0.1
1527
10050.00 0.
11281
10060.00 0.
1
09
9
8
10070.00 0.
10693
10080.00 0.
1041
3
10090.00 0.
10062
10100.00 0.0
9759
10110.00 0.0
9418
10120.00 0.0
9121
10130.00 0.0
8794
10140.00 0.0
8498
10150.00 0.0
8236
10160.00 0.0
7916
10170.00 0.0
7608
10180.00 0.0
7280
10190.00 0.06
992
10200.00 0.0
6690
10210.00 0.0
6474
10220.00 0.0
6270
10230.00 0.0
6034
10240.00 0.05
8
16
10250.00 0.05
627
10260.00 0.0
5452
10270.00 0.0
5255
10280.00 0.0
5035
10290.00 0.04
810
10300.00 0.04
589
10310.00 0.0
4451
10320.00 0.0
4310
10330.00 0.0
4172
10340.00 0.0
4014
10350.00 0.03
85
9
10360.00 0.03
726
10370.00 0.03
553
10380.00 0.0
3402
10390.00 0.0
3240
10400.00 0.0
308
0
10410.00 0.02
982
10420.00 0.02
86
4
10430.00 0.02
743
10440.00 0.02
619
10450.00 0.02
501
10460.00 0.0
2386
10470.00 0.0
2278
10480.00 0.0
216
0
10490.00 0.0
2026
10500.00 0.0
1900
10510.00 0.0
1866
10520.00 0.0
1823
10530.00 0.0
1788
10540.00 0.0
1745
10550.00 0.0
170
9
10560.00 0.0
1676
10570.00 0.0
1634
10580.00 0.0
1602
10590.00 0.0
1561
10600.00 0.0
1526
10610.00 0.0
1482
10620.00 0.0
1446
10630.00 0.0
1407
10640.00 0.0
1371
10650.00 0.0
133
0
10660.00 0.0
1291
10670.00 0.0
1258
10680.00 0.0
1224
10690.00 0.0
1185
10700.00 0.0
1138
10710.00 0.0
11
00
10720.00 0.0
1064
10730.00 0.0
1024
10740.00 0.00
984
10750.00 0.00
948
10760.00 0.00
916
10770.00 0.00
871
10780.00 0.00
837
10790.00 0.00
797
10800.00 0.00
749
10810.00 0.00
714
10820.00 0.00
671
10830.00 0.00
631
10840.00 0.00
59
0
10850.00 0.00
547
10860.00 0.00
504
10870.00 0.00
463
10880.00 0.00
418
10890.00 0.00
374
10900.00 0.00
327
10910.00 0.00
283
10920.00 0.00
241
10930.00 0.00
199
10940.00 0.00
159
10950.00 0.00
123
10960.00 0.000
9
0
10970.00 0.000
61
10980.00 0.000
37
10990.00 0.000
17
11000.00 0.00000
ObservationSim/Instrument/data/throughputs/z_throughput.txt
View file @
fd6c3108
# z_css
# z_cssc
# lambda_Angst throughput
2000.00 0.00000
2010.00 0.00000
2020.00 0.00000
...
...
@@ -273,19 +274,19 @@
4710.00 0.00000
4720.00 0.00000
4730.00 0.00000
4740.00 0.0000
0
4750.00 0.0000
0
4760.00 0.0000
0
4770.00 0.0000
0
4780.00 0.0000
0
4790.00 0.0000
0
4800.00 0.0000
0
4810.00 0.0000
0
4820.00 0.0000
0
4830.00 0.0000
0
4840.00 0.0000
0
4850.00 0.0000
0
4860.00 0.0000
0
4740.00 0.0000
1
4750.00 0.0000
1
4760.00 0.0000
1
4770.00 0.0000
1
4780.00 0.0000
2
4790.00 0.0000
3
4800.00 0.0000
4
4810.00 0.0000
4
4820.00 0.0000
5
4830.00 0.0000
4
4840.00 0.0000
3
4850.00 0.0000
2
4860.00 0.0000
1
4870.00 0.00000
4880.00 0.00000
4890.00 0.00000
...
...
@@ -349,16 +350,16 @@
5470.00 0.00000
5480.00 0.00000
5490.00 0.00000
5500.00 0.0000
0
5510.00 0.0000
0
5520.00 0.0000
0
5530.00 0.0000
0
5540.00 0.0000
0
5550.00 0.0000
0
5560.00 0.0000
0
5570.00 0.0000
0
5580.00 0.0000
0
5590.00 0.0000
0
5500.00 0.0000
1
5510.00 0.0000
1
5520.00 0.0000
2
5530.00 0.0000
2
5540.00 0.0000
2
5550.00 0.0000
2
5560.00 0.0000
2
5570.00 0.0000
1
5580.00 0.0000
1
5590.00 0.0000
1
5600.00 0.00000
5610.00 0.00000
5620.00 0.00000
...
...
@@ -372,20 +373,20 @@
5700.00 0.00000
5710.00 0.00000
5720.00 0.00000
5730.00 0.0000
0
5740.00 0.0000
0
5750.00 0.0000
0
5760.00 0.0000
0
5770.00 0.0000
0
5780.00 0.0000
0
5790.00 0.0000
0
5800.00 0.0000
0
5810.00 0.0000
0
5820.00 0.0000
0
5830.00 0.0000
0
5840.00 0.0000
0
5850.00 0.0000
0
5860.00 0.0000
0
5730.00 0.0000
1
5740.00 0.0000
1
5750.00 0.0000
1
5760.00 0.0000
1
5770.00 0.0000
2
5780.00 0.0000
2
5790.00 0.0000
3
5800.00 0.0000
4
5810.00 0.0000
4
5820.00 0.0000
4
5830.00 0.0000
3
5840.00 0.0000
2
5850.00 0.0000
1
5860.00 0.0000
1
5870.00 0.00000
5880.00 0.00000
5890.00 0.00000
...
...
@@ -599,304 +600,304 @@
7970.00 0.00000
7980.00 0.00000
7990.00 0.00000
8000.00 0.0000
0
8010.00 0.0000
0
8020.00 0.0000
0
8030.00 0.0000
0
8040.00 0.0000
0
8050.00 0.0000
0
8060.00 0.0000
0
8070.00 0.0000
0
8080.00 0.0000
0
8090.00 0.0000
0
8100.00 0.0000
0
8110.00 0.000
00
8120.00 0.000
00
8130.00 0.000
00
8140.00 0.000
0
0
8150.00 0.000
00
8160.00 0.00
000
8170.00 0.00
000
8180.00 0.00
000
8190.00 0.00
000
8200.00 0.00
000
8210.00 0.00
000
8220.00 0.0
0000
8230.00 0.0
000
0
8240.00 0.0
0000
8250.00 0.0
0000
8260.00 0.0
00
00
8270.00 0.0
0000
8280.00 0.0
0000
8290.00 0.0
0000
8300.00 0.0
3467
8310.00 0.10
375
8320.00 0.1
7247
8330.00 0.
24083
8340.00 0.
30883
8350.00 0.
37646
8360.00 0.
44374
8370.00 0.
51066
8380.00 0.
57722
8390.00 0.
60956
8400.00 0.
60794
8410.00 0.
60617
8420.00 0.
60440
8430.00 0.
60264
8440.00 0.
60087
8450.00 0.
59910
8460.00 0.
