""" generate image header """ import numpy as np from astropy.io import fits import astropy.wcs as pywcs from collections import OrderedDict # from scipy import math import random import os import sys import astropy.coordinates as coord from astropy.time import Time def chara2digit(char): """ Function to judge and convert characters to digitals Parameters ---------- """ try: float(char) # for int, long and float except ValueError: pass return char else: data = float(char) return data def read_header_parameter(filename='global_header.param'): """ Function to read the header parameters Parameters ---------- """ name = [] value = [] description = [] for line in open(filename): line = line.strip("\n") arr = line.split('|') # csvReader = csv.reader(csvDataFile) # for arr in csvReader: name.append(arr[0]) # print(arr[0],arr[1]) value.append(chara2digit(arr[1])) description.append(arr[2]) # print(value) return name, value, description def rotate_CD_matrix(cd, pa_aper): """Rotate CD matrix Parameters ---------- cd: (2,2) array CD matrix pa_aper: float Position angle, in degrees E from N, of y axis of the detector Returns ------- cd_rot: (2,2) array Rotated CD matrix Comments -------- `astropy.wcs.WCS.rotateCD` doesn't work for non-square pixels in that it doesn't preserve the pixel scale! The bug seems to come from the fact that `rotateCD` assumes a transposed version of its own CD matrix. """ rad = np.deg2rad(-pa_aper) mat = np.zeros((2,2)) mat[0,:] = np.array([np.cos(rad),-np.sin(rad)]) mat[1,:] = np.array([np.sin(rad),np.cos(rad)]) cd_rot = np.dot(mat, cd) return cd_rot def calcaluteSLSRotSkyCoor(pix_xy = None,rot_angle = 1, xlen = 9216, ylen = 9232, w = None): rad = np.deg2rad(rot_angle) mat = np.zeros((2,2)) mat[0,:] = np.array([np.cos(rad),-np.sin(rad)]) mat[1,:] = np.array([np.sin(rad),np.cos(rad)]) center = np.array([xlen/2, ylen/2]) rot_pix = np.dot(mat, pix_xy-center) + center skyCoor = w.wcs_pix2world(np.array([rot_pix]), 1) return skyCoor # def Header_extention(xlen = 9216, ylen = 9232, gain = 1.0, readout = 5.0, dark = 0.02,saturation=90000, row_num = 1, col_num = 1): # # """ Creat an image frame for CCST with multiple extensions # # Parameters # ---------- # # """ # # flag_ltm_x = [0,1,-1,1,-1] # flag_ltm_y = [0,1,1,-1,-1] # flag_ltv_x = [0,0,1,0,1] # flag_ltv_y = [0,0,0,1,1] # # detector_size_x = int(xlen) # detector_size_y = int(ylen) # # data_x = str(int(detector_size_x)) # data_y = str(int(detector_size_y)) # # data_sec = '[1:'+data_x+',1:'+data_y+']' # e_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/extension_header.param' # name, value, description = read_header_parameter(e_header_fn) # f = open(os.path.split(os.path.realpath(__file__))[0] + '/filter.lst') # s = f.readline() # s = s.strip("\n") # filters = s.split(' ') # s = f.readline() # s = s.strip("\n") # filterID = s.split() # # s = f.readline() # s = s.strip("\n") # CCDID = s.split() # # k = (row_num-1)*6+col_num # # h_iter = 0 # for n1,v1,d1 in zip(name, value, description): # if n1=='EXTNAME': # value[h_iter] = 'RAW,'+CCDID[k-1].rjust(2,'0') # if n1=='CCDNAME': # value[h_iter] = 'ccd' + CCDID[k-1].rjust(2,'0') # if n1=='AMPNAME': # value[h_iter] = 'ccd' + CCDID[k-1].rjust(2,'0') + ':A' # if n1=='GAIN': # value[h_iter] = gain # if n1=='RDNOISE': # value[h_iter] = readout # if n1=='SATURATE': # value[h_iter] = saturation # if n1=='CCDCHIP': # value[h_iter] = 'ccd' + CCDID[k-1].rjust(2,'0') # if n1=='CCDLABEL': # value[h_iter] = filters[k-1] + '-' + filterID[k-1] # if n1=='DATASEC': # value[h_iter] = data_sec # # h_iter = h_iter + 1 # # # return name, value, description ##9232 9216 898 534 1309 60 -40 -23.4333 def WCS_def(xlen = 9216, ylen = 9232, gapy = 898.0, gapx1 = 534, gapx2 = 1309, ra = 60, dec = -40, pa = -23.433,psize = 0.074, row_num = 1, col_num = 1, filter = 'GI', center_rot = 1): """ Creat a wcs frame for CCST with multiple extensions Parameters ---------- """ flag_x = [0, 1, -1, 1, -1] flag_y = [0, 1, 1, -1, -1] flag_ext_x = [0,-1,1,-1,1] flag_ext_y = [0,-1,-1,1,1] x_num = 6 y_num = 5 detector_num = x_num*y_num detector_size_x = xlen detector_size_y = ylen gap_y = gapy gap_x = [gapx1,gapx2] ra_ref = ra dec_ref = dec pa_aper = pa pixel_size = psize gap_x1_num = 3 gap_x2_num = 2 y_center = (detector_size_y*y_num+gap_y*(y_num-1))/2 x_center = (detector_size_x*x_num+gap_x[0]*gap_x1_num+gap_x[1]*gap_x2_num)/2 gap_x_map = np.array([[0,0,0,0,0],[gap_x[0],gap_x[1],gap_x[1],gap_x[1],gap_x[1]],[gap_x[1],gap_x[0],gap_x[0],gap_x[0],gap_x[0]],[gap_x[0],gap_x[0],gap_x[0],gap_x[0],gap_x[0]],[gap_x[0],gap_x[0],gap_x[0],gap_x[0],gap_x[1]],[gap_x[1],gap_x[1],gap_x[1],gap_x[1],gap_x[0]]]) # frame_array = np.empty((5,6),dtype=np.float64) # print(x_center,y_center) j = row_num i = col_num # ccdnum = str((j-1)*5+i) x_ref, y_ref = detector_size_x*i + sum(gap_x_map[0:i,j-1]) - detector_size_x/2. , (detector_size_y+gap_y)*j-gap_y-detector_size_y/2 # print(i,j,x_ref,y_ref,ra_ref,dec_ref) r_dat = OrderedDict() # name = [] # value = [] # description = [] for k in range(1,2): cd = np.array([[ pixel_size, 0], [0, pixel_size]])/3600.*flag_x[k] cd_rot = rotate_CD_matrix(cd, pa_aper) # f = open("CCD"+ccdnum.rjust(2,'0')+"_extension"+str(k)+"_wcs.param","w") r_dat['EQUINOX'] = 2000.0 r_dat['WCSDIM'] = 2.0 r_dat['CTYPE1'] = 'RA---TAN' r_dat['CTYPE2'] = 'DEC--TAN' r_dat['CRVAL1'] = ra_ref r_dat['CRVAL2'] = dec_ref r_dat['CRPIX1'] = flag_ext_x[k]*((x_ref+flag_ext_x[k]*detector_size_x/2)-x_center) r_dat['CRPIX2'] = flag_ext_y[k]*((y_ref+flag_ext_y[k]*detector_size_y/2)-y_center) r_dat['CD1_1'] = cd_rot[0,0] r_dat['CD1_2'] = cd_rot[0,1] r_dat['CD2_1'] = cd_rot[1,0] r_dat['CD2_2'] = cd_rot[1,1] if