MockObject.py 14.3 KB
Newer Older
Fang Yuedong's avatar
Fang Yuedong committed
1
2
3
4
import galsim
import numpy as np
import astropy.constants as cons
from astropy.table import Table
5

6
from ObservationSim.MockObject._util import magToFlux, VC_A, convolveGaussXorders
7
8
from ObservationSim.MockObject._util import integrate_sed_bandpass, getNormFactorForSpecWithABMAG, getObservedSED, getABMAG
from ObservationSim.MockObject.SpecDisperser import SpecDisperser
Fang Yuedong's avatar
Fang Yuedong committed
9
10
11
12
13
14
15
16
17
18
19

class MockObject(object):
    def __init__(self, param):
        self.param = param

        if self.param["star"] == 0:
            self.type = "galaxy"
        elif self.param["star"] == 1:
            self.type = "star"
        elif self.param["star"] == 2:
            self.type = "quasar"
20
        
Fang Yuedong's avatar
Fang Yuedong committed
21
22
23
        self.id = self.param["id"]
        self.ra = self.param["ra"]
        self.dec = self.param["dec"]
24
25
        self.ra_orig = self.param["ra_orig"]
        self.dec_orig = self.param["dec_orig"]
Fang Yuedong's avatar
Fang Yuedong committed
26
27
28
29
        self.z = self.param["z"]
        self.sed_type = self.param["sed_type"]
        self.model_tag = self.param["model_tag"]
        self.mag_use_normal = self.param["mag_use_normal"]
30
        self.sed = None
Fang Yuedong's avatar
Fang Yuedong committed
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        # Place holder for outputs
        self.av = self.param["av"]
        self.redden = self.param["redden"]
        self.pmra = self.param["pmra"]
        self.pmdec = self.param["pmdec"]
        self.rv = self.param["rv"]
        self.parallax = self.param["parallax"]
        self.g1 = self.param["g1"]
        self.g2 = self.param["g2"]
        self.thetaR = self.param["theta"]
        self.bfrac = self.param["bfrac"]
        self.hlr_disk = self.param["hlr_disk"]
        self.hlr_bulge = self.param["hlr_bulge"]
        self.e1_disk, self.e2_disk = 0., 0.
        self.e1_bulge, self.e2_bulge = 0., 0.

Fang Yuedong's avatar
Fang Yuedong committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    def getMagFilter(self, filt):
        if filt.filter_type in ["GI", "GV", "GU"]:
            return self.param["mag_use_normal"]
        return self.param["mag_%s"%filt.filter_type]
        # (TEST) stamp size
        # return 13.0

    def getNumPhotons(self, flux, tel, exptime=150.):
        pupil_area = tel.pupil_area * (100.)**2 # m^2 to cm^2
        return flux * pupil_area * exptime

    def getElectronFluxFilt(self, filt, tel, exptime=150.):
        photonEnergy = filt.getPhotonE()
        flux = magToFlux(self.getMagFilter(filt))
62
        factor = 1.0e4 * flux/photonEnergy * VC_A * (1.0/filt.blue_limit - 1.0/filt.red_limit)
Fang Yuedong's avatar
Fang Yuedong committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        return factor * filt.efficiency * tel.pupil_area * exptime

    def getPosWorld(self):
        ra = self.param["ra"]
        dec = self.param["dec"]
        return galsim.CelestialCoord(ra=ra*galsim.degrees,dec=dec*galsim.degrees)

    def getPosImg_Offset_WCS(self, img, fdmodel=None, chip=None, verbose=True):
        self.posImg = img.wcs.toImage(self.getPosWorld())
        self.localWCS = img.wcs.local(self.posImg)
        if (fdmodel is not None) and (chip is not None):
            if verbose:
                print("\n")
                print("Before field distortion:\n")
                print("x = %.2f, y = %.2f\n"%(self.posImg.x, self.posImg.y), flush=True)
            self.posImg = fdmodel.get_Distorted(chip=chip, pos_img=self.posImg)
            if verbose:
                print("After field distortion:\n")
                print("x = %.2f, y = %.2f\n"%(self.posImg.x, self.posImg.y), flush=True)
        x, y = self.posImg.x + 0.5, self.posImg.y + 0.5
        self.x_nominal = int(np.floor(x + 0.5))
        self.y_nominal = int(np.floor(y + 0.5))
        dx = x - self.x_nominal
        dy = y - self.y_nominal
        self.offset = galsim.PositionD(dx, dy)
        return self.posImg, self.offset, self.localWCS

    def drawObject(self, img, final, flux=None, filt=None, tel=None, exptime=150.):
        """ Draw (point like) object on img.
        Should be overided for extended source, e.g. galaxy...
        Paramter:
            img: the "canvas"
            final: final (after shear, PSF etc.) GSObject
        Return:
            img: the image with the GSObject added (or discarded)
            isUpdated: is the "canvas" been updated? (a flag for updating statistcs)
        """
        isUpdated = True