59734
8470.00 0.5
9557
8480.00 0.5
9380
8490.00 0.5
9204
8500.00 0.5
9027
8510.00 0.5
8814
8520.00 0.5
8600
8530.00 0.5
838
7
8540.00 0.5
8173
8550.00 0.5
7960
8560.00 0.5
7747
8570.00 0.5
7533
8580.00 0.5
7320
8590.00 0.5
7106
8600.00 0.56
893
8610.00 0.5
6643
8620.00 0.5
6392
8630.00 0.5
6142
8640.00 0.5
5892
8650.00 0.5
564
2
8660.00 0.5
5391
8670.00 0.5
5141
8680.00 0.5
48
91
8690.00 0.5
464
1
8700.00 0.5
43
90
8710.00 0.5
4133
8720.00 0.5
3
87
5
8730.00 0.5
3618
8740.00 0.5
3360
8750.00 0.5
3102
8760.00 0.5
2845
8770.00 0.5
258
7
8780.00 0.5
2330
8790.00 0.5
2072
8800.00 0.5
1814
8810.00 0.5
1535
8820.00 0.5
1255
8830.00 0.5
0975
8840.00 0.5
0696
8850.00 0.5
041
6
8860.00 0.5
0136
8870.00 0.
49857
8880.00 0.
49577
8890.00 0.
49297
8900.00 0.
49018
8910.00 0.
48716
8920.00 0.
4841
4
8930.00 0.
48112
8940.00 0.
47811
8950.00 0.
47509
8960.00 0.
47207
8970.00 0.
46905
8980.00 0.
46604
8990.00 0.
46302
9000.00 0.
46000
9010.00 0.4
5654
9020.00 0.4
5308
9030.00 0.4
4962
9040.00 0.4
4616
9050.00 0.4
4270
9060.00 0.4
392
4
9070.00 0.4
357
9
9080.00 0.4
3
23
3
9090.00 0.4
288
7
9100.00 0.4
254
1
9110.00 0.4
2165
9120.00 0.4
1790
9130.00 0.4
1415
9140.00 0.4
1039
9150.00 0.4
0664
9160.00 0.402
89
9170.00 0.
39913
9180.00 0.
39538
9190.00 0.
39163
9200.00 0.
38787
9210.00 0.
38419
9220.00 0.
3805
1
9230.00 0.
37683
9240.00 0.
37315
9250.00 0.
36947
9260.00 0.
36579
9270.00 0.
362
11
9280.00 0.3
5843
9290.00 0.3
5475
9300.00 0.3
5107
9310.00 0.3
4724
9320.00 0.3
4342
9330.00 0.3
3959
9340.00 0.3
3576
9350.00 0.3
3194
9360.00 0.3
2811
9370.00 0.3
2428
9380.00 0.3
204
5
9390.00 0.3
166
3
9400.00 0.3
1280
9410.00 0.3
0905
9420.00 0.3
0529
9430.00 0.3
0154
9440.00 0.
29779
9450.00 0.
29403
9460.00 0.
2902
8
9470.00 0.
28652
9480.00 0.
28277
9490.00 0.
27902
9500.00 0.
27526
9510.00 0.
27136
9520.00 0.
26746
9530.00 0.2
635
6
9540.00 0.2
5966
9550.00 0.2
557
6
9560.00 0.2
5186
9570.00 0.2
4796
9580.00 0.2
440
6
9590.00 0.2
4016
9600.00 0.2
3626
9610.00 0.2
3294
9620.00 0.2
2963
9630.00 0.226
32
9640.00 0.2
2301
9650.00 0.2
1970
9660.00 0.2
1638
9670.00 0.213
07
9680.00 0.2
097
6
9690.00 0.2
0645
9700.00 0.2
0314
9710.00 0.
19990
9720.00 0.19
66
6
9730.00 0.
19342
9740.00 0.
1901
8
9750.00 0.
18694
9760.00 0.
18371
9770.00 0.
18047
9780.00 0.1
772
3
9790.00 0.1
7399
9800.00 0.1
7075
9810.00 0.1
6781
9820.00 0.1
6486
9830.00 0.1
6192
9840.00 0.1
5898
9850.00 0.1
5603
9860.00 0.1
5309
9870.00 0.1
501
4
9880.00 0.1
4720
9890.00 0.1
4426
9900.00 0.1
4131
9910.00 0.1
3829
9920.00 0.1
3
52
8
9930.00 0.1
3226
9940.00 0.1
292
4
9950.00 0.1
2622
9960.00 0.1
2321
9970.00 0.1
2019
9980.00 0.1
1717
9990.00 0.1
1415
10000.00 0.1
1114
10010.00 0.1
0856
10020.00 0.1
0598
10030.00 0.1
0341
10040.00 0.1
0083
10050.00 0.
09826
10060.00 0.09
568
10070.00 0.
0931
0
10080.00 0.
09053
10090.00 0.
08795
10100.00 0.0
8538
10110.00 0.0
8280
10120.00 0.0
802
2
10130.00 0.0
7
76
5
10140.00 0.0
7507
10150.00 0.0
7250
10160.00 0.0
6992
10170.00 0.0
6734
10180.00 0.0
6477
10190.00 0.0
6219
10200.00 0.0
5962
10210.00 0.0
5770
10220.00 0.0
5579
10230.00 0.0
5388
10240.00 0.05
196
10250.00 0.05
005
10260.00 0.0
4813
10270.00 0.0
462
2
10280.00 0.0
443
1
10290.00 0.04
239
10300.00 0.04
048
10310.00 0.0
3908
10320.00 0.0
3768
10330.00 0.0
3628
10340.00 0.03
489
10350.00 0.03
349
10360.00 0.03
209
10370.00 0.03
069
10380.00 0.0
2929
10390.00 0.0
278
9
10400.00 0.0
2650
10410.00 0.02
547
10420.00 0.02
444
10430.00 0.02
340
10440.00 0.02
237
10450.00 0.02
134
10460.00 0.0
1939
10470.00 0.0
1665
10480.00 0.0
1410
10490.00 0.01
174
10500.00 0.0
095
7
10510.00 0.0
079
3
10520.00 0.0
063
6
10530.00 0.0
048
4
10540.00 0.0
0339
10550.00 0.001
99
10560.00 0.0
0065
10570.00 0.0
0000
10580.00 0.0
0000
10590.00 0.0
0000
10600.00 0.0
0000
10610.00 0.0
0000
10620.00 0.0
0000
10630.00 0.0
00
00
10640.00 0.0
0000
10650.00 0.0
0000
10660.00 0.0
0000
10670.00 0.0
0000
10680.00 0.0
0000
10690.00 0.0
0000
10700.00 0.0
0000
10710.00 0.0
0000
10720.00 0.00
00
0
10730.00 0.00
000
10740.00 0.00
00
0
10750.00 0.00
000
10760.00 0.00
000
10770.00 0.00
000
10780.00 0.00
00
0
10790.00 0.00
000
10800.00 0.00
000
10810.00 0.00
000
10820.00 0.00
000
10830.00 0.00
000
10840.00 0.00
000
10850.00 0.00
000
10860.00 0.00
000
10870.00 0.00
000
10880.00 0.00
00
0
10890.00 0.00
000
10900.00 0.000
00
10910.00 0.000
00
10920.00 0.000
00
10930.00 0.000
00
10940.00 0.000
00
10950.00 0.000
00
10960.00 0.000
00
10970.00 0.000
00
10980.00 0.0000
0
10990.00 0.0000
0
8000.00 0.0000
2
8010.00 0.0000
3
8020.00 0.0000
3
8030.00 0.0000
3
8040.00 0.0000
3
8050.00 0.0000
4
8060.00 0.0000
4
8070.00 0.0000
5
8080.00 0.0000
7
8090.00 0.0000
8
8100.00 0.0000
9
8110.00 0.000
13
8120.00 0.000
18
8130.00 0.000
26
8140.00 0.000
4
0
8150.00 0.000
65
8160.00 0.00
112
8170.00 0.00
185
8180.00 0.00
305
8190.00 0.00
475
8200.00 0.00
704
8210.00 0.00
994
8220.00 0.0
1366
8230.00 0.0
182
0
8240.00 0.0
2345
8250.00 0.0
3058
8260.00 0.0
39
00
8270.00 0.0
4796
8280.00 0.0
5876
8290.00 0.0
7147
8300.00 0.0
8580
8310.00 0.10
118
8320.00 0.1
1803
8330.00 0.