filter in ['GU', 'GV', 'GI']: from astropy import wcs w = wcs.WCS(naxis=2) w.wcs.crpix = [r_dat['CRPIX1'], r_dat['CRPIX2']] w.wcs.cd = cd_rot w.wcs.crval = [ra_ref, dec_ref] w.wcs.ctype = [r_dat['CTYPE1'], r_dat['CTYPE2']] # test_center_o = w.wcs_pix2world(np.array([[xlen / 2, ylen / 2]]), 1) sls_rot = center_rot if i > 2: sls_rot = -sls_rot sn_x = 30 sn_y = 30 x_pixs = np.zeros(sn_y * sn_x) y_pixs = np.zeros(sn_y * sn_x) xpixs_line = np.linspace(1, xlen, sn_x) ypixs_line = np.linspace(1, ylen, sn_y) sky_coors = [] for n1, y in enumerate(ypixs_line): for n2, x in enumerate(xpixs_line): i_pix = n1 * sn_x + n2 x_pixs[i_pix] = x y_pixs[i_pix] = y pix_coor = np.array([x, y]) sc1 = calcaluteSLSRotSkyCoor(pix_xy=pix_coor, rot_angle=sls_rot, w=w) # print(sc1[0,0],sc1[0,1]) sky_coors.append((sc1[0, 0], sc1[0, 1])) from astropy.coordinates import SkyCoord from astropy.wcs.utils import fit_wcs_from_points wcs_new = fit_wcs_from_points(xy=np.array([x_pixs, y_pixs]), world_coords=SkyCoord(sky_coors, frame="icrs", unit="deg"), projection='TAN') # print(wcs_new) # test_center = wcs_new.wcs_pix2world(np.array([[xlen / 2, ylen / 2]]), 1) # # print(test_center - test_center_o) r_dat['CD1_1'] = wcs_new.wcs.cd[0, 0] r_dat['CD1_2'] = wcs_new.wcs.cd[0, 1] r_dat['CD2_1'] = wcs_new.wcs.cd[1, 0] r_dat['CD2_2'] = wcs_new.wcs.cd[1, 1] r_dat['CRPIX1'] = wcs_new.wcs.crpix[0] r_dat['CRPIX2'] = wcs_new.wcs.crpix[1] r_dat['CRVAL1'] = wcs_new.wcs.crval[0] r_dat['CRVAL2'] = wcs_new.wcs.crval[1] return r_dat #TODO project_cycle is temporary, is not in header defined, delete in future def generatePrimaryHeader(xlen = 9216, ylen = 9232, pointNum = '1', ra = 60, dec = -40, psize = 0.074, row_num = 1, col_num = 1, date='200930', time_obs='120000', im_type = 'MS', exptime=150., sat_pos = [0.,0.,0.], sat_vel = [0., 0., 0.], project_cycle=6): # array_size1, array_size2, flux, sigma = int(argv[1]), int(argv[2]), 1000.0, 5.0 k = (row_num-1)*6+col_num # ccdnum = str(k) g_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/global_header.header' f = open(os.path.split(os.path.realpath(__file__))[0] + '/filter.lst') s = f.readline() s = s.strip("\n") filters = s.split(' ') s = f.readline() s = s.strip("\n") filterID = s.split() s = f.readline() s = s.strip("\n") CCDID = s.split() h_prim = fits.Header() h_prim = fits.Header.fromfile(g_header_fn) # h_prim['PIXSIZE1'] = xlen # h_prim['PIXSIZE2'] = ylen h_prim['DATE'] = '20'+date[0:2]+'-' + date[2:4]+'-'+date[4:6] + 'T' + time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6] # h_prim['TIME'] = time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6] h_prim['DATE-OBS'] = '20'+date[0:2]+'-' + date[2:4]+'-'+date[4:6] + 'T' + time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6] # h_prim['TIME-OBS'] = time_obs[0:2]+':'+time_obs[2:4]+':'+time_obs[4:6] # h_prim['DETECTOR'] = 