        # Draw with FFT
        # stamp = final.drawImage(wcs=self.localWCS, offset=self.offset)

        # Draw with Photon Shoot
        stamp = final.drawImage(wcs=self.localWCS, method='phot', offset=self.offset)
        
        stamp.setCenter(self.x_nominal, self.y_nominal)
        if np.sum(np.isnan(stamp.array)) >= 1:
            stamp.setZero()
        bounds = stamp.bounds & img.bounds
        if bounds.area() == 0:
            isUpdated = False
        else:
            img[bounds] += stamp[bounds]
        return img, stamp, isUpdated

    def drawObj_multiband(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0, exptime=150.):
        if nphotons_tot == None:
            nphotons_tot = self.getElectronFluxFilt(filt, tel, exptime)
        # print("nphotons_tot = ", nphotons_tot)

        try:
            full = integrate_sed_bandpass(sed=self.sed, bandpass=filt.bandpass_full)
        except Exception as e:
            print(e)
            return False

        nphotons_sum = 0
        photons_list = []
        xmax, ymax = 0, 0

        # (TEST) Galsim Parameters
        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            try:
                sub = integrate_sed_bandpass(sed=self.sed, bandpass=bandpass)
            except Exception as e:
                print(e)
                # return False
                continue
        
            ratio = sub/full

            if not (ratio == -1 or (ratio != ratio)):
                nphotons = ratio * nphotons_tot
            else:
                # return False
                continue
            nphotons_sum += nphotons
            # print("nphotons_sub-band_%d = %.2f"%(i, nphotons))
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)
            star = galsim.DeltaFunction(gsparams=gsp)
            star = star.withFlux(nphotons)
            star = galsim.Convolve(psf, star)

            stamp = star.drawImage(wcs=self.localWCS, method='phot', offset=self.offset, save_photons=True)
            xmax = max(xmax, stamp.xmax)
            ymax = max(ymax, stamp.ymax)
            photons = stamp.photons
            photons.x += self.x_nominal
            photons.y += self.y_nominal
            photons_list.append(photons)

        # Test stamp size
        # print(xmax, ymax)

        stamp = galsim.ImageF(int(xmax*1.1), int(ymax*1.1))
        stamp.wcs = self.localWCS
        stamp.setCenter(self.x_nominal, self.y_nominal)
        bounds = stamp.bounds & chip.img.bounds
        stamp[bounds] = chip.img[bounds]
        for i in range(len(photons_list)):
            if i == 0:
                chip.sensor.accumulate(photons_list[i], stamp)
            else:
                chip.sensor.accumulate(photons_list[i], stamp, resume=True)

        chip.img[bounds] = stamp[bounds]
        # print(chip.img.array.sum())
        # print("nphotons_sum = ", nphotons_sum)
        del photons_list
        del stamp
        return True, pos_shear

Xin Zhang's avatar
Xin Zhang committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def addSLStoChipImage(self, sdp = None, chip = None, xOrderSigPlus = None):
        spec_orders = sdp.compute_spec_orders()
        for k, v in spec_orders.items():
            img_s = v[0]
            img_s, orig_off = convolveGaussXorders(img_s, xOrderSigPlus[k])
            origin_order_x = v[1] - orig_off
            origin_order_y = v[2] - orig_off
            specImg = galsim.ImageF(img_s)
            photons = galsim.PhotonArray.makeFromImage(specImg)
            photons.x += origin_order_x
            photons.y += origin_order_y

            xlen_imf = int(specImg.xmax - specImg.xmin + 1)
            ylen_imf = int(specImg.ymax - specImg.ymin + 1)
            stamp = galsim.ImageF(xlen_imf, ylen_imf)
            stamp.wcs = self.localWCS
            stamp.setOrigin(origin_order_x, origin_order_y)

            bounds = stamp.bounds & chip.img.bounds
            if bounds.area() == 0:
                continue
            stamp[bounds] = chip.img[bounds]
            chip.sensor.accumulate(photons, stamp)
            chip.img[bounds] = stamp[bounds]
            del stamp
        del spec_orders

Fang Yuedong's avatar
Fang Yuedong committed
220
    def drawObj_slitless(self, tel, pos_img, psf_model, bandpass_list, filt, chip, nphotons_tot=None, g1=0, g2=0,
Xin Zhang's avatar
Xin Zhang committed
221
                         exptime=150., normFilter=None, grating_split_pos=3685):
Fang Yuedong's avatar
Fang Yuedong committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        
        norm_thr_rang_ids = normFilter['SENSITIVITY'] > 0.001
        sedNormFactor = getNormFactorForSpecWithABMAG(ABMag=self.param['mag_use_normal'], spectrum=self.sed,
                                                      norm_thr=normFilter,
                                                      sWave=np.floor(normFilter[norm_thr_rang_ids][0][0]),
                                                      eWave=np.ceil(normFilter[norm_thr_rang_ids][-1][0]))
        # print(self.x_nominal, self.y_nominal, chip.bound)

        if sedNormFactor == 0:
            return False

        if self.getMagFilter(filt) <= 15:
            folding_threshold = 5.e-4
        else:
            folding_threshold = 5.e-3
        gsp = galsim.GSParams(folding_threshold=folding_threshold)

        normalSED = Table(np.array([self.sed['WAVELENGTH'], self.sed['FLUX'] * sedNormFactor]).T,
                          names=('WAVELENGTH', 'FLUX'))