13528
8340.00 0.
15451
8350.00 0.
17500
8360.00 0.
19415
8370.00 0.
21555
8380.00 0.
23737
8390.00 0.
26134
8400.00 0.
28959
8410.00 0.
31549
8420.00 0.
34437
8430.00 0.
37460
8440.00 0.
40913
8450.00 0.
43985
8460.00 0.
46810
8470.00 0.5
0016
8480.00 0.5
2985
8490.00 0.5
3965
8500.00 0.5
4721
8510.00 0.5
5913
8520.00 0.5
6785
8530.00 0.5
701
7
8540.00 0.5
7030
8550.00 0.5
6308
8560.00 0.5
6262
8570.00 0.5
5976
8580.00 0.5
6087
8590.00 0.5
6322
8600.00 0.56
420
8610.00 0.5
7465
8620.00 0.5
8293
8630.00 0.5
8455
8640.00 0.5
8646
8650.00 0.5
865
2
8660.00 0.5
9005
8670.00 0.5
9086
8680.00 0.591
35
8690.00 0.5
919
1
8700.00 0.590
66
8710.00 0.5
8680
8720.00 0.587
34
8730.00 0.5
8443
8740.00 0.5
8584
8750.00 0.5
8551
8760.00 0.5
8631
8770.00 0.5
749
7
8780.00 0.5
6742
8790.00 0.5
6521
8800.00 0.5
6529
8810.00 0.5
6261
8820.00 0.5
5838
8830.00 0.5
5504
8840.00 0.5
5008
8850.00 0.5
492
6
8860.00 0.5
5300
8870.00 0.
55054
8880.00 0.
54841
8890.00 0.
54389
8900.00 0.
54021
8910.00 0.
53897
8920.00 0.
5368
4
8930.00 0.
53275
8940.00 0.
52614
8950.00 0.
52261
8960.00 0.
51701
8970.00 0.
51777
8980.00 0.
51666
8990.00 0.
50958
9000.00 0.
50227
9010.00 0.4
9876
9020.00 0.4
9809
9030.00 0.4
9215
9040.00 0.4
8671
9050.00 0.4
8609
9060.00 0.4
868
4
9070.00 0.4
870
9
9080.00 0.4
8
23
5
9090.00 0.4
772
7
9100.00 0.4
737
1
9110.00 0.4
7099
9120.00 0.4
6685
9130.00 0.4
6190
9140.00 0.4
5953
9150.00 0.4
5711
9160.00 0.4
54
02
9170.00 0.
44954
9180.00 0.
44596
9190.00 0.
43748
9200.00 0.
43258
9210.00 0.
42686
9220.00 0.
4250
1
9230.00 0.
41694
9240.00 0.
41017
9250.00 0.
40690
9260.00 0.
40273
9270.00 0.
40
11
5
9280.00 0.3
9850
9290.00 0.3
9300
9300.00 0.3
8771
9310.00 0.3
8511
9320.00 0.3
8115
9330.00 0.3
7657
9340.00 0.3
7304
9350.00 0.3
7035
9360.00 0.3
6799
9370.00 0.3
6361
9380.00 0.3
617
5
9390.00 0.3
565
3
9400.00 0.3
5207
9410.00 0.3
4870
9420.00 0.3
4540
9430.00 0.3
4000
9440.00 0.
33454
9450.00 0.
33118
9460.00 0.
3260
8
9470.00 0.
32235
9480.00 0.
31854
9490.00 0.
31280
9500.00 0.
30897
9510.00 0.
30432
9520.00 0.
30050
9530.00 0.2
951
6
9540.00 0.2
9060
9550.00 0.2
863
6
9560.00 0.2
8360
9570.00 0.2
8103
9580.00 0.2
782
6
9590.00 0.2
7258
9600.00 0.2
6635
9610.00 0.2
6313
9620.00 0.2
6024
9630.00 0.2
54
26
9640.00 0.2
5093
9650.00 0.2
4715
9660.00 0.2
4534
9670.00 0.2
4
13
5
9680.00 0.2
386
6
9690.00 0.2
3333
9700.00 0.2
2699
9710.00 0.
22368
9720.00 0.
2
19
8
6
9730.00 0.
21567
9740.00 0.
2129
8
9750.00 0.
20891
9760.00 0.
20503
9770.00 0.
20208
9780.00 0.1
993
3
9790.00 0.1
9468
9800.00 0.1
9016
9810.00 0.1
8628
9820.00 0.1
8377
9830.00 0.1
8008
9840.00 0.1
7676
9850.00 0.1
7416
9860.00 0.1
7185
9870.00 0.1
685
4
9880.00 0.1
6681
9890.00 0.1
6231
9900.00 0.1
5922
9910.00 0.1
5595
9920.00 0.152
61
9930.00 0.1
4979
9940.00 0.1
471
4
9950.00 0.1
4405
9960.00 0.1
4113
9970.00 0.1
3766
9980.00 0.1
3428
9990.00 0.1
3036
10000.00 0.1
2687
10010.00 0.1
2353
10020.00 0.1
2086
10030.00 0.1
1805
10040.00 0.1
1487
10050.00 0.
11219
10060.00 0.
1
09
46
10070.00 0.
1067
0
10080.00 0.
10390
10090.00 0.
10063
10100.00 0.0
9769
10110.00 0.0
9469
10120.00 0.0
918
2
10130.00 0.0
88
76
10140.00 0.0
8596
10150.00 0.0
8345
10160.00 0.0
8038
10170.00 0.0
7757
10180.00 0.0
7454
10190.00 0.0
7143
10200.00 0.0
6847
10210.00 0.0
6625
10220.00 0.0
6415
10230.00 0.0
6172
10240.00 0.05
948
10250.00 0.05
752
10260.00 0.0
5559
10270.00 0.0
534
2
10280.00 0.0
511
1
10290.00 0.04
861
10300.00 0.04
624
10310.00 0.0
4473
10320.00 0.0
4323
10330.00 0.0
4159
10340.00 0.03
990
10350.00 0.03
836
10360.00 0.03
685
10370.00 0.03
495
10380.00 0.0
3347
10390.00 0.0
317
9
10400.00 0.0
3022
10410.00 0.02
922
10420.00 0.02
809
10430.00 0.02
687
10440.00 0.02
562
10450.00 0.02
458
10460.00 0.0
2340
10470.00 0.0
2243
10480.00 0.0
2127
10490.00 0.01
998
10500.00 0.0
187
7
10510.00 0.0
184
3
10520.00 0.0
180
6
10530.00 0.0
177
4
10540.00 0.0
1732
10550.00 0.0
17
01
10560.00 0.0
1671
10570.00 0.0
1628
10580.00 0.0
1597
10590.00 0.0
1558
10600.00 0.0
1522
10610.00 0.0
1479
10620.00 0.0
1442
10630.00 0.0
14
00
10640.00 0.0
1363
10650.00 0.0
1319
10660.00 0.0
1273
10670.00 0.0
1234
10680.00 0.0
1193
10690.00 0.0
1143
10700.00 0.0
1087
10710.00 0.0
1034
10720.00 0.00
98
0
10730.00 0.00
922
10740.00 0.00
86
0
10750.00 0.00
802
10760.00 0.00
742
10770.00 0.00
671
10780.00 0.00
61
0
10790.00 0.00
546
10800.00 0.00
478
10810.00 0.00
421
10820.00 0.00
366
10830.00 0.00
314
10840.00 0.00
267
10850.00 0.00
226
10860.00 0.00
189
10870.00 0.00
157
10880.00 0.00
13
0
10890.00 0.00
106
10900.00 0.000
85
10910.00 0.000
68
10920.00 0.000
54
10930.00 0.000
42
10940.00 0.000
32
10950.00 0.000
24
10960.00 0.000
17
10970.00 0.000
11
10980.00 0.0000
7
10990.00 0.0000
3
11000.00 0.00000
ObservationSim/MockObject/CatalogBase.py
View file @
fd6c3108
...