'CHIP'+CCDID[k-1].rjust(2,'0') h_prim['OBJ_RA'] = ra h_prim['OBJ_DEC'] = dec obs_type = {'SCI': '01', 'BIAS': '03', 'DARK': '07', 'FLAT': '11', 'CRS': '98', 'CRD': '99'} OBS_id = '1'+ obs_type[im_type] + str(int(project_cycle)) + pointNum.rjust(7,'0') h_prim['OBJECT'] = str(int(project_cycle)) + pointNum.rjust(7,'0') h_prim['OBSID'] = OBS_id # h_prim['TELFOCUS'] = 'f/14' h_prim['EXPTIME'] = exptime # Define file types file_type = {'SCI':'SCI', 'BIAS':'BIAS', 'DARK':'DARK', 'FLAT':'FLAT', 'CRS':'cosmic_ray', 'CRD':'cosmic_ray'} h_prim['FILETYPE'] = file_type[im_type] co = coord.SkyCoord(ra, dec, unit='deg') ra_hms = format(co.ra.hms.h, '02.0f') + format(co.ra.hms.m, '02.0f') + format(co.ra.hms.s, '02.0f') dec_hms = format(co.dec.dms.d, '02.0f') + format(abs(co.dec.dms.m), '02.0f') + format(abs(co.dec.dms.s), '02.0f') h_prim['TARGET'] = ra_hms + '+' + dec_hms # # h_prim['RA_NOM'] = ra_hms # h_prim['DEC_NOM'] = dec_hms h_prim['RA_PNT0'] = ra h_prim['DEC_PNT0'] = dec h_prim['RA_PNT1'] = ra h_prim['DEC_PNT1'] = dec # h_prim['PIXSCAL1'] = psize # h_prim['PIXSCAL2'] = psize ttt = h_prim['DATE'] tstart = Time(ttt) h_prim['EXPSTART'] = round(tstart.mjd, 5) h_prim['CABSTART'] = h_prim['EXPSTART'] # tend = Time(tstart.cxcsec + h_prim['EXPTIME'], format="cxcsec") tend = Time(tstart.mjd + h_prim['EXPTIME']/86400., format="mjd") h_prim['EXPEND'] = round(tend.mjd, 5) h_prim['CABEND'] = h_prim['EXPEND'] file_start_time = '20' + date[0:6] + time_obs[0:6] end_time_str = str(tend.datetime) file_end_time = end_time_str[0:4] + end_time_str[5:7]+end_time_str[8:10] + end_time_str[11:13] + end_time_str[14:16] + end_time_str[17:19] h_prim['FILENAME'] = 'CSST_MSC_MS_' + im_type + '_' + file_start_time + '_' + file_end_time + '_' + OBS_id + '_' + CCDID[ k - 1].rjust(2, '0') + '_L0_V01' h_prim['POSI0_X'] = sat_pos[0] h_prim['POSI0_Y'] = sat_pos[1] h_prim['POSI0_Z'] = sat_pos[2] h_prim['VELO0_X'] = sat_vel[0] h_prim['VELO0_Y'] = sat_vel[1] h_prim['VELO0_Z'] = sat_vel[2] # h_prim['RA_PNT0'] = ra_hms # h_prim['DEC_PNT0'] = dec_hms # Get version of CSSTSim Package from pkg_resources import get_distribution # h_prim['SIM_VER'] = (get_distribution("CSSTSim").version, "Version of CSST MSC simulation software") h_prim['FITSCREA'] = get_distribution("CSSTSim").version return h_prim def generateExtensionHeader(xlen = 9216, ylen = 9232,ra = 60, dec = -40, pa = -23.433, gain = 1.0, readout = 5.0, dark = 0.02, saturation=90000, psize = 0.074, row_num = 1, col_num = 1, extName='SCI', center_rot = 1): e_header_fn = os.path.split(os.path.realpath(__file__))[0] + '/extension_header.header' f = open(os.path.split(os.path.realpath(__file__))[0] + '/filter.lst') s = f.readline() s = s.strip("\n") filters = s.split(' ') s = f.readline() s = s.strip("\n") filterID = s.split() s = f.readline() s = s.strip("\n") CCDID = s.split() k = (row_num - 1) * 6 + col_num h_ext = fits.Header.fromfile(e_header_fn) h_ext['CCDCHIP'] = CCDID[k - 1].rjust(2, '0') h_ext['CCDLABEL'] = filters[k-1] + '-' + filterID[k-1] h_ext['FILTER'] = filters[k-1] h_ext['NAXIS1'] = xlen h_ext['NAXIS2'] = ylen h_ext['EXTNAME'] = extName h_ext['GAIN1'] = gain h_ext['GAIN2'] = gain h_ext['GAIN3'] = gain h_ext['GAIN4'] = gain h_ext['GAIN5'] = gain h_ext['GAIN6'] = gain h_ext['GAIN7'] = gain h_ext['GAIN8'] = gain h_ext['GAIN9'] = gain h_ext['GAIN10'] = gain h_ext['GAIN11'] = gain h_ext['GAIN12'] = gain h_ext['GAIN13'] = gain h_ext['GAIN14'] = gain h_ext['GAIN15'] = gain h_ext['GAIN16'] = gain h_ext['RDNOIS1'] = readout h_ext['RDNOIS2'] = readout h_ext['RDNOIS3'] = readout h_ext['RDNOIS4'] = readout h_ext['RDNOIS5'] = readout h_ext['RDNOIS6'] = readout h_ext['RDNOIS7'] = readout h_ext['RDNOIS8'] = readout h_ext['RDNOIS9'] = readout h_ext['RDNOIS10'] = readout h_ext['RDNOIS11'] = readout h_ext['RDNOIS12'] = readout h_ext['RDNOIS13'] = readout h_ext['RDNOIS14'] = readout h_ext['RDNOIS15'] = readout h_ext['RDNOIS16'] = readout h_ext['PIXSCAL1'] = psize h_ext['PIXSCAL2'] = psize # h_ext['POS_ANG'] = pa header_wcs = WCS_def(xlen=xlen, ylen=ylen, gapy=898.0, gapx1=534, gapx2=1309, ra=ra, dec=dec, pa=pa, psize=psize, row_num=row_num, col_num=col_num, filter = h_ext['FILTER'], center_rot = center_rot) h_ext['CRPIX1'] = header_wcs['CRPIX1'] h_ext['CRPIX2'] = header_wcs['CRPIX2'] h_ext['CRVAL1'] = header_wcs['CRVAL1'] h_ext['CRVAL2'] = header_wcs['CRVAL2'] h_ext['CD1_1'] = header_wcs['CD1_1'] h_ext['CD1_2'] = header_wcs['CD1_2'] h_ext['CD2_1'] = header_wcs['CD2_1'] h_ext['CD2_2'] = header_wcs['CD2_2'] h_ext['EQUINOX'] = header_wcs['EQUINOX'] h_ext['WCSDIM'] = header_wcs['WCSDIM'] h_ext['CTYPE1'] = header_wcs['CTYPE1'] h_ext['CTYPE2'] = header_wcs['CTYPE2'] return h_ext def main(argv): xlen = int(argv[1]) ylen = int(argv[2]) pointingNum = argv[3] ra = float(argv[4]) dec = float(argv[5]) pSize = float(argv[6]) ccd_row_num = int(argv[7]) ccd_col_num = int(argv[8]) pa_aper = float(argv[9]) gain = float(argv[10]) readout = float(argv[11]) dark = float(argv[12]) fw = float(argv[13]) h_prim = generatePrimaryHeader(xlen = xlen, ylen = ylen,ra = ra, dec = dec, psize = pSize, row_num = ccd_row_num, col_num = ccd_col_num, pointNum = pointingNum) h_ext = generateExtensionHeader(xlen = xlen, ylen = ylen,ra = ra, dec = dec, pa = pa_aper, gain = gain, readout = readout, dark = dark, saturation=fw, psize = pSize, row_num = ccd_row_num, col_num = ccd_col_num) hdu1 = fits.PrimaryHDU(header=h_prim) hdu2 = fits.ImageHDU(np.zeros([ylen,xlen]),header = h_ext) hdul = fits.HDUList([hdu1,hdu2]) hdul.writeto(h_prim['FILENAME']+'.fits',output_verify='ignore') # if __name__ == "__main__": # main(sys.argv)