Zhang Xin's avatar
Zhang Xin committed
242
243

        xOrderSigPlus = {'A':1.3909419820029296,'B':1.4760376591236062,'C':4.035447379743442,'D':5.5684364343742825,'E':16.260021029735388}
Xin Zhang's avatar
Xin Zhang committed
244
        grating_split_pos_chip = chip.bound.xmin + grating_split_pos
Fang Yuedong's avatar
Fang Yuedong committed
245
246
247
248
249
250
251
252
253
254
255
        for i in range(len(bandpass_list)):
            bandpass = bandpass_list[i]
            psf, pos_shear = psf_model.get_PSF(chip=chip, pos_img=pos_img, bandpass=bandpass, folding_threshold=folding_threshold)
            star = galsim.DeltaFunction(gsparams=gsp)
            star = star.withFlux(tel.pupil_area * exptime)
            star = galsim.Convolve(psf, star)
            starImg = star.drawImage(nx=100, ny=100, wcs=self.localWCS)

            origin_star = [self.y_nominal - (starImg.center.y - starImg.ymin),
                           self.x_nominal - (starImg.center.x - starImg.xmin)]

Xin Zhang's avatar
Xin Zhang committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
            gal_origin = [origin_star[0], origin_star[1]]
            gal_end = [origin_star[0] + starImg.array.shape[0] - 1, origin_star[1] + starImg.array.shape[1] - 1]

            if gal_origin[1] < grating_split_pos_chip < gal_end[1]:
                subSlitPos = int(grating_split_pos_chip - gal_origin[1] + 1)
                ## part img disperse

                subImg_p1 = starImg.array[:, 0:subSlitPos]
                star_p1 = galsim.Image(subImg_p1)
                origin_p1 = origin_star
                xcenter_p1 = min(self.x_nominal,grating_split_pos_chip-1) - chip.bound.xmin
                ycenter_p1 = self.y_nominal-chip.bound.ymin

                sdp_p1 = SpecDisperser(orig_img=star_p1, xcenter=xcenter_p1,
                                    ycenter=ycenter_p1, origin=origin_p1,
                                    tar_spec=normalSED,
                                    band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
                                    conf=chip.sls_conf[0],
                                    isAlongY=0)

                self.addSLStoChipImage(sdp=sdp_p1, chip=chip, xOrderSigPlus = xOrderSigPlus)

                subImg_p2 = starImg.array[:, subSlitPos+1:starImg.array.shape[1]]
                star_p2 = galsim.Image(subImg_p2)
                origin_p2 = [origin_star[0], grating_split_pos_chip]
                xcenter_p2 = max(self.x_nominal, grating_split_pos_chip - 1) - chip.bound.xmin
                ycenter_p2 = self.y_nominal - chip.bound.ymin

                sdp_p2 = SpecDisperser(orig_img=star_p2, xcenter=xcenter_p2,
                                       ycenter=ycenter_p2, origin=origin_p2,
                                       tar_spec=normalSED,
                                       band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
                                       conf=chip.sls_conf[1],
                                       isAlongY=0)

                self.addSLStoChipImage(sdp=sdp_p2, chip=chip,xOrderSigPlus = xOrderSigPlus)

                del sdp_p1
                del sdp_p2
            elif grating_split_pos_chip<=gal_origin[1]:
                sdp = SpecDisperser(orig_img=starImg, xcenter=self.x_nominal - chip.bound.xmin,
                                    ycenter=self.y_nominal - chip.bound.ymin, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
                                    conf=chip.sls_conf[1],
                                    isAlongY=0)
                self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus)
                del sdp
            elif grating_split_pos_chip>=gal_end[1]:
                sdp = SpecDisperser(orig_img=starImg, xcenter=self.x_nominal - chip.bound.xmin,
                                    ycenter=self.y_nominal - chip.bound.ymin, origin=origin_star,
                                    tar_spec=normalSED,
                                    band_start=bandpass.blue_limit * 10, band_end=bandpass.red_limit * 10,
                                    conf=chip.sls_conf[0],
                                    isAlongY=0)
                self.addSLStoChipImage(sdp=sdp, chip=chip, xOrderSigPlus = xOrderSigPlus)
                del sdp
Fang Yuedong's avatar
Fang Yuedong committed
313
314
315
316
317
318
319
320
321
322
323
324
325
            del psf
        return True, pos_shear

    def SNRestimate(self, img_obj, flux, noise_level=0.0, seed=31415):
        img_flux = img_obj.added_flux
        stamp = img_obj.copy() * 0.0
        rng = galsim.BaseDeviate(seed)
        gaussianNoise = galsim.GaussianNoise(rng, sigma=noise_level)
        stamp.addNoise(gaussianNoise)
        sig_obj = np.std(stamp.array)
        snr_obj = img_flux / sig_obj
        return snr_obj

326
327
    # def getObservedEll(self, g1=0, g2=0):
    #     return 0.0, 0.0, 0.0, 0.0, 0.0, 0.0