...
@@ -38,8 +38,8 @@ class CatalogBase(metaclass=ABCMeta):
"mag_use_normal"
:
100.
,
"theta"
:
0.
,
"kappa"
:
0.
,
"g
amma
1"
:
0.
,
"g
amma
2"
:
0.
,
"g1"
:
0.
,
"g2"
:
0.
,
"bfrac"
:
0.
,
"av"
:
0.
,
"redden"
:
0.
,
...
...
@@ -48,11 +48,24 @@ class CatalogBase(metaclass=ABCMeta):
"ell_bulge"
:
0.
,
"ell_disk"
:
0.
,
"ell_tot"
:
0.
,
"e1_disk"
:
0.
,
"e2_disk"
:
0.
,
"e1_bulge"
:
0.
,
"e2_bulge"
:
0.
,
"teff"
:
0.
,
"logg"
:
0.
,
"feh"
:
0.
,
"g1"
:
0.
,
"g2"
:
0.
,
# C6 galaxies parameters
"e1"
:
0.
,
"e2"
:
0.
,
"bulgemass"
:
0.
,
"diskmass"
:
0.
,
"size"
:
0.
,
"detA"
:
0.
,
"type"
:
0
,
"veldisp"
:
0.
,
"coeff"
:
np
.
zeros
(
20
),
# Astrometry related
"pmra"
:
0.
,
"pmdec"
:
0.
,
"rv"
:
0.
,
...
...
ObservationSim/MockObject/Galaxy.py
View file @
fd6c3108
...
...
@@ -9,31 +9,37 @@ from ObservationSim.MockObject._util import eObs, integrate_sed_bandpass, getNor
from
ObservationSim.MockObject.SpecDisperser
import
SpecDisperser
from
ObservationSim.MockObject.MockObject
import
MockObject
# import tracemalloc
class
Galaxy
(
MockObject
):
def
__init__
(
self
,
param
,
rotation
=
None
,
logger
=
None
):
super
().
__init__
(
param
,
logger
=
logger
)
self
.
thetaR
=
self
.
param
[
"theta"
]
self
.
bfrac
=
self
.
param
[
"bfrac"
]
self
.
hlr_disk
=
self
.
param
[
"hlr_disk"
]
self
.
hlr_bulge
=
self
.
param
[
"hlr_bulge"
]
#
self.thetaR = self.param["theta"]
#
self.bfrac = self.param["bfrac"]
#
self.hlr_disk = self.param["hlr_disk"]
#
self.hlr_bulge = self.param["hlr_bulge"]
# Extract ellipticity components
self
.
e_disk
=
galsim
.
Shear
(
g
=
self
.
param
[
"ell_disk"
],
beta
=
self
.
thetaR
*
galsim
.
degrees
)
self
.
e_bulge
=
galsim
.
Shear
(
g
=
self
.
param
[
"ell_bulge"
],
beta
=
self
.
thetaR
*
galsim
.
degrees
)
self
.
e_total
=
galsim
.
Shear
(
g
=
self
.
param
[
"ell_tot"
],
beta
=
self
.
thetaR
*
galsim
.
degrees
)
self
.
e1_disk
,
self
.
e2_disk
=
self
.
e_disk
.
g1
,
self
.
e_disk
.
g2
self
.
e1_bulge
,
self
.
e2_bulge
=
self
.
e_bulge
.
g1
,
self
.
e_bulge
.
g2
self
.
e1_total
,
self
.
e2_total
=
self
.
e_total
.
g1
,
self
.
e_total
.
g2
#
self.e_disk = galsim.Shear(g=self.param["ell_disk"], beta=self.thetaR*galsim.degrees)
#
self.e_bulge = galsim.Shear(g=self.param["ell_bulge"], beta=self.thetaR*galsim.degrees)
#
self.e_total = galsim.Shear(g=self.param["ell_tot"], beta=self.thetaR*galsim.degrees)
#
self.e1_disk, self.e2_disk = self.e_disk.g1, self.e_disk.g2
#
self.e1_bulge, self.e2_bulge = self.e_bulge.g1, self.e_bulge.g2
#
self.e1_total, self.e2_total = self.e_total.g1, self.e_total.g2
if
rotation
is
not
None
:
self
.
rotateEllipticity
(
rotation
)
if
not
hasattr
(
self
,
"disk_sersic_idx"
):
self
.
disk_sersic_idx
=
1.
if
not
hasattr
(
self
,
"bulge_sersic_idx"
):
self
.
bulge_sersic_idx
=
4.
def
unload_SED
(
self
):
"""(Test) free up SED memory
"""
del
self
.
sed
def
getGSObj_multiband
(
self
,
tel
,
psf_list
,
bandpass_list
,
filt
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
):
def
getGSObj_multiband
(
self
,
tel
,
psf_list
,
bandpass_list
,
filt
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
,
fd_shear
=
None
):
if
len
(
psf_list
)
!=
len
(
bandpass_list
):
raise
ValueError
(
"!!!The number of PSF profiles and the number of bandpasses must be equal."
)
objs
=
[]
...
...
@@ -63,10 +69,10 @@ class Galaxy(MockObject):
return
-
1
psf
=
psf_list
[
i
]
disk
=
galsim
.
Sersic
(
n
=
1.0
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
)
disk
=
galsim
.
Sersic
(
n
=
self
.
disk_sersic_idx
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
)
disk_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_disk
,
g2
=
self
.
e2_disk
)
disk
=
disk
.
shear
(
disk_shape
)
bulge
=
galsim
.
Sersic
(
n
=
4.0
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
)
bulge
=
galsim
.
Sersic
(
n
=
self
.
bulge_sersic_idx
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
)
bulge_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_bulge
,
g2
=
self
.
e2_bulge
)
bulge
=
bulge
.
shear
(
bulge_shape
)
...
...
@@ -75,11 +81,14 @@ class Galaxy(MockObject):
gal_shear
=
galsim
.
Shear
(
g1
=
g1
,
g2
=
g2
)
gal
=
gal
.
shear
(
gal_shear
)
gal
=
galsim
.
Convolve
(
psf
,
gal
)
if
fd_shear
is
not
None
:
gal
=
gal
.
shear
(
fd_shear
)
objs
.
append
(
gal
)
final
=
galsim
.
