import os import galsim import random import numpy as np import h5py as h5 import healpy as hp import astropy.constants as cons from astropy.coordinates import spherical_to_cartesian from astropy.table import Table from scipy import interpolate from datetime import datetime from ObservationSim.MockObject import CatalogBase, Star, Galaxy, Quasar from ObservationSim.MockObject._util import seds, sed_assign, extAv, tag_sed, getObservedSED from ObservationSim.Astrometry.Astrometry_util import on_orbit_obs_position try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 'importlib_resources' import importlib_resources as pkg_resources NSIDE = 128 class Catalog(CatalogBase): def __init__(self, config, chip, pointing, chip_output, **kwargs): super().__init__() self.cat_dir = os.path.join(config["data_dir"], config["catalog_options"]["input_path"]["cat_dir"]) self.seed_Av = config["catalog_options"]["seed_Av"] self.chip_output = chip_output self.logger = chip_output.logger with pkg_resources.path('Catalog.data', 'SLOAN_SDSS.g.fits') as filter_path: self.normF_star = Table.read(str(filter_path)) with pkg_resources.path('Catalog.data', 'lsst_throuput_g.fits') as filter_path: self.normF_galaxy = Table.read(str(filter_path)) self.config = config self.chip = chip self.pointing = pointing if "star_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["star_cat"] and not config["catalog_options"]["galaxy_only"]: star_file = config["catalog_options"]["input_path"]["star_cat"] star_SED_file = config["catalog_options"]["SED_templates_path"]["star_SED"] self.star_path = os.path.join(self.cat_dir, star_file) self.star_SED_path = os.path.join(config["data_dir"], star_SED_file) self._load_SED_lib_star() if "galaxy_cat" in config["catalog_options"]["input_path"] and config["catalog_options"]["input_path"]["galaxy_cat"] and not config["catalog_options"]["star_only"]: galaxy_file = config["catalog_options"]["input_path"]["galaxy_cat"] self.galaxy_path = os.path.join(self.cat_dir, galaxy_file) self.galaxy_SED_path = os.path.join(config["data_dir"], config["catalog_options"]["SED_templates_path"]["galaxy_SED"]) self._load_SED_lib_gals() if "rotateEll" in config["catalog_options"]: self.rotation = np.radians(float(config["catalog_options"]["rotateEll"])) else: self.rotation = 0. # Update output .cat header with catalog specific output columns self._add_output_columns_header() self._get_healpix_list() self._load() def _add_output_columns_header(self): self.add_hdr = " model_tag teff logg feh" self.add_fmt = " %10s %8.4f %8.4f %8.4f" self.chip_output.update_ouptut_header(additional_column_names=self.add_hdr) def _get_healpix_list(self): self.sky_coverage = self.chip.getSkyCoverageEnlarged(self.chip.img.wcs, margin=0.2) ra_min, ra_max, dec_min, dec_max = self.sky_coverage.xmin, self.sky_coverage.xmax, self.sky_coverage.ymin, self.sky_coverage.ymax ra = np.deg2rad(np.array([ra_min, ra_max, ra_max, ra_min])) dec = np.deg2rad(np.array([dec_max, dec_max, dec_min, dec_min])) vertices = spherical_to_cartesian(1., dec, ra) self.pix_list = hp.query_polygon(NSIDE, np.array(vertices).T, inclusive=True) if self.logger is not None: msg = str(("HEALPix List: ", self.pix_list)) self.logger.info(msg) else: print("HEALPix List: ", self.pix_list) def load_norm_filt(self, obj): if obj.type == "star": return self.normF_star elif obj.type == "galaxy" or obj.type == "quasar": return self.normF_galaxy else: return None def _load_SED_lib_star(self): self.tempSED_star = h5.File(self.star_SED_path,'r') def _load_SED_lib_gals(self): self.tempSed_gal, self.tempRed_gal = seds("galaxy.list", seddir=self.galaxy_SED_path) def _load_gals(self, gals, pix_id=None): ngals = len(gals['galaxyID']) self.rng_sedGal = random.Random() self.rng_sedGal.seed(pix_id) # Use healpix index as the random seed self.ud = galsim.UniformDeviate(pix_id) # Apply astrometric modeling # in C3 case only aberration ra_arr = gals['ra_true'][:] dec_arr = gals['dec_true'][:] if self.config["obs_setting"]["enable_astrometric_model"]: ra_list = ra_arr.tolist() dec_list = dec_arr.tolist() pmra_list = np.zeros(ngals).tolist() pmdec_list = np.zeros(ngals).tolist() rv_list = np.zeros(ngals).tolist() parallax_list = [1e-9] * ngals dt = datetime.utcfromtimestamp(self.pointing.timestamp) date_str = dt.date().isoformat() time_str = dt.time().isoformat() ra_arr, dec_arr = on_orbit_obs_position( input_ra_list=ra_list, input_dec_list=dec_list, input_pmra_list=pmra_list, input_pmdec_list=pmdec_list, input_rv_list=rv_list, input_parallax_list=parallax_list, input_nstars=ngals, input_x=self.pointing.sat_x, input_y=self.pointing.sat_y, input_z=self.pointing.sat_z, input_vx=self.pointing.sat_vx, input_vy=self.pointing.sat_vy, input_vz=self.pointing.sat_vz, input_epoch="J2015.5", input_date_str=date_str, input_time_str=time_str ) for igals in range(ngals): param = self.initialize_param() param['ra'] = ra_arr[igals] param['dec'] = dec_arr[igals] param['ra_orig'] = gals['ra_true'][igals] param['dec_orig'] = gals['dec_true'][igals] param['mag_use_normal'] = gals['mag_true_g_lsst'][igals] # if param['mag_use_normal'] >= 26.5: # continue param['z'] = gals['redshift_true'][igals] param['model_tag'] = 'None' param['g1'] = 0 param['g2'] = 0 param['kappa'] = 0 param['delta_ra'] = 0 param['delta_dec'] = 0 # sersicB = gals['sersic_bulge'][igals] hlrMajB = gals['size_bulge_true'][igals] hlrMinB = gals['size_minor_bulge_true'][igals] # sersicD = gals['sersic_disk'][igals] hlrMajD = gals['size_disk_true'][igals] hlrMinD = gals['size_minor_disk_true'][igals] aGal = gals['size_true'][igals] bGal = gals['size_minor_true'][igals] param['bfrac'] = gals['bulge_to_total_ratio_i'][igals] param['theta'] = gals['position_angle_true'][igals] param['hlr_bulge'] = np.sqrt(hlrMajB * hlrMinB) param['hlr_disk'] = np.sqrt(hlrMajD * hlrMinD) param['ell_bulge'] = (hlrMajB - hlrMinB)/(hlrMajB + hlrMinB) param['ell_disk'] = (hlrMajD - hlrMinD)/(hlrMajD + hlrMinD) param['ell_tot'] = (aGal - bGal) / (aGal + bGal) # Assign each galaxy a template SED param['sed_type'] = sed_assign(phz=param['z'], btt=param['bfrac'], rng=self.rng_sedGal) # param['redden'] = self.tempRed_gal[param['sed_type']] # param['av'] = self.avGal[int(self.ud()*self.nav)] # TEST no redening and no extinction param['av'] = 0.0 param['redden'] = 0 if param['sed_type'] <= 5: param['av'] = 0.0 param['redden'] = 0 param['star'] = 0 # Galaxy if param['sed_type'] >= 29: param['av'] = 0.6 * param['av'] / 3.0 # for quasar, av=[0, 0.2], 3.0=av.max-av.im param['star'] = 2 # Quasar # NOTE: this cut cannot be put before the SED type has been assigned if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200): continue self.ids += 1 # param['id'] = self.ids param['id'] = gals['galaxyID'][igals] if param['star'] == 0: obj = Galaxy(param, logger=self.logger) if param['star'] == 2: obj = Quasar(param, logger=self.logger) # Need to deal with additional output columns obj.additional_output_str = self.add_fmt%("n", 0., 0., 0.) self.objs.append(obj) def _load_stars(self, stars, pix_id=None): nstars = len(stars['sourceID']) # Apply astrometric modeling ra_arr = stars["RA"][:] dec_arr = stars["Dec"][:] pmra_arr = stars['pmra'][:] pmdec_arr = stars['pmdec'][:] rv_arr = stars['RV'][:] parallax_arr = stars['parallax'][:] if self.config["obs_setting"]["enable_astrometric_model"]: ra_list = ra_arr.tolist() dec_list = dec_arr.tolist() pmra_list = pmra_arr.tolist() pmdec_list = pmdec_arr.tolist() rv_list = rv_arr.tolist() parallax_list = parallax_arr.tolist() dt = datetime.utcfromtimestamp(self.pointing.timestamp) date_str = dt.date().isoformat() time_str = dt.time().isoformat() ra_arr, dec_arr = on_orbit_obs_position( input_ra_list=ra_list, input_dec_list=dec_list, input_pmra_list=pmra_list, input_pmdec_list=pmdec_list, input_rv_list=rv_list, input_parallax_list=parallax_list, input_nstars=nstars, input_x=self.pointing.sat_x, input_y=self.pointing.sat_y, input_z=self.pointing.sat_z, input_vx=self.pointing.sat_vx, input_vy=self.pointing.sat_vy, input_vz=self.pointing.sat_vz, input_epoch="J2015.5", input_date_str=date_str, input_time_str=time_str ) for istars in range(nstars): param = self.initialize_param() param['ra'] = ra_arr[istars] param['dec'] = dec_arr[istars] param['ra_orig'] = stars["RA"][istars] param['dec_orig'] = stars["Dec"][istars] param['pmra'] = pmra_arr[istars] param['pmdec'] = pmdec_arr[istars] param['rv'] = rv_arr[istars] param['parallax'] = parallax_arr[istars] if not self.chip.isContainObj(ra_obj=param['ra'], dec_obj=param['dec'], margin=200): continue param['mag_use_normal'] = stars['app_sdss_g'][istars] # if param['mag_use_normal'] >= 26.5: # continue self.ids += 1 # param['id'] = self.ids param['id'] = stars['sourceID'][istars] param['sed_type'] = stars['sourceID'][istars] param['model_tag'] = stars['model_tag'][istars] param['teff'] = stars['teff'][istars] param['logg'] = stars['grav'][istars] param['feh'] = stars['feh'][istars] param['z'] = 0.0 param['star'] = 1 # Star obj = Star(param, logger=self.logger) # Append additional output columns to the .cat file obj.additional_output_str = self.add_fmt%(param["model_tag"], param['teff'], param['logg'], param['feh']) self.objs.append(obj) def _load(self, **kwargs): self.nav = 15005 self.avGal = extAv(self.nav, seed=self.seed_Av) self.objs = [] self.ids = 0 if "star_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["star_cat"] and not self.config["catalog_options"]["galaxy_only"]: star_cat = h5.File(self.star_path, 'r')['catalog'] for pix in self.pix_list: try: stars = star_cat[str(pix)] self._load_stars(stars, pix_id=pix) del stars except Exception as e: self.logger.error(str(e)) print(e) if "galaxy_cat" in self.config["catalog_options"]["input_path"] and self.config["catalog_options"]["input_path"]["galaxy_cat"] and not self.config["catalog_options"]["star_only"]: gals_cat = h5.File(self.galaxy_path, 'r')['galaxies'] for pix in self.pix_list: try: gals = gals_cat[str(pix)] self._load_gals(gals, pix_id=pix) del gals except Exception as e: self.logger.error(str(e)) print(e) if self.logger is not None: self.logger.info("number of objects in catalog: %d"%(len(self.objs))) else: print("number of objects in catalog: ", len(self.objs)) del self.avGal def load_sed(self, obj, **kwargs): if obj.type == 'star': _, wave, flux = tag_sed( h5file=self.tempSED_star, model_tag=obj.param['model_tag'], teff=obj.param['teff'], logg=obj.param['logg'], feh=obj.param['feh'] ) elif obj.type == 'galaxy' or obj.type == 'quasar': sed_data = getObservedSED( sedCat=self.tempSed_gal[obj.sed_type], redshift=obj.z, av=obj.param["av"], redden=obj.param["redden"] ) wave, flux = sed_data[0], sed_data[1] else: raise ValueError("Object type not known") speci = interpolate.interp1d(wave, flux) lamb = np.arange(2000, 18001 + 0.5, 0.5) y = speci(lamb) # erg/s/cm2/A --> photo/s/m2/A all_sed = y * lamb / (cons.h.value * cons.c.value) * 1e-13 sed = Table(np.array([lamb, all_sed]).T, names=('WAVELENGTH', 'FLUX')) del wave del flux return sed