Sum
(
objs
)
return
final
def
drawObj_multiband
(
self
,
tel
,
pos_img
,
psf_model
,
bandpass_list
,
filt
,
chip
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
):
def
drawObj_multiband
(
self
,
tel
,
pos_img
,
psf_model
,
bandpass_list
,
filt
,
chip
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
,
fd_shear
=
None
):
if
nphotons_tot
==
None
:
nphotons_tot
=
self
.
getElectronFluxFilt
(
filt
,
tel
,
exptime
)
# print("nphotons_tot = ", nphotons_tot)
...
...
@@ -89,15 +98,18 @@ class Galaxy(MockObject):
except
Exception
as
e
:
print
(
e
)
self
.
logger
.
error
(
e
)
return
Fals
e
return
2
,
Non
e
nphotons_sum
=
0
photons_list
=
[]
xmax
,
ymax
=
0
,
0
# # [C6 TEST]
# print('hlr_disk = %.4f, hlr_bulge = %.4f'%(self.hlr_disk, self.hlr_bulge))
# tracemalloc.start()
big_galaxy
=
False
if
self
.
hlr_disk
>
3.0
:
# Very big galaxy
if
self
.
hlr_disk
>
3.0
or
self
.
hlr_bulge
>
3.0
:
# Very big galaxy
big_galaxy
=
True
# (TEST) Galsim Parameters
...
...
@@ -134,22 +146,23 @@ class Galaxy(MockObject):
if
not
(
ratio
==
-
1
or
(
ratio
!=
ratio
)):
nphotons
=
ratio
*
nphotons_tot
else
:
# return False
continue
nphotons_sum
+=
nphotons
# # [C6 TEST]
# print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
=
chip
,
pos_img
=
pos_img
,
bandpass
=
bandpass
,
folding_threshold
=
folding_threshold
)
disk
=
galsim
.
Sersic
(
n
=
1.0
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
,
gsparams
=
gsp
)
disk
=
galsim
.
Sersic
(
n
=
self
.
disk_sersic_idx
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
,
gsparams
=
gsp
)
disk_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_disk
,
g2
=
self
.
e2_disk
)
disk
=
disk
.
shear
(
disk_shape
)
bulge
=
galsim
.
Sersic
(
n
=
4.0
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
,
gsparams
=
gsp
)
bulge
=
galsim
.
Sersic
(
n
=
self
.
bulge_sersic_idx
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
,
gsparams
=
gsp
)
bulge_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_bulge
,
g2
=
self
.
e2_bulge
)
bulge
=
bulge
.
shear
(
bulge_shape
)
gal
=
self
.
bfrac
*
bulge
+
(
1.0
-
self
.
bfrac
)
*
disk
#
#
(TEST) Random knots
# (TEST) Random knots
# knots = galsim.RandomKnots(npoints=100, profile=disk)
# kfrac = np.random.random()*(1.0 - self.bfrac)
# gal = self.bfrac * bulge + (1.0 - self.bfrac - kfrac) * disk + kfrac * knots
...
...
@@ -158,93 +171,82 @@ class Galaxy(MockObject):
gal_shear
=
galsim
.
Shear
(
g1
=
g1
,
g2
=
g2
)
gal
=
gal
.
shear
(
gal_shear
)
if
self
.
hlr_disk
<
10.0
:
# Not apply PSF for very big galaxy
if
not
big_galaxy
:
# Not apply PSF for very big galaxy
gal
=
galsim
.
Convolve
(
psf
,
gal
)
if
fd_shear
is
not
None
:
gal
=
gal
.
shear
(
fd_shear
)
# Use (explicit) stamps to draw
# stamp = gal.drawImage(wcs=self.localWCS, method='phot', offset=self.offset, save_photons=True)
# xmax = max(xmax, stamp.xmax)
# ymax = max(ymax, stamp.ymax)
# photons = stamp.photons
# photons.x += self.x_nominal
# photons.y += self.y_nominal
# photons_list.append(photons)
stamp
=
gal
.
drawImage
(
wcs
=
real_wcs_local
,
method
=
'phot'
,
offset
=
offset
,
save_photons
=
True
)
xmax
=
max
(
xmax
,
stamp
.
xmax
)
ymax
=
max
(
ymax
,
stamp
.
ymax
)
xmax
=
max
(
xmax
,
stamp
.
xmax
-
stamp
.
xmin
)
ymax
=
max
(
ymax
,
stamp
.
ymax
-
stamp
.
ymin
)
photons
=
stamp
.
photons
photons
.
x
+=
x_nominal
photons
.
y
+=
y_nominal
photons_list
.
append
(
photons
)
del
gal
# # [C6 TEST]
# print('xmax = %d, ymax = %d '%(xmax, ymax))
# # Output memory usage
# snapshot = tracemalloc.take_snapshot()
# top_stats = snapshot.statistics('lineno')
# for stat in top_stats[:10]:
# print(stat)
stamp
=
galsim
.
ImageF
(
int
(
xmax
*
1.1
),
int
(
ymax
*
1.1
))
stamp
.
wcs
=
real_wcs_local
stamp
.
setCenter
(
x_nominal
,
y_nominal
)
bounds
=
stamp
.
bounds
&
galsim
.
BoundsI
(
0
,
chip
.
npix_x
-
1
,
0
,
chip
.
npix_y
-
1
)
chip
.
img
.
setOrigin
(
0
,
0
)
stamp
[
bounds
]
=
chip
.
img
[
bounds
]
if
not
big_galaxy
:
for
i
in
range
(
len
(
photons_list
)):
if
i
==
0
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
)
else
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
,
resume
=
True
)
if
bounds
.
area
()
>
0
:
chip
.
img
.
setOrigin
(
0
,
0
)
stamp
[
bounds
]
=
chip
.
img
[
bounds
]
if
not
big_galaxy
:
for
i
in
range
(
len
(
photons_list
)):
if
i
==
0
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
)
else
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
,
resume
=
True
)
else
:
sensor
=
galsim
.
Sensor
()
for
i
in
range
(
len
(
photons_list
)):
if
i
==
0
:
sensor
.
accumulate
(
photons_list
[
i
],
stamp
)
else
:
sensor
.
accumulate
(
photons_list
[
i
],
stamp
,
resume
=
True
)
del
sensor
chip
.
img
[
bounds
]
=
stamp
[
bounds
]
chip
.
img
.
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
else
:
sensor
=
galsim
.
Sensor
()
for
i
in
range
(
len
(
photons_list
)):
if
i
==
0
:
sensor
.
accumulate
(
photons_list
[
i
],
stamp
)
else
:
sensor
.
accumulate
(
photons_list
[
i
],
stamp
,
resume
=
True
)
chip
.
img
[
bounds
]
=
stamp
[
bounds
]
chip
.
img
.
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
# stamp = galsim.ImageF(int(xmax*1.1), int(ymax*1.1))
# stamp.wcs = self.localWCS
# stamp.setCenter(self.x_nominal, self.y_nominal)
# bounds = stamp.bounds & chip.img.bounds
# stamp[bounds] = chip.img[bounds]
#
# if not big_galaxy:
# for i in range(len(photons_list)):
# if i == 0:
# chip.sensor.accumulate(photons_list[i], stamp)
# else:
# chip.sensor.accumulate(photons_list[i], stamp, resume=True)
# else:
# sensor = galsim.Sensor()
# for i in range(len(photons_list)):
# if i == 0:
# sensor.accumulate(photons_list[i], stamp)
# else:
# sensor.accumulate(photons_list[i], stamp, resume=True)
#
# # print(stamp.array.sum())
# # chip.img[bounds] += stamp[bounds]
# chip.img[bounds] = stamp[bounds]
# # print("nphotons_sum = ", nphotons_sum)
# Return code 0: object photons missed this detector
print
(
"obj %s missed"
%
(
self
.
id
))
self
.
logger
.
info
(
"obj %s missed"
%
(
self
.
id
))
return
0
,
pos_shear
# # [C6 TEST]
# print("nphotons_sum = ", nphotons_sum)
del
photons_list
del
stamp
return
True
,
pos_shear
return
1
,
pos_shear
def
drawObj_slitless
(
self
,
tel
,
pos_img
,
psf_model
,
bandpass_list
,
filt
,
chip
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
,
normFilter
=
None
,
grating_split_pos
=
3685
):
norm_thr_rang_ids
=
normFilter
[
'SENSITIVITY'
]
>
0.001
sedNormFactor
=
getNormFactorForSpecWithABMAG
(
ABMag
=
self
.
param
[
'mag_use_normal'
],
spectrum
=
self
.
sed
,
norm_thr
=
normFilter
,
sWave
=
np
.
floor
(
normFilter
[
norm_thr_rang_ids
][
0
][
0
]),
eWave
=
np
.
ceil
(
normFilter
[
norm_thr_rang_ids
][
-
1
][
0
]))
if
sedNormFactor
==
0
:
return
False
exptime
=
150.
,
normFilter
=
None
,
grating_split_pos
=
3685
,
fd_shear
=
None
):
if
normFilter
is
not
None
:
norm_thr_rang_ids
=
normFilter
[
'SENSITIVITY'
]
>
0.001
sedNormFactor
=
getNormFactorForSpecWithABMAG
(
ABMag
=
self
.
param
[
'mag_use_normal'
],
spectrum
=
self
.
sed
,
norm_thr
=
normFilter
,
sWave
=
np
.
floor
(
normFilter
[
norm_thr_rang_ids
][
0
][
0
]),
eWave
=
np
.
ceil
(
normFilter
[
norm_thr_rang_ids
][
-
1
][
0
]))
if
sedNormFactor
==
0
:
return
2
,
None
else
:
sedNormFactor
=
1.
normalSED
=
Table
(
np
.
array
([
self
.
sed
[
'WAVELENGTH'
],
self
.
sed
[
'FLUX'
]
*
sedNormFactor
]).
T
,
names
=
(
'WAVELENGTH'
,
'FLUX'
))
...
...
@@ -262,7 +264,7 @@ class Galaxy(MockObject):
big_galaxy
=
False
if
self
.
hlr_disk
>
3.0
:
# Very big galaxy
if
self
.
hlr_disk
>
3.0
or
self
.
hlr_bulge
>
3.0
:
# Very big galaxy
big_galaxy
=
True
if
self
.
getMagFilter
(
filt
)
<=
15
and
(
not
big_galaxy
):
...
...
@@ -280,10 +282,10 @@ class Galaxy(MockObject):
bandpass
=
bandpass_list
[
i
]
psf
,
pos_shear
=
psf_model
.
get_PSF
(
chip
=
chip
,
pos_img
=
pos_img
,
bandpass
=
bandpass
,
folding_threshold
=
folding_threshold
)
disk
=
galsim
.
Sersic
(
n
=
1.0
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
,
gsparams
=
gsp
)
disk
=
galsim
.
Sersic
(
n
=
self
.
disk_sersic_idx
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
,
gsparams
=
gsp
)
disk_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_disk
,
g2
=
self
.
e2_disk
)
disk
=
disk
.
shear
(
disk_shape
)
bulge
=
galsim
.
Sersic
(
n
=
4.0
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
,
gsparams
=
gsp
)
bulge
=
galsim
.
Sersic
(
n
=
self
.
bulge_sersic_idx
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
,
gsparams
=
gsp
)
bulge_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_bulge
,
g2
=
self
.
e2_bulge
)
bulge
=
bulge
.
shear
(
bulge_shape
)
...
...
@@ -299,11 +301,16 @@ class Galaxy(MockObject):
gal
=
gal
.
shear
(
gal_shear
)
gal
=
galsim
.
Convolve
(
psf
,
gal
)
starImg
=
gal
.
drawImage
(
wcs
=
real_wcs_local
)
if
not
big_galaxy
:
# Not apply PSF for very big galaxy
gal
=
galsim
.
Convolve
(
psf
,
gal
)
if
fd_shear
is
not
None
:
gal
=
gal
.
shear
(
fd_shear
)
starImg
=
gal
.
drawImage
(
wcs
=
real_wcs_local
,
offset
=
offset
)
origin_star
=
[
y_nominal
-
(
starImg
.
center
.
y
-
starImg
.
ymin
),
x_nominal
-
(
starImg
.
center
.
x
-
starImg
.
xmin
)]
starImg
.
setOrigin
(
0
,
0
)
gal_origin
=
[
origin_star
[
0
],
origin_star
[
1
]]
gal_end
=
[
origin_star
[
0
]
+
starImg
.
array
.
shape
[
0
]
-
1
,
origin_star
[
1
]
+
starImg
.
array
.
shape
[
1
]
-
1
]
...
...
@@ -313,6 +320,7 @@ class Galaxy(MockObject):
subImg_p1
=
starImg
.
array
[:,
0
:
subSlitPos
]
star_p1
=
galsim
.
Image
(
subImg_p1
)
star_p1
.
setOrigin
(
0
,
0
)
origin_p1
=
origin_star
xcenter_p1
=
min
(
x_nominal
,
grating_split_pos_chip
-
1
)
-
0
ycenter_p1
=
y_nominal
-
0
...
...
@@ -329,6 +337,7 @@ class Galaxy(MockObject):
subImg_p2
=
starImg
.
array
[:,
subSlitPos
+
1
:
starImg
.
array
.
shape
[
1
]]
star_p2
=
galsim
.
Image
(
subImg_p2
)
star_p2
.
setOrigin
(
0
,
0
)
origin_p2
=
[
origin_star
[
0
],
grating_split_pos_chip
]
xcenter_p2
=
max
(
x_nominal
,
grating_split_pos_chip
-
1
)
-
0
ycenter_p2
=
y_nominal
-
0
...
...
@@ -368,16 +377,16 @@ class Galaxy(MockObject):
# print(self.y_nominal, starImg.center.y, starImg.ymin)
del
psf
return
True
,
pos_shear
return
1
,
pos_shear
def
getGSObj
(
self
,
psf
,
g1
=
0
,
g2
=
0
,
flux
=
None
,
filt
=
None
,
tel
=
None
,
exptime
=
150.
):
if
flux
==
None
:
flux
=
self
.
getElectronFluxFilt
(
filt
,
tel
,
exptime
)
disk
=
galsim
.
Sersic
(
n
=
1.0
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
)
disk
=
galsim
.
Sersic
(
n
=
self
.
disk_sersic_idx
,
half_light_radius
=
self
.
hlr_disk
,
flux
=
1.0
)
disk_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_disk
,
g2
=
self
.
e2_disk
)
disk
=
disk
.
shear
(
disk_shape
)
bulge
=
galsim
.
Sersic
(
n
=
4.0
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
)
bulge
=
galsim
.
Sersic
(
n
=
self
.
bulge_sersic_idx
,
half_light_radius
=
self
.
hlr_bulge
,
flux
=
1.0
)
bulge_shape
=
galsim
.
Shear
(
g1
=
self
.
e1_bulge
,
g2
=
self
.
e2_bulge
)
bulge
=
bulge
.
shear
(
bulge_shape
)
...
...
ObservationSim/MockObject/MockObject.py
View file @
fd6c3108
import
galsim
import
numpy
as
np
import
astropy.constants
as
cons
from
astropy
import
wcs
from
astropy.table
import
Table
from
ObservationSim.MockObject._util
import
magToFlux
,
VC_A
,
convolveGaussXorders
...
...
@@ -12,53 +13,36 @@ from ObservationSim.MockObject.SpecDisperser import SpecDisperser
class
MockObject
(
object
):
def
__init__
(
self
,
param
,
logger
=
None
):
self
.
param
=
param
for
key
in
self
.
param
:
setattr
(
self
,
key
,
self
.
param
[
key
])
if
self
.
param
[
"star"
]
==
0
:
self
.
type
=
"galaxy"
elif
self
.
param
[
"star"
]
==
1
:
self
.
type
=
"star"
elif
self
.
param
[
"star"
]
==
2
:
self
.
type
=
"quasar"
###mock_stamp_START
elif
self
.
param
[
"star"
]
==
3
:
self
.
type
=
"stamp"
###mock_stamp_END
self
.
id
=
self
.
param
[
"id"
]
self
.
ra
=
self
.
param
[
"ra"
]
self
.
dec
=
self
.
param
[
"dec"
]
self
.
ra_orig
=
self
.
param
[
"ra_orig"
]
self
.
dec_orig
=
self
.
param
[
"dec_orig"
]
self
.
z
=
self
.
param
[
"z"
]
self
.
sed_type
=
self
.
param
[
"sed_type"
]
self
.
model_tag
=
self
.
param
[
"model_tag"
]
self
.
mag_use_normal
=
self
.
param
[
"mag_use_normal"
]
self
.
sed
=
None
# Place holder for outputs
self
.
av
=
self
.
param
[
"av"
]
self
.
redden
=
self
.
param
[
"redden"
]
self
.
pmra
=
self
.
param
[
"pmra"
]
self
.
pmdec
=
self
.
param
[
"pmdec"
]
self
.
rv
=
self
.
param
[
"rv"
]
self
.
parallax
=
self
.
param
[
"parallax"
]
self
.
g1
=
self
.
param
[
"g1"
]
self
.
g2
=
self
.
param
[
"g2"
]
self
.
thetaR
=
self
.
param
[
"theta"
]
self
.
bfrac
=
self
.
param
[
"bfrac"
]
self
.
hlr_disk
=
self
.
param
[
"hlr_disk"
]
self
.
hlr_bulge
=
self
.
param
[
"hlr_bulge"
]
self
.
e1_disk
,
self
.
e2_disk
=
0.
,
0.
self
.
e1_bulge
,
self
.
e2_bulge
=
0.
,
0.
self
.
additional_output_str
=
""
self
.
fd_shear
=
None
self
.
logger
=
logger
def
getMagFilter
(
self
,
filt
):
if
filt
.
filter_type
in
[
"GI"
,
"GV"
,
"GU"
]:
return
self
.
param
[
"mag_use_normal"
]
return
self
.
param
[
"mag_%s"
%
filt
.
filter_type
]
# (TEST) stamp size
# return 13.0
return
self
.
param
[
"mag_%s"
%
filt
.
filter_type
.
lower
()]
def
getFluxFilter
(
self
,
filt
):
return
self
.
param
[
"flux_%s"
%
filt
.
filter_type
]
return
self
.
param
[
"flux_%s"
%
filt
.
filter_type
.
lower
()
]
def
getNumPhotons
(
self
,
flux
,
tel
,
exptime
=
150.
):
pupil_area
=
tel
.
pupil_area
*
(
100.
)
**
2
# m^2 to cm^2
...
...
@@ -85,7 +69,7 @@ class MockObject(object):
print
(
"
\n
"
)
print
(
"Before field distortion:
\n
"
)
print
(
"x = %.2f, y = %.2f
\n
"
%
(
self
.
posImg
.
x
,
self
.
posImg
.
y
),
flush
=
True
)
self
.
posImg
=
fdmodel
.
get_
D
istorted
(
chip
=
chip
,
pos_img
=
self
.
posImg
)
self
.
posImg
,
self
.
fd_shear
=
fdmodel
.
get_
d
istorted
(
chip
=
chip
,
pos_img
=
self
.
posImg
)
if
verbose
:
print
(
"After field distortion:
\n
"
)
print
(
"x = %.2f, y = %.2f
\n
"
%
(
self
.
posImg
.
x
,
self
.
posImg
.
y
),
flush
=
True
)
...
...
@@ -96,14 +80,12 @@ class MockObject(object):
dy
=
y
-
self
.
y_nominal
self
.
offset
=
galsim
.
PositionD
(
dx
,
dy
)
from
astropy
import
wcs
if
img_header
is
not
None
:
self
.
real_wcs
=
galsim
.
FitsWCS
(
header
=
img_header
)
else
:
self
.
real_wcs
=
None
return
self
.
posImg
,
self
.
offset
,
self
.
localWCS
,
self
.
real_wcs
return
self
.
posImg
,
self
.
offset
,
self
.
localWCS
,
self
.
real_wcs
,
self
.
fd_shear
def
getRealPos
(
self
,
img
,
global_x
=
0.
,
global_y
=
0.
,
img_real_wcs
=
None
):
img_global_pos
=
galsim
.
PositionD
(
global_x
,
global_y
)
...
...
@@ -141,7 +123,7 @@ class MockObject(object):
return
img
,
stamp
,
isUpdated
def
drawObj_multiband
(
self
,
tel
,
pos_img
,
psf_model
,
bandpass_list
,
filt
,
chip
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
):
exptime
=
150.
,
fd_shear
=
None
):
if
nphotons_tot
==
None
:
nphotons_tot
=
self
.
getElectronFluxFilt
(
filt
,
tel
,
exptime
)
# print("nphotons_tot = ", nphotons_tot)
...
...
@@ -151,7 +133,7 @@ class MockObject(object):
except
Exception
as
e
:
print
(
e
)
self
.
logger
.
error
(
e
)
return
Fals
e
return
2
,
Non
e
nphotons_sum
=
0
photons_list
=
[]
...
...
@@ -201,14 +183,6 @@ class MockObject(object):
star
=
star
.
withFlux
(
nphotons
)
star
=
galsim
.
Convolve
(
psf
,
star
)
# stamp = star.drawImage(wcs=self.localWCS, method='phot', offset=self.offset, save_photons=True)
# xmax = max(xmax, stamp.xmax)
# ymax = max(ymax, stamp.ymax)
# photons = stamp.photons
# photons.x += self.x_nominal
# photons.y += self.y_nominal
# photons_list.append(photons)
stamp
=
star
.
drawImage
(
wcs
=
real_wcs_local
,
method
=
'phot'
,
offset
=
offset
,
save_photons
=
True
)
xmax
=
max
(
xmax
,
stamp
.
xmax
)
ymax
=
max
(
ymax
,
stamp
.
ymax
)
...
...
@@ -221,37 +195,31 @@ class MockObject(object):
stamp
.
wcs
=
real_wcs_local
stamp
.
setCenter
(
x_nominal
,
y_nominal
)
bounds
=
stamp
.
bounds
&
galsim
.
BoundsI
(
0
,
chip
.
npix_x
-
1
,
0
,
chip
.
npix_y
-
1
)
chip
.
img
.
setOrigin
(
0
,
0
)
stamp
[
bounds
]
=
chip
.
img
[
bounds
]
for
i
in
range
(
len
(
photons_list
)):
if
i
==
0
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
)
else
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
,
resume
=
True
)
chip
.
img
[
bounds
]
=
stamp
[
bounds
]
chip
.
img
.
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
# Test stamp size
# print(xmax, ymax)
# stamp = galsim.ImageF(int(xmax*1.1), int(ymax*1.1))
# stamp.wcs = self.localWCS
# stamp.setCenter(self.x_nominal, self.y_nominal)
# bounds = stamp.bounds & chip.img.bounds
# stamp[bounds] = chip.img[bounds]
# for i in range(len(photons_list)):
# if i == 0:
# chip.sensor.accumulate(photons_list[i], stamp)
# else:
# chip.sensor.accumulate(photons_list[i], stamp, resume=True)
#
# chip.img[bounds] = stamp[bounds]
# print(chip.img.array.sum())
# print("nphotons_sum = ", nphotons_sum)
# # (DEBUG)
# print("stamp bounds: ", stamp.bounds)
# print(bounds)
if
bounds
.
area
()
>
0
:
chip
.
img
.
setOrigin
(
0
,
0
)
stamp
[
bounds
]
=
chip
.
img
[
bounds
]
for
i
in
range
(
len
(
photons_list
)):
if
i
==
0
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
)
else
:
chip
.
sensor
.
accumulate
(
photons_list
[
i
],
stamp
,
resume
=
True
)
chip
.
img
[
bounds
]
=
stamp
[
bounds
]
chip
.
img
.
setOrigin
(
chip
.
bound
.
xmin
,
chip
.
bound
.
ymin
)
else
:
# Return code 0: object photons missed this detector
print
(
"obj %s missed"
%
(
self
.
id
))
self
.
logger
.
info
(
"obj %s missed"
%
(
self
.
id
))
return
0
,
pos_shear
del
photons_list
del
stamp
return
True
,
pos_shear
return
1
,
pos_shear
# Return code 1: draw sucesss
def
addSLStoChipImage
(
self
,
sdp
=
None
,
chip
=
None
,
xOrderSigPlus
=
None
,
local_wcs
=
None
):
spec_orders
=
sdp
.
compute_spec_orders
()
...
...
@@ -302,17 +270,18 @@ class MockObject(object):
del
spec_orders
def
drawObj_slitless
(
self
,
tel
,
pos_img
,
psf_model
,
bandpass_list
,
filt
,
chip
,
nphotons_tot
=
None
,
g1
=
0
,
g2
=
0
,
exptime
=
150.
,
normFilter
=
None
,
grating_split_pos
=
3685
):
norm_thr_rang_ids
=
normFilter
[
'SENSITIVITY'
]
>
0.001
sedNormFactor
=
getNormFactorForSpecWithABMAG
(
ABMag
=
self
.
param
[
'mag_use_normal'
],
spectrum
=
self
.
sed
,
norm_thr
=
normFilter
,
sWave
=
np
.
floor
(
normFilter
[
norm_thr_rang_ids
][
0
][
0
]),
eWave
=
np
.
ceil
(
normFilter
[
norm_thr_rang_ids
][
-
1
][
0
]))
# print(self.x_nominal, self.y_nominal, chip.bound)
if
sedNormFactor
==
0
:
return
False
exptime
=
150.
,
normFilter
=
None
,
grating_split_pos
=
3685
,
fd_shear
=
None
):
if
normFilter
is
not
None
:
norm_thr_rang_ids
=
normFilter
[
'SENSITIVITY'
]
>
0.001
sedNormFactor
=
getNormFactorForSpecWithABMAG
(
ABMag
=
self
.
param
[
'mag_use_normal'
],
spectrum
=
self
.
sed
,
norm_thr
=
normFilter
,
sWave
=
np
.
floor
(
normFilter
[
norm_thr_rang_ids
][
0
][
0
]),
eWave
=
np
.
ceil
(
normFilter
[
norm_thr_rang_ids
][
-
1
][
0
]))
if
sedNormFactor
==
0
:
return
2
,
None
else
:
sedNormFactor
=
1.
if
self
.
getMagFilter
(
filt
)
<=
15
:
folding_threshold
=
5.e-4
...
...
@@ -347,11 +316,12 @@ class MockObject(object):
star
=
galsim
.
DeltaFunction
(
gsparams
=
gsp
)
star
=
star
.
withFlux
(
tel
.
pupil_area
*
exptime
)
star
=
galsim
.
Convolve
(
psf
,
star
)
starImg
=
star
.
drawImage
(
nx
=
100
,
ny
=
100
,
wcs
=
real_wcs_local
)
starImg
=
star
.
drawImage
(
nx
=
100
,
ny
=
100
,
wcs
=
real_wcs_local
,
offset
=
offset
)
origin_star
=
[
y_nominal
-
(
starImg
.
center
.
y
-
starImg
.
ymin
),
x_nominal
-
(
starImg
.
center
.
x
-
starImg
.
xmin
)]
starImg
.
setOrigin
(
0
,
0
)
gal_origin
=
[
origin_star
[
0
],
origin_star
[
1
]]
gal_end
=
[
origin_star
[
0
]
+
starImg
.
array
.
shape
[
0
]
-
1
,
origin_star
[
1
]
+
starImg
.
array
.
shape
[
1
]
-
1
]
...
...
@@ -362,6 +332,7 @@ class MockObject(object):
subImg_p1
=
starImg
.
array
[:,
0
:
subSlitPos
]
star_p1
=
galsim
.
Image
(
subImg_p1
)
origin_p1
=
origin_star
star_p1
.
setOrigin
(
0
,
0
)
xcenter_p1
=
min
(
x_nominal
,
grating_split_pos_chip
-
1
)
-
0
ycenter_p1
=
y_nominal
-
0
...
...
@@ -377,6 +348,7 @@ class MockObject(object):
subImg_p2
=
starImg
.
array
[:,
subSlitPos
+
1
:
starImg
.
array
.
shape
[
1
]]
star_p2
=
galsim
.
Image
(
subImg_p2
)
star_p2
.
setOrigin
(
0
,
0
)
origin_p2
=
[
origin_star
[
0
],
grating_split_pos_chip
]
xcenter_p2
=
max
(
x_nominal
,
grating_split_pos_chip
-
1
)
-
0
ycenter_p2
=
y_nominal
-
0
...
...
@@ -414,7 +386,7 @@ class MockObject(object):
self
.
addSLStoChipImage
(
sdp
=
sdp
,
chip
=
chip
,
xOrderSigPlus
=
xOrderSigPlus
,
local_wcs
=
real_wcs_local
)
del
sdp
del
psf
return
True
,
pos_shear
return
1
,
pos_shear
def
SNRestimate
(
self
,
img_obj
,
flux
,
noise_level
=
0.0
,
seed
=
31415
):
img_flux
=
img_obj
.
added_flux
...
...
@@ -425,6 +397,3 @@ class MockObject(object):
sig_obj
=
np
.
std
(
stamp
.
array
)
snr_obj
=
img_flux
/
sig_obj
return
snr_obj
# def getObservedEll(self, g1=0, g2=0):
# return 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
Prev
1
2
3
4
Next
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment