Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Wu Jin
CSST simulation
Commits
883b7a77
Commit
883b7a77
authored
Nov 29, 2021
by
Fang Yuedong
Browse files
bug fixed
parent
e82a5dcc
Changes
392
Hide whitespace changes
Inline
Side-by-side
ObservationSim/PSF/PSFInterp_deprecated/libPCA/svdcmp.c
deleted
100644 → 0
View file @
e82a5dcc
#include
<math.h>
#define NRANSI
#include
"nrutil.h"
void
svdcmp
(
double
**
a
,
int
m
,
int
n
,
double
*
w
,
double
**
v
)
{
int
flag
,
i
,
its
,
j
,
jj
,
k
,
l
,
nm
;
double
anorm
,
c
,
f
,
g
,
h
,
s
,
scale
,
x
,
y
,
z
,
*
rv1
;
double
pythag
(
double
a
,
double
b
);
rv1
=
dvector
(
1
,
n
);
g
=
scale
=
anorm
=
0
.
0
;
for
(
i
=
1
;
i
<=
n
;
i
++
)
{
l
=
i
+
1
;
rv1
[
i
]
=
scale
*
g
;
g
=
s
=
scale
=
0
.
0
;
if
(
i
<=
m
)
{
for
(
k
=
i
;
k
<=
m
;
k
++
)
scale
+=
fabs
(
a
[
k
][
i
]);
if
(
scale
)
{
for
(
k
=
i
;
k
<=
m
;
k
++
)
{
a
[
k
][
i
]
/=
scale
;
s
+=
a
[
k
][
i
]
*
a
[
k
][
i
];
}
f
=
a
[
i
][
i
];
g
=
-
SIGN
(
sqrt
(
s
),
f
);
h
=
f
*
g
-
s
;
a
[
i
][
i
]
=
f
-
g
;
for
(
j
=
l
;
j
<=
n
;
j
++
)
{
for
(
s
=
0
.
0
,
k
=
i
;
k
<=
m
;
k
++
)
s
+=
a
[
k
][
i
]
*
a
[
k
][
j
];
f
=
s
/
h
;
for
(
k
=
i
;
k
<=
m
;
k
++
)
a
[
k
][
j
]
+=
f
*
a
[
k
][
i
];
}
for
(
k
=
i
;
k
<=
m
;
k
++
)
a
[
k
][
i
]
*=
scale
;
}
}
w
[
i
]
=
scale
*
g
;
g
=
s
=
scale
=
0
.
0
;
if
(
i
<=
m
&&
i
!=
n
)
{
for
(
k
=
l
;
k
<=
n
;
k
++
)
scale
+=
fabs
(
a
[
i
][
k
]);
if
(
scale
)
{
for
(
k
=
l
;
k
<=
n
;
k
++
)
{
a
[
i
][
k
]
/=
scale
;
s
+=
a
[
i
][
k
]
*
a
[
i
][
k
];
}
f
=
a
[
i
][
l
];
g
=
-
SIGN
(
sqrt
(
s
),
f
);
h
=
f
*
g
-
s
;
a
[
i
][
l
]
=
f
-
g
;
for
(
k
=
l
;
k
<=
n
;
k
++
)
rv1
[
k
]
=
a
[
i
][
k
]
/
h
;
for
(
j
=
l
;
j
<=
m
;
j
++
)
{
for
(
s
=
0
.
0
,
k
=
l
;
k
<=
n
;
k
++
)
s
+=
a
[
j
][
k
]
*
a
[
i
][
k
];
for
(
k
=
l
;
k
<=
n
;
k
++
)
a
[
j
][
k
]
+=
s
*
rv1
[
k
];
}
for
(
k
=
l
;
k
<=
n
;
k
++
)
a
[
i
][
k
]
*=
scale
;
}
}
anorm
=
FMAX
(
anorm
,(
fabs
(
w
[
i
])
+
fabs
(
rv1
[
i
])));
}
for
(
i
=
n
;
i
>=
1
;
i
--
)
{
if
(
i
<
n
)
{
if
(
g
)
{
for
(
j
=
l
;
j
<=
n
;
j
++
)
v
[
j
][
i
]
=
(
a
[
i
][
j
]
/
a
[
i
][
l
])
/
g
;
for
(
j
=
l
;
j
<=
n
;
j
++
)
{
for
(
s
=
0
.
0
,
k
=
l
;
k
<=
n
;
k
++
)
s
+=
a
[
i
][
k
]
*
v
[
k
][
j
];
for
(
k
=
l
;
k
<=
n
;
k
++
)
v
[
k
][
j
]
+=
s
*
v
[
k
][
i
];
}
}
for
(
j
=
l
;
j
<=
n
;
j
++
)
v
[
i
][
j
]
=
v
[
j
][
i
]
=
0
.
0
;
}
v
[
i
][
i
]
=
1
.
0
;
g
=
rv1
[
i
];
l
=
i
;
}
for
(
i
=
IMIN
(
m
,
n
);
i
>=
1
;
i
--
)
{
l
=
i
+
1
;
g
=
w
[
i
];
for
(
j
=
l
;
j
<=
n
;
j
++
)
a
[
i
][
j
]
=
0
.
0
;
if
(
g
)
{
g
=
1
.
0
/
g
;
for
(
j
=
l
;
j
<=
n
;
j
++
)
{
for
(
s
=
0
.
0
,
k
=
l
;
k
<=
m
;
k
++
)
s
+=
a
[
k
][
i
]
*
a
[
k
][
j
];
f
=
(
s
/
a
[
i
][
i
])
*
g
;
for
(
k
=
i
;
k
<=
m
;
k
++
)
a
[
k
][
j
]
+=
f
*
a
[
k
][
i
];
}
for
(
j
=
i
;
j
<=
m
;
j
++
)
a
[
j
][
i
]
*=
g
;
}
else
for
(
j
=
i
;
j
<=
m
;
j
++
)
a
[
j
][
i
]
=
0
.
0
;
++
a
[
i
][
i
];
}
for
(
k
=
n
;
k
>=
1
;
k
--
)
{
for
(
its
=
1
;
its
<=
30
;
its
++
)
{
flag
=
1
;
for
(
l
=
k
;
l
>=
1
;
l
--
)
{
nm
=
l
-
1
;
if
((
double
)(
fabs
(
rv1
[
l
])
+
anorm
)
==
anorm
)
{
flag
=
0
;
break
;
}
if
((
double
)(
fabs
(
w
[
nm
])
+
anorm
)
==
anorm
)
break
;
}
if
(
flag
)
{
c
=
0
.
0
;
s
=
1
.
0
;
for
(
i
=
l
;
i
<=
k
;
i
++
)
{
f
=
s
*
rv1
[
i
];
rv1
[
i
]
=
c
*
rv1
[
i
];
if
((
double
)(
fabs
(
f
)
+
anorm
)
==
anorm
)
break
;
g
=
w
[
i
];
h
=
pythag
(
f
,
g
);
w
[
i
]
=
h
;
h
=
1
.
0
/
h
;
c
=
g
*
h
;
s
=
-
f
*
h
;
for
(
j
=
1
;
j
<=
m
;
j
++
)
{
y
=
a
[
j
][
nm
];
z
=
a
[
j
][
i
];
a
[
j
][
nm
]
=
y
*
c
+
z
*
s
;
a
[
j
][
i
]
=
z
*
c
-
y
*
s
;
}
}
}
z
=
w
[
k
];
if
(
l
==
k
)
{
if
(
z
<
0
.
0
)
{
w
[
k
]
=
-
z
;
for
(
j
=
1
;
j
<=
n
;
j
++
)
v
[
j
][
k
]
=
-
v
[
j
][
k
];
}
break
;
}
if
(
its
==
30
)
nrerror
(
"no convergence in 30 svdcmp iterations"
);
x
=
w
[
l
];
nm
=
k
-
1
;
y
=
w
[
nm
];
g
=
rv1
[
nm
];
h
=
rv1
[
k
];
f
=
((
y
-
z
)
*
(
y
+
z
)
+
(
g
-
h
)
*
(
g
+
h
))
/
(
2
.
0
*
h
*
y
);
g
=
pythag
(
f
,
1
.
0
);
f
=
((
x
-
z
)
*
(
x
+
z
)
+
h
*
((
y
/
(
f
+
SIGN
(
g
,
f
)))
-
h
))
/
x
;
c
=
s
=
1
.
0
;
for
(
j
=
l
;
j
<=
nm
;
j
++
)
{
i
=
j
+
1
;
g
=
rv1
[
i
];
y
=
w
[
i
];
h
=
s
*
g
;
g
=
c
*
g
;
z
=
pythag
(
f
,
h
);
rv1
[
j
]
=
z
;
c
=
f
/
z
;
s
=
h
/
z
;
f
=
x
*
c
+
g
*
s
;
g
=
g
*
c
-
x
*
s
;
h
=
y
*
s
;
y
*=
c
;
for
(
jj
=
1
;
jj
<=
n
;
jj
++
)
{
x
=
v
[
jj
][
j
];
z
=
v
[
jj
][
i
];
v
[
jj
][
j
]
=
x
*
c
+
z
*
s
;
v
[
jj
][
i
]
=
z
*
c
-
x
*
s
;
}
z
=
pythag
(
f
,
h
);
w
[
j
]
=
z
;
if
(
z
)
{
z
=
1
.
0
/
z
;
c
=
f
*
z
;
s
=
h
*
z
;
}
f
=
c
*
g
+
s
*
y
;
x
=
c
*
y
-
s
*
g
;
for
(
jj
=
1
;
jj
<=
m
;
jj
++
)
{
y
=
a
[
jj
][
j
];
z
=
a
[
jj
][
i
];
a
[
jj
][
j
]
=
y
*
c
+
z
*
s
;
a
[
jj
][
i
]
=
z
*
c
-
y
*
s
;
}
}
rv1
[
l
]
=
0
.
0
;
rv1
[
k
]
=
f
;
w
[
k
]
=
x
;
}
}
free_dvector
(
rv1
,
1
,
n
);
}
#undef NRANSI
/* (C) Copr. 1986-92 Numerical Recipes Software )1!. */
ObservationSim/PSF/PSFInterp_deprecated/libPCA/svdcmp.o
deleted
100644 → 0
View file @
e82a5dcc
File deleted
ObservationSim/PSF/PSFInterp_deprecated/libPCA/test/.DS_Store
deleted
100644 → 0
View file @
e82a5dcc
File deleted
ObservationSim/PSF/PSFInterp_deprecated/libPCA/test/Makefile
deleted
100644 → 0
View file @
e82a5dcc
#OPTS += -D
CC
=
gcc
OPTIMIZE
=
-fPIC
-shared
-g
-O3
#-Wall -wd981 #-wd1419 -wd810
#GSLI = -I/home/alex/opt/gsl/include
#GSLL = -L/home/alex/opt/gsl/lib -lgsl -lgslcblas
#FFTWI = -I/home/alex/opt/fftw/include
#FFTWL = -L/home/alex/opt/fftw/lib -lfftw3 -lfftw3f
#HDF5I = -I/home/alex/opt/hdf5/include
#HDF5L = -L/home/alex/opt/hdf5/lib -lhdf5_hl -lhdf5
#FITSI = -I/home/alex/opt/cfitsio/include
#FITSL = -L/home/alex/opt/cfitsio/lib -lcfitsio
#EXTRACFLAGS =
#EXTRACLIB =
CLINK
=
$(CC)
CFLAGS
=
$(OPTIMIZE)
#
$(EXTRACFLAGS)
$(OPTS)
CLIB
=
-lm
#
$(EXTRACLIB)
OBJS
=
test.o
EXEC
=
libtest.so
all
:
$(EXEC)
$(EXEC)
:
$(OBJS)
$(CLINK)
$(CFLAGS)
-o
$@
$(OBJS)
$(CLIB)
$(OBJS)
:
Makefile
.PHONY
:
clean
clean
:
rm
-f
*
.o
$(EXEC)
ObservationSim/PSF/PSFInterp_deprecated/libPCA/test/test.c
deleted
100644 → 0
View file @
e82a5dcc
#include
<stdio.h>
int
sum
(
int
a
,
int
b
){
return
a
+
b
;
}
ObservationSim/PSF/PSFInterp_deprecated/libPCA/test/tt.py
deleted
100644 → 0
View file @
e82a5dcc
import
numpy
as
np
import
ctypes
libPCA
=
ctypes
.
CDLL
(
'../libPCA.so'
)
# CDLL加载库
print
(
'load libPCA'
)
npsf
=
2
npix
=
3
libPCA
.
psfPCA
.
argtypes
=
[
ctypes
.
POINTER
(
ctypes
.
c_float
),
ctypes
.
c_int
,
ctypes
.
c_int
,
ctypes
.
POINTER
(
ctypes
.
c_double
),
ctypes
.
POINTER
(
ctypes
.
c_double
)]
Nstar
=
npsf
Mp
=
npix
*
npix
NM
=
Nstar
*
Mp
NN
=
Nstar
*
Nstar
arr
=
(
ctypes
.
c_float
*
NM
)()
basef
=
(
ctypes
.
c_double
*
NM
)()
coeff
=
(
ctypes
.
c_double
*
NN
)()
#psf1 = np.random.random([npix, npix])
#psf2 = np.random.random([npix, npix])
psfT
=
np
.
random
.
random
(
Nstar
*
Mp
)
arr
[:]
=
psfT
libPCA
.
psfPCA
(
arr
,
Nstar
,
Mp
,
basef
,
coeff
)
print
(
'haha'
)
print
(
arr
[:])
ObservationSim/PSF/PSFInterp_deprecated/psfConfig.py
deleted
100644 → 0
View file @
e82a5dcc
"""
CSST image simulation module (in python3): Point Spread Function (PSF)
author:: Wei Chengliang <chengliangwei@pmo.ac.cn>
"""
import
sys
from
itertools
import
islice
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
scipy.io
from
scipy.io
import
loadmat
#import xlrd
from
scipy
import
ndimage
from
scipy.interpolate
import
RectBivariateSpline
#from astropy.modeling.models import Ellipse2D
#from astropy.coordinates import Angle
#import matplotlib.patches as mpatches
import
ctypes
import
galsim
def
setupPSFimg
(
iccd
,
iwave
,
psfPath
=
"/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/CSSOS_psf_ciomp"
):
"""
psf model setup for csst-sim
Parameters:
iccd, iwave (int, int): psf model on iccd & iwave
psfPath (string, optional): path to psf matrix
Returns:
psf_model (psf_class): psf model
Methods:
psf_model.PSFinplace(self, px, py, interpScheme=1): psf interpolation
psf_model.PSFspin(self, psf, sigSpin, sigGauss, dx, dy): psf rotation (from Yudong)
"""
psf_model
=
PSFimg
(
iccd
,
iwave
,
psfPath
)
return
psf_model
##################################################
# A. psf matrix loading & checking #
##################################################
def
psfPixelLayout
(
nrows
,
ncols
,
cenPosRow
,
cenPosCol
,
pixSizeInMicrons
=
5.0
):
"""
convert psf pixels to physical position
Parameters:
nrows, ncols (int, int): psf sampling with [nrows, ncols].
cenPosRow, cenPosCol (float, float): A physical position of the chief ray for a given psf.
pixSizeInMicrons (float-optional): The pixel size in microns from the psf sampling.
Returns:
psfPixelPos (numpy.array-float): [posx, posy] in mm for [irow, icol]
Notes:
1. show positions on ccd, but not position on image only [+/- dy]
"""
psfPixelPos
=
np
.
zeros
([
2
,
nrows
,
ncols
])
if
nrows
%
2
!=
0
:
sys
.
exit
()
if
ncols
%
2
!=
0
:
sys
.
exit
()
cenPix_row
=
nrows
/
2
+
1
#中心主光线对应pixle [由长光定义]
cenPix_col
=
ncols
/
2
+
1
for
irow
in
range
(
nrows
):
for
icol
in
range
(
ncols
):
delta_row
=
((
irow
+
1
)
-
cenPix_row
)
*
pixSizeInMicrons
*
1e-3
delta_col
=
((
icol
+
1
)
-
cenPix_col
)
*
pixSizeInMicrons
*
1e-3
psfPixelPos
[
0
,
irow
,
icol
]
=
cenPosCol
+
delta_col
psfPixelPos
[
1
,
irow
,
icol
]
=
cenPosRow
-
delta_row
#note-1
return
psfPixelPos
def
imSigRange
(
img
,
fraction
=
0.80
):
"""
extract the image within x-percent (DISCARD)
Parameters:
img (numpy.array-float): image
fraction (float-optional): a percentage
Returns:
im1 (numpy.array-float): image
"""
im1
=
img
.
copy
()
im1size
=
im1
.
shape
im2
=
np
.
sort
(
im1
.
reshape
(
im1size
[
0
]
*
im1size
[
1
]))
im2
=
im2
[::
-
1
]
im3
=
np
.
cumsum
(
im2
)
/
np
.
sum
(
im2
)
loc
=
np
.
where
(
im3
>
fraction
)
#print(im3[loc[0][0]], im2[loc[0][0]])
im1
[
np
.
where
(
im1
<=
im2
[
loc
[
0
][
0
]])]
=
0
return
im1
def
imPlotInRange
(
img
):
"""
plot image within a selected range
Parameters:
img (numpy.array-float): image
Returns:
"""
im1
=
img
.
copy
()
im1size
=
im1
.
shape
X
,
Y
=
np
.
meshgrid
(
range
(
im1size
[
1
]),
range
(
im1size
[
0
]))
Z
=
im1
resolution
=
25
f
=
lambda
x
,
y
:
Z
[
int
(
y
),
int
(
x
)
]
g
=
np
.
vectorize
(
f
)
x
=
np
.
linspace
(
0
,
Z
.
shape
[
1
],
Z
.
shape
[
1
]
*
resolution
)
y
=
np
.
linspace
(
0
,
Z
.
shape
[
0
],
Z
.
shape
[
0
]
*
resolution
)
X2
,
Y2
=
np
.
meshgrid
(
x
[:
-
1
],
y
[:
-
1
])
Z2
=
g
(
X2
,
Y2
)
#plt.pcolormesh(X,Y, Z)
#plt.imshow(img, origin='lower')
plt
.
contour
(
X2
-
0.5
,
Y2
-
0.5
,
Z2
,
[
0.
],
colors
=
'w'
,
linestyles
=
'--'
,
linewidths
=
[
1
])
return
def
findMaxPix
(
img
):
"""
get the pixel position of the maximum-value
Parameters:
img (numpy.array-float): image
Returns:
imgMaxPix_x, imgMaxPix_y (int, int): pixel position in columns & rows
"""
maxIndx
=
np
.
argmax
(
img
)
maxIndx
=
np
.
unravel_index
(
maxIndx
,
np
.
array
(
img
).
shape
)
imgMaxPix_x
=
maxIndx
[
1
]
imgMaxPix_y
=
maxIndx
[
0
]
return
imgMaxPix_x
,
imgMaxPix_y
def
psfTailor
(
img
,
apSizeInArcsec
=
0.5
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
):
"""
psf tailor within a given aperture size
Parameters:
img (numpy.array-float): image
apSizeInArcsec (float-optional): aperture size in arcseconds.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
Returns:
imgT (numpy.array-float): image
"""
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
apSizeInMicrons
=
np
.
deg2rad
(
apSizeInArcsec
/
3600.
)
*
focalLengthInMeters
*
1e6
apSizeInPix
=
apSizeInMicrons
/
psfSampleSizeInMicrons
apSizeInPix
=
np
.
int
(
np
.
ceil
(
apSizeInPix
))
imgT
=
np
.
zeros_like
(
img
)
imgT
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
=
\
img
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
return
imgT
def
psfEncircle
(
img
,
fraction
=
0.8
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
):
"""
psf tailor within a given percentage.
Parameters:
img (numpy.array-float): image
fraction (float-optional): a percentage for psf tailor.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
Returns:
img*wgt (numpy.array-float): image
REE80 (float): radius of REE80 in arcseconds.
"""
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
im1
=
img
.
copy
()
im1size
=
im1
.
shape
dis
=
np
.
zeros_like
(
img
)
for
irow
in
range
(
im1size
[
0
]):
for
icol
in
range
(
im1size
[
1
]):
dx
=
icol
-
imgMaxPix_x
dy
=
irow
-
imgMaxPix_y
dis
[
irow
,
icol
]
=
np
.
hypot
(
dx
,
dy
)
nn
=
im1size
[
1
]
*
im1size
[
0
]
disX
=
dis
.
reshape
(
nn
)
disXsortId
=
np
.
argsort
(
disX
)
imgX
=
img
.
reshape
(
nn
)
imgY
=
imgX
[
disXsortId
]
psfFrac
=
np
.
cumsum
(
imgY
)
/
np
.
sum
(
imgY
)
ind
=
np
.
where
(
psfFrac
>
fraction
)[
0
][
0
]
wgt
=
np
.
ones_like
(
dis
)
wgt
[
np
.
where
(
dis
>
dis
[
np
.
where
(
img
==
imgY
[
ind
])])]
=
0
REE80
=
np
.
rad2deg
(
dis
[
np
.
where
(
img
==
imgY
[
ind
])]
*
psfSampleSizeInMicrons
*
1e-6
/
focalLengthInMeters
)
*
3600
return
img
*
wgt
,
REE80
def
psfSecondMoments
(
psfMat
,
cenX
,
cenY
,
pixSize
=
1
):
"""
estimate the psf ellipticity by the second moment of surface brightness
Parameters:
psfMat (numpy.array-float): image
cenX, cenY (float, float): pixel position of the psf center
pixSize (float-optional): pixel size
Returns:
sz (float): psf size
e1, e2 (float, float): psf ellipticity
"""
I
=
psfMat
ncol
=
I
.
shape
[
1
]
nrow
=
I
.
shape
[
0
]
w
=
0.0
w11
=
0.0
w12
=
0.0
w22
=
0.0
for
icol
in
range
(
ncol
):
for
jrow
in
range
(
nrow
):
x
=
icol
*
pixSize
-
cenX
y
=
jrow
*
pixSize
-
cenY
w
+=
I
[
jrow
,
icol
]
w11
+=
x
*
x
*
I
[
jrow
,
icol
]
w12
+=
x
*
y
*
I
[
jrow
,
icol
]
w22
+=
y
*
y
*
I
[
jrow
,
icol
]
w11
/=
w
w12
/=
w
w22
/=
w
sz
=
w11
+
w22
e1
=
(
w11
-
w22
)
/
sz
e2
=
2.0
*
w12
/
sz
return
sz
,
e1
,
e2
def
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
psfSampleSize
=
5
,
CalcPSFsize
=
True
,
CalcPSFcenter
=
True
,
SigRange
=
False
,
TailorScheme
=
1
,
InputMaxPixelPos
=
False
):
'''加载psf信息'''
"""
load psf informations from psf matrix.
Parameters:
iccd (int): ccd number [1,30].
iwave(int): wave-index [1,4].
ipsf (int): psf number [1, 100].
psfPath (int): path to psf matrix
psfSampleSize (float-optional): psf size in microns.
CalcPSFsize (bool-optional): whether calculate psf size & ellipticity. Default: True
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
SigRange (bool-optional): whether use psf tailor. Default: False
TailorScheme (int-optional): which method for psf tailor. Default: 1
Returns:
psfInfo (dirctionary)
"""
if
iccd
not
in
np
.
linspace
(
1
,
30
,
30
,
dtype
=
'int'
):
print
(
'Error - iccd should be in [1, 30].'
)
sys
.
exit
()
if
iwave
not
in
np
.
linspace
(
1
,
4
,
4
,
dtype
=
'int'
):
print
(
'Error - iwave should be in [1, 4].'
)
sys
.
exit
()
if
ipsf
not
in
np
.
linspace
(
1
,
900
,
900
,
dtype
=
'int'
):
print
(
'Error - ipsf should be in [1, 900].'
)
sys
.
exit
()
psfInfo
=
{}
fpath
=
psfPath
+
'/'
+
'ccd{:}'
.
format
(
iccd
)
+
'/'
+
'wave_{:}'
.
format
(
iwave
)
#获取ipsf矩阵
fpathMat
=
fpath
+
'/'
+
'5_psf_array'
+
'/'
+
'psf_{:}.mat'
.
format
(
ipsf
)
data
=
scipy
.
io
.
loadmat
(
fpathMat
)
psfInfo
[
'psfMat'
]
=
data
[
'psf'
]
#获取ipsf波长
fpathWave
=
fpath
+
'/'
+
'1_wavelength.txt'
f
=
open
(
fpathWave
,
'r'
)
wavelength
=
np
.
float
(
f
.
readline
())
f
.
close
()
psfInfo
[
'wavelength'
]
=
wavelength
#获取ipsf位置
fpathCoordinate
=
fpath
+
'/'
+
'4_PSF_coordinate.txt'
f
=
open
(
fpathCoordinate
,
'r'
)
header
=
f
.
readline
()
for
line
in
islice
(
f
,
ipsf
-
1
,
ipsf
):
line
=
line
.
strip
()
columns
=
line
.
split
()
f
.
close
()
icol
=
0
psfInfo
[
'field_x'
]
=
float
(
columns
[
icol
])
#deg, 视场采样位置
icol
+=
1
psfInfo
[
'field_y'
]
=
float
(
columns
[
icol
])
#deg
icol
+=
1
psfInfo
[
'centroid_x'
]
=
float
(
columns
[
icol
])
#mm, psf质心相对主光线的偏移量
icol
+=
1
psfInfo
[
'centroid_y'
]
=
float
(
columns
[
icol
])
#mm
icol
+=
1
if
InputMaxPixelPos
==
True
:
psfInfo
[
'max_x'
]
=
float
(
columns
[
icol
])
#mm, max pixel
icol
+=
1
psfInfo
[
'max_y'
]
=
float
(
columns
[
icol
])
#mm
icol
+=
1
psfInfo
[
'image_x'
]
=
float
(
columns
[
icol
])
#mm, 主光线位置
icol
+=
1
psfInfo
[
'image_y'
]
=
float
(
columns
[
icol
])
#mm
#nrows = 180 #psf采样大小, in pixels
#ncols = 180
nrows
,
ncols
=
psfInfo
[
'psfMat'
].
shape
psfPos
=
psfPixelLayout
(
nrows
,
ncols
,
psfInfo
[
'image_y'
],
psfInfo
[
'image_x'
],
pixSizeInMicrons
=
5.0
)
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
psfInfo
[
'psfMat'
])
psfInfo
[
'imgMaxPosx_ccd'
]
=
psfPos
[
0
,
imgMaxPix_y
,
imgMaxPix_x
]
#cx, psf最大值位置, in mm
psfInfo
[
'imgMaxPosy_ccd'
]
=
psfPos
[
1
,
imgMaxPix_y
,
imgMaxPix_x
]
#cy
#计算psf size & ellipticity
if
CalcPSFsize
is
True
:
psfMat
=
psfInfo
[
'psfMat'
].
copy
()
cenX
,
cenY
,
sz
,
e1
,
e2
,
REE80
=
psfSizeCalculator
(
psfMat
,
psfSampleSize
=
psfSampleSize
,
CalcPSFcenter
=
CalcPSFcenter
,
SigRange
=
SigRange
,
TailorScheme
=
TailorScheme
)
psfInfo
[
'psfCenX_img'
]
=
cenX
#in local pixels, psf质心位置, in pixels
psfInfo
[
'psfCenY_img'
]
=
cenY
#in local pixels
psfInfo
[
'psfSize'
]
=
sz
psfInfo
[
'psf_e1'
]
=
e1
psfInfo
[
'psf_e2'
]
=
e2
psfInfo
[
'REE80'
]
=
REE80
return
psfInfo
def
psfSizeCalculator
(
psfMat
,
psfSampleSize
=
5
,
CalcPSFcenter
=
True
,
SigRange
=
False
,
TailorScheme
=
1
):
"""
calculate psf size & ellipticity
Parameters:
psfMat (numpy.array): image
psfSampleSize (float-optional): psf size in microns.
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
SigRange (bool-optional): whether use psf tailor. Default: False
TailorScheme (int-optional): which method for psf tailor. Default: 1
Returns:
cenX, cenY (float, float): the pixel position of the mass center
sz (float): psf size
e1, e2 (float, float): psf ellipticity
REE80 (float): radius of REE80 in arcseconds
"""
psfSampleSize
=
psfSampleSize
*
1e-3
#mm
REE80
=
-
1.0
##encircling 80% energy
if
SigRange
is
True
:
if
TailorScheme
==
1
:
psfMat
=
imSigRange
(
psfMat
,
fraction
=
0.80
)
psfInfo
[
'psfMat'
]
=
psfMat
#set on/off
if
TailorScheme
==
2
:
img
=
psfTailor
(
psfMat
,
apSizeInArcsec
=
0.5
)
imgX
,
REE80
=
psfEncircle
(
psfMat
)
psfMat
=
img
REE80
=
REE80
[
0
]
if
CalcPSFcenter
is
True
:
img
=
psfMat
/
np
.
sum
(
psfMat
)
y
,
x
=
ndimage
.
center_of_mass
(
img
)
#y-rows, x-cols
cenX
=
x
cenY
=
y
if
CalcPSFcenter
is
False
:
cenPix_X
=
psfMat
.
shape
[
1
]
/
2
#90
cenPix_Y
=
psfMat
.
shape
[
0
]
/
2
#90
cenX
=
cenPix_X
+
psfInfo
[
'centroid_x'
]
/
psfSampleSize
cenY
=
cenPix_Y
-
psfInfo
[
'centroid_y'
]
/
psfSampleSize
pixSize
=
1
sz
,
e1
,
e2
=
psfSecondMoments
(
psfMat
,
cenX
,
cenY
,
pixSize
=
pixSize
)
return
cenX
,
cenY
,
sz
,
e1
,
e2
,
REE80
def
psfStack
(
*
psfMat
):
"""
stacked image from the different psfs
Parameters:
*psfMat (numpy.array): the different psfs for stacking
Returns:
img (numpy.array): image
"""
nn
=
len
(
psfMat
)
img
=
np
.
zeros_like
(
psfMat
[
0
])
for
ii
in
range
(
nn
):
img
+=
psfMat
[
ii
]
/
np
.
sum
(
psfMat
[
ii
])
img
/=
np
.
sum
(
img
)
return
img
##################################################
# B. psf interpolation #
##################################################
def
img2fits
(
img
,
fitsName
=
None
):
"""
saving image to fits file
Parameters:
img (numpy.array): image
fitsName (string): path+filename of fits
Returns:
"""
from
astropy.io
import
fits
grey
=
fits
.
PrimaryHDU
(
img
)
greyHDU
=
fits
.
HDUList
([
grey
])
if
fitsName
!=
None
:
greyHDU
.
writeto
(
fitsName
)
def
psfMatLoad
(
iccd
,
iwave
,
psfPath
,
psfSampleSize
=
5
,
CalcPSFsize
=
False
,
CalcPSFcenter
=
True
):
"""
load psf for interpolation
Parameters:
iccd, iwave, psfPath: # of ccd/wave and path for psfs
CalcPSFsize (bool-optional): whether calculate psf size & ellipticity. Default: False
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
Returns:
PSFMat (numpy.array): images
cen_col, cen_row (numpy.array, numpy.array): position of psf center in the view field
"""
psfSet
=
[]
for
ipsf
in
range
(
1
,
101
):
psfInfo
=
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
CalcPSFsize
=
CalcPSFsize
,
CalcPSFcenter
=
CalcPSFcenter
,
InputMaxPixelPos
=
False
)
psfSet
.
append
(
psfInfo
)
npsf
=
len
(
psfSet
)
ngy
,
ngx
=
psfSet
[
0
][
'psfMat'
].
shape
PSFMat
=
np
.
zeros
([
npsf
,
ngy
,
ngx
])
cen_col
=
np
.
zeros
(
npsf
)
cen_row
=
np
.
zeros
(
npsf
)
FieldPos
=
False
for
ipsf
in
range
(
npsf
):
PSFMat
[
ipsf
,
:,
:]
=
psfSet
[
ipsf
][
'psfMat'
]
if
FieldPos
==
True
:
cen_col
[
ipsf
]
=
psfSet
[
ipsf
][
'field_x'
]
#cx
cen_row
[
ipsf
]
=
psfSet
[
ipsf
][
'field_y'
]
#cy
if
FieldPos
==
False
:
cen_col
[
ipsf
]
=
psfSet
[
ipsf
][
'imgMaxPosx_ccd'
]
#cx
cen_row
[
ipsf
]
=
psfSet
[
ipsf
][
'imgMaxPosy_ccd'
]
#cy
return
PSFMat
,
cen_col
,
cen_row
def
findNeighbors
(
tx
,
ty
,
px
,
py
,
dr
=
0.1
,
dn
=
1
,
OnlyDistance
=
True
):
"""
find nearest meighbors by 2D-KDTree
Parameters:
tx, ty (float, float): a given position
px, py (numpy.array, numpy.array): position data for tree
dr (float-optional): distance
dn (int-optional): nearest-N
OnlyDistance (bool-optional): only use distance to find neighbors. Default: True
Returns:
dataq (numpy.array): index
"""
import
scipy.spatial
as
spatial
datax
=
px
datay
=
py
tree
=
spatial
.
KDTree
(
list
(
zip
(
datax
.
ravel
(),
datay
.
ravel
())))
dataq
=
[]
rr
=
dr
if
OnlyDistance
==
True
:
dataq
=
tree
.
query_ball_point
([
tx
,
ty
],
rr
)
if
OnlyDistance
==
False
:
while
len
(
dataq
)
<
dn
:
dataq
=
tree
.
query_ball_point
([
tx
,
ty
],
rr
)
rr
+=
dr
dd
=
np
.
hypot
(
datax
[
dataq
]
-
tx
,
datay
[
dataq
]
-
ty
)
ddSortindx
=
np
.
argsort
(
dd
)
dataq
=
np
.
array
(
dataq
)[
ddSortindx
[
0
:
dn
]]
return
dataq
def
psfCentering
(
img
,
apSizeInArcsec
=
4.
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
,
CenteringMode
=
1
):
"""
centering psf within an aperture
Parameters:
img (numpy.array): image
apSizeInArcsec (float-optional): aperture size in arcseconds.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
CenteringMode (int-optional): how to center psf images
Returns:
imgT (numpy.array)
"""
if
CenteringMode
==
1
:
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
if
CenteringMode
==
2
:
y
,
x
=
ndimage
.
center_of_mass
(
img
)
#y-rows, x-cols
imgMaxPix_x
=
int
(
x
)
imgMaxPix_y
=
int
(
y
)
apSizeInMicrons
=
np
.
deg2rad
(
apSizeInArcsec
/
3600.
)
*
focalLengthInMeters
*
1e6
apSizeInPix
=
apSizeInMicrons
/
psfSampleSizeInMicrons
apSizeInPix
=
np
.
int
(
np
.
ceil
(
apSizeInPix
))
imgT
=
np
.
zeros_like
(
img
)
ngy
,
ngx
=
img
.
shape
cy
=
int
(
ngy
/
2
)
cx
=
int
(
ngx
/
2
)
imgT
[
cy
-
apSizeInPix
:
cy
+
apSizeInPix
+
1
,
cx
-
apSizeInPix
:
cx
+
apSizeInPix
+
1
]
=
\
img
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
return
imgT
def
psfMaker_IDW
(
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
IDWindex
=
2
,
OnlyNeighbors
=
False
):
"""
psf interpolation by IDW
Parameters:
px, py (float, float): position of the target
PSFMat (numpy.array): image
cen_col, cen_row (numpy.array, numpy.array): potions of the psf centers
IDWindex (int-optional): the power index of IDW
OnlyNeighbors (bool-optional): only neighbors are used for psf interpolation
Returns:
psfMaker (numpy.array)
"""
minimum_psf_weight
=
1e-8
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
psfWeight
=
np
.
zeros
([
npsf
])
if
OnlyNeighbors
==
True
:
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
5.
,
dn
=
9
,
OnlyDistance
=
False
)
neighFlag
=
np
.
zeros
(
npsf
)
neighFlag
[
neigh
]
=
1
# print("neigh:", neigh)
for
ipsf
in
range
(
npsf
):
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
dist
=
np
.
sqrt
((
ref_col
-
cen_col
[
ipsf
])
**
2
+
(
ref_row
-
cen_row
[
ipsf
])
**
2
)
if
IDWindex
==
1
:
psfWeight
[
ipsf
]
=
dist
if
IDWindex
==
2
:
psfWeight
[
ipsf
]
=
dist
**
2
if
IDWindex
==
3
:
psfWeight
[
ipsf
]
=
dist
**
3
if
IDWindex
==
4
:
psfWeight
[
ipsf
]
=
dist
**
4
psfWeight
[
ipsf
]
=
max
(
psfWeight
[
ipsf
],
minimum_psf_weight
)
psfWeight
[
ipsf
]
=
1.
/
psfWeight
[
ipsf
]
psfWeight
/=
np
.
sum
(
psfWeight
)
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
for
ipsf
in
range
(
npsf
):
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
iPSFMat
=
PSFMat
[
ipsf
,
:,
:].
copy
()
iPSFMat
=
psfCentering
(
iPSFMat
,
CenteringMode
=
1
)
ipsfWeight
=
psfWeight
[
ipsf
]
psfMaker
+=
iPSFMat
*
ipsfWeight
psfMaker
/=
np
.
nansum
(
psfMaker
)
return
psfMaker
def
psfMaker_PCA
(
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
OnlyNeighbors
=
False
,
libPCApath
=
'libPCA/libPCA.so'
):
"""
psf interpolation by PCA
Parameters:
Returns:
"""
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
0.3
,
dn
=
5
,
OnlyDistance
=
False
)
npsfX
=
len
(
neigh
)
psfMatX
=
np
.
zeros
([
npsfX
,
ngy
,
ngx
])
cen_colX
=
np
.
zeros
(
npsfX
)
cen_rowX
=
np
.
zeros
(
npsfX
)
for
ipsf
in
range
(
npsfX
):
psfMatX
[
ipsf
,
:,
:]
=
PSFMat
[
neigh
[
ipsf
],
:,
:]
cen_colX
[
ipsf
]
=
cen_col
[
neigh
[
ipsf
]]
cen_rowX
[
ipsf
]
=
cen_row
[
neigh
[
ipsf
]]
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
if
OnlyNeighbors
==
True
:
PCAbasef
,
PCAcoeff
=
psfPCA_generator
(
psfMatX
,
npsfX
,
ngx
,
libPCApath
)
nPCA
=
npsfX
for
iPCA
in
range
(
nPCA
):
coeffX
=
fitPoly
(
ref_col
,
ref_row
,
cen_colX
,
cen_rowX
,
PCAcoeff
[:,
iPCA
],
order
=
2
)
psfMaker
+=
coeffX
*
PCAbasef
[
iPCA
,
:,
:]
return
psfMaker
def
psfPCA_generator
(
psfMat
,
npsf
,
npix
,
libPCApath
):
"""
generate PCs from psfMat
Parameters:
Returns:
"""
libPCA
=
ctypes
.
CDLL
(
libPCApath
)
# CDLL加载库
libPCA
.
psfPCA
.
argtypes
=
[
ctypes
.
POINTER
(
ctypes
.
c_float
),
ctypes
.
c_int
,
ctypes
.
c_int
,
ctypes
.
POINTER
(
ctypes
.
c_double
),
ctypes
.
POINTER
(
ctypes
.
c_double
)]
Nstar
=
npsf
Mp
=
npix
*
npix
NM
=
Nstar
*
Mp
NN
=
Nstar
*
Nstar
arr
=
(
ctypes
.
c_float
*
NM
)()
basef
=
(
ctypes
.
c_double
*
NM
)()
coeff
=
(
ctypes
.
c_double
*
NN
)()
psfT
=
np
.
zeros
(
NM
)
for
ipsf
in
range
(
npsf
):
lp
=
0
+
ipsf
*
Mp
up
=
Mp
+
ipsf
*
Mp
ipsfMat
=
psfMat
[
ipsf
,
:,
:]
psfT
[
lp
:
up
]
=
ipsfMat
.
reshape
(
Mp
)
arr
[:]
=
psfT
libPCA
.
psfPCA
(
arr
,
Nstar
,
Mp
,
basef
,
coeff
)
PCAbasef
=
np
.
zeros
([
npsf
,
npix
,
npix
])
PCAcoeff
=
np
.
zeros
([
npsf
,
npsf
])
for
ipsf
in
range
(
npsf
):
lp
=
0
+
ipsf
*
Mp
up
=
Mp
+
ipsf
*
Mp
PCAbasef
[
ipsf
,
:,
:]
=
np
.
array
(
basef
[
lp
:
up
]).
reshape
(
npix
,
npix
)
lp
=
0
+
ipsf
*
npsf
up
=
npsf
+
ipsf
*
npsf
PCAcoeff
[
ipsf
,
:]
=
np
.
array
(
coeff
[
lp
:
up
])
return
PCAbasef
,
PCAcoeff
def
fitPoly
(
px
,
py
,
datax
,
datay
,
dataz
,
order
=
2
):
if
order
==
1
:
# best-fit linear plane
A
=
np
.
c_
[
datax
,
datay
,
np
.
ones
(
datax
.
shape
[
0
])]
C
,
_
,
_
,
_
=
scipy
.
linalg
.
lstsq
(
A
,
dataz
)
# coefficients
pz
=
C
[
0
]
*
px
+
C
[
1
]
*
py
+
C
[
2
]
elif
order
==
2
:
# best-fit quadratic curve
A
=
np
.
c_
[
np
.
ones
(
datax
.
shape
[
0
]),
np
.
c_
[
datax
,
datay
],
np
.
prod
(
np
.
c_
[
datax
,
datay
],
axis
=
1
),
np
.
c_
[
datax
,
datay
]
**
2
]
C
,
_
,
_
,
_
=
scipy
.
linalg
.
lstsq
(
A
,
dataz
)
pz
=
np
.
dot
(
np
.
c_
[
1
,
px
,
py
,
px
*
py
,
px
**
2
,
py
**
2
],
C
)
"""
elif order == 3:
# best-fit cubic curve
A = np.c_[np.ones(datax.shape[0]), np.c_[datax, datay], np.prod(np.c_[datax, datay], axis=1), np.c_[datax, datay]**2, np.c_[datax, datay]**3]
C,_,_,_ = scipy.linalg.lstsq(A, dataz)
pz = np.dot(np.c_[1, px, py, px*py, px**2, py**2, px**3, py**3], C)
"""
return
pz
"""
############################
### not used temporarily ###
############################
def psfSplineMake(px, py, PSFMat, cen_col, cen_row, OnlyNeighbors=False):
minimum_psf_weight = 1e-8
ref_col = px
ref_row = py
cdelt1p = 1
cdelt2p = 1
ngy, ngx = PSFMat[0, :, :].shape
psfx = np.linspace(0, ngx-1, ngx)
psfy = np.linspace(0, ngy-1, ngy)
npsf = PSFMat[:, :, :].shape[0]
psfWeight = np.zeros([npsf])
for ipsf in range(npsf):
psfWeight[ipsf] = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
psfWeight[ipsf] = 1./psfWeight[ipsf]
psfWeight /= np.sum(psfWeight)
psf = np.zeros((ngy, ngx), dtype='float64')
for ipsf in range(npsf):
iPSFMat = PSFMat[ipsf, :, :]
ipsfWeight = psfWeight[ipsf]
psf += iPSFMat * ipsfWeight
psf /= (np.nansum(psf) * cdelt1p * cdelt2p)
psfSpline = RectBivariateSpline(psfy, psfx, psf)
return psf, psfSpline
def psfToImage(psfSpline, cutoff_radius=180):
ng = 180
img = np.zeros([ng, ng], dtype='float64')
for i in range(ng):
for j in range(ng):
star_row = 5
star_column = 5
if np.sqrt((j-star_column)**2 + (i-star_row)**2) <= cutoff_radius:
star_flux = 8
column_cen = j #j - star_column
row_cen = i #i - star_row
img[i,j] += star_flux * psfSpline.integral(row_cen-0.5, row_cen+0.5, column_cen-0.5, column_cen+0.5)
return img
"""
##################################################
# C. csstPSF class #
##################################################
class
PSFimg
(
object
):
def
__init__
(
self
,
iccd
,
iwave
,
psfPath
):
self
.
iccd
=
iccd
self
.
iwave
=
iwave
self
.
psfPath
=
psfPath
#loading psfSet >>>
"""
psfSet = []
for ipsf in range(1, 901):
psfInfo = LoadPSF(iccd, iwave, ipsf, psfPath, CalcPSFsize=True, CalcPSFcenter=True, SigRange=False)
psfSet.append(psfInfo)
self.psfSet = psfSet
"""
a
,
b
,
c
=
psfMatLoad
(
iccd
,
iwave
,
psfPath
)
self
.
psfMat
=
a
self
.
cenPosx
=
b
self
.
cenPosy
=
c
def
PSFinplace
(
self
,
px
,
py
,
interpScheme
=
1
):
if
interpScheme
==
1
:
idwIndx
=
2
psf
=
psfMaker_IDW
(
px
,
py
,
self
.
psfMat
,
self
.
cenPosx
,
self
.
cenPosy
,
IDWindex
=
idwIndx
,
OnlyNeighbors
=
True
)
if
interpScheme
==
2
:
libPCA
=
"/Users/chengliangwei/Desktop/csstPSF/libPCA/libPCA.so"
psf
=
psfMaker_PCA
(
px
,
py
,
self
.
psfMat
,
self
.
cenPosx
,
self
.
cenPosy
,
OnlyNeighbors
=
True
,
libPCApath
=
libPCA
)
img
=
galsim
.
ImageF
(
psf
,
scale
=
0.074
/
2
)
xpsf
=
galsim
.
InterpolatedImage
(
img
)
return
xpsf
"""
def gcPlot(self, psf,pscale=0.074,figout="GC.png"):
size = np.size(psf,axis=0)
cxy = 0.5*(size-1)
width = 0.5*size
# log scale
radius = np.arange(np.log10(0.2),np.log10(width),0.01)
radius = 10.0**radius
nr = len(radius)
gc = []
for i in range(nr):
iflux, iferr, xflag = sep.sum_circle(psf,cxy,cxy,radius[i],subpix=0)
gc += [iflux.tolist()]
# Estimate the radius for a given flux ratio
fratio = 0.8
mid = [i for i in range(nr) if gc[i]<=fratio and gc[i+1]>fratio][0]
r0, r1 = radius[mid], radius[mid+1]
gc0, gc1 = gc[mid], gc[mid+1]
r5 = (fratio-gc0)/(gc1-gc0)*(r1-r0) + r0
hlf = r5*pscale
# plot
pfit = interp1d(radius, gc, kind='cubic')
fig = pl.figure(figsize=(5.5,4.0))
ax = fig.add_axes([0.16,0.15,0.80,0.81])
ax.plot(radius*pscale, pfit(radius), "k", linewidth=2.0)
ax.plot(radius*pscale, gc, "*r", markersize=5.0,mec="r",alpha=0.3)
ax.plot([hlf,hlf],[0,fratio],"k",linewidth=2.5)
ax.plot([0,hlf],[fratio,fratio],"k",linewidth=2.5)
ax.text(radius[10]*pscale,0.6,"$r_{%.1f}$=%.2f
\"
"%(fratio,hlf))
ax.set_xlabel("Radius (arcsec)",fontsize=15)
ax.set_ylabel("Growth of Curve",fontsize=15)
ax.set_xscale("log")
ax.set_xlim(radius[0]*pscale,radius[-1]*pscale)
ax.set_ylim(0.0,1.0)
for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(15)
for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(15)
pl.savefig(figout)
pl.clf()
pl.close()
return
"""
def
PSFspin
(
self
,
psf
,
sigSpin
,
sigGauss
,
dx
,
dy
):
"""
The PSF profile at a given image position relative to the axis center
Parameters:
theta : spin angles in a given exposure in unit of [arcsecond]
dx, dy: relative position to the axis center in unit of [pixels]
Return:
Spinned PSF: g1, g2 and axis ratio 'a/b'
"""
a2Rad
=
np
.
pi
/
(
60.0
*
60.0
*
180.0
)
ff
=
sigGauss
*
0.107
*
(
1000.0
/
10.0
)
# in unit of [pixels]
rc
=
np
.
sqrt
(
dx
*
dx
+
dy
*
dy
)
cpix
=
rc
*
(
sigSpin
*
a2Rad
)
beta
=
(
np
.
arctan2
(
dy
,
dx
)
+
np
.
pi
/
2
)
ell
=
cpix
**
2
/
(
2.0
*
ff
**
2
+
cpix
**
2
)
#ell *= 10.0
qr
=
np
.
sqrt
((
1.0
+
ell
)
/
(
1.0
-
ell
))
#psfShape = galsim.Shear(e=ell, beta=beta)
#g1, g2 = psfShape.g1, psfShape.g2
#qr = np.sqrt((1.0+ell)/(1.0-ell))
#return ell, beta, qr
PSFshear
=
galsim
.
Shear
(
e
=
ell
,
beta
=
beta
*
galsim
.
radians
)
return
psf
.
shear
(
PSFshear
),
PSFshear
(
base
)
##################################################
# D. TEST #
##################################################
def
psfMaker_IDW_test
(
tpsf
,
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
IDWindex
=
2
,
OnlyNeighbors
=
False
):
minimum_psf_weight
=
1e-8
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
psfWeight
=
np
.
zeros
([
npsf
])
if
OnlyNeighbors
==
True
:
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
0.1
,
dn
=
9
,
OnlyDistance
=
False
)
neighFlag
=
np
.
zeros
(
npsf
)
neighFlag
[
neigh
]
=
1
for
ipsf
in
range
(
npsf
):
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
dist
=
np
.
sqrt
((
ref_col
-
cen_col
[
ipsf
])
**
2
+
(
ref_row
-
cen_row
[
ipsf
])
**
2
)
if
IDWindex
==
1
:
psfWeight
[
ipsf
]
=
dist
if
IDWindex
==
2
:
psfWeight
[
ipsf
]
=
dist
**
2
if
IDWindex
==
3
:
psfWeight
[
ipsf
]
=
dist
**
3
if
IDWindex
==
4
:
psfWeight
[
ipsf
]
=
dist
**
4
psfWeight
[
ipsf
]
=
max
(
psfWeight
[
ipsf
],
minimum_psf_weight
)
psfWeight
[
ipsf
]
=
1.
/
psfWeight
[
ipsf
]
psfWeight
/=
np
.
sum
(
psfWeight
)
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
for
ipsf
in
range
(
npsf
):
"""
if OnlyNeighbors == True:
iy, ix = np.unravel_index(ipsf, (10,10))
ty, tx = np.unravel_index(tpsf, (10,10))
if np.abs(iy - ty) > 1 or np.abs(ix - tx) > 1:
continue
"""
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
if
ipsf
==
tpsf
:
continue
iPSFMat
=
PSFMat
[
ipsf
,
:,
:].
copy
()
iPSFMat
=
psfCentering
(
iPSFMat
,
CenteringMode
=
1
)
ipsfWeight
=
psfWeight
[
ipsf
]
psfMaker
+=
iPSFMat
*
ipsfWeight
psfMaker
/=
np
.
nansum
(
psfMaker
)
return
psfMaker
def
psfMaker_PCA_test
(
tpsf
,
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
OnlyNeighbors
=
False
,
libPCApath
=
'libPCA/libPCA.so'
):
"""
psf interpolation by PCA
Parameters:
Returns:
"""
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
0.3
,
dn
=
9
,
OnlyDistance
=
False
)
npsfX
=
len
(
neigh
)
#去掉tpsf,neigh中排在第一个是最近的psf
print
(
"CHECK:::"
,
cen_col
[
neigh
[
0
]],
cen_row
[
neigh
[
0
]],
cen_col
[
tpsf
],
cen_row
[
tpsf
],
cen_col
[
neigh
[
0
]]
-
cen_col
[
tpsf
],
cen_row
[
neigh
[
0
]]
-
cen_row
[
tpsf
])
psfMatX
=
np
.
zeros
([
npsfX
-
1
,
ngy
,
ngx
])
cen_colX
=
np
.
zeros
(
npsfX
-
1
)
cen_rowX
=
np
.
zeros
(
npsfX
-
1
)
for
ipsf
in
range
(
npsfX
):
if
ipsf
==
0
:
continue
psfMatX
[
ipsf
-
1
,
:,
:]
=
PSFMat
[
neigh
[
ipsf
],
:,
:]
cen_colX
[
ipsf
-
1
]
=
cen_col
[
neigh
[
ipsf
]]
cen_rowX
[
ipsf
-
1
]
=
cen_row
[
neigh
[
ipsf
]]
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
if
OnlyNeighbors
==
True
:
PCAbasef
,
PCAcoeff
=
psfPCA_generator
(
psfMatX
,
npsfX
-
1
,
ngx
,
libPCApath
)
nPCA
=
npsfX
-
1
for
iPCA
in
range
(
nPCA
):
coeffX
=
fitPoly
(
ref_col
,
ref_row
,
cen_colX
,
cen_rowX
,
PCAcoeff
[:,
iPCA
],
order
=
2
)
psfMaker
+=
coeffX
*
PCAbasef
[
iPCA
,
:,
:]
return
psfMaker
def
test_loadPSF
():
iccd
=
1
#[1, 30]
iwave
=
1
#[1, 4]
ipsf
=
1
#[1, 100]
psfPath
=
'/Users/chengliangwei/csstPSFdata/CSSOS_psf_ciomp'
psfSet
=
[]
for
ipsf
in
range
(
1
,
901
):
psfInfo
=
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
CalcPSFsize
=
True
,
CalcPSFcenter
=
True
,
SigRange
=
False
)
psfSet
.
append
(
psfInfo
)
print
(
'psfSet has been loaded.'
)
print
(
'Usage: psfSet[i][keys]'
)
print
(
'psfSet.keys:'
,
psfSet
[
0
].
keys
())
return
psfSet
def
test_psfPCA
():
#load psf
print
(
'load psf...'
)
psfSet
=
test_loadPSF
()
#set input for psfPCA calc.
print
(
'PCA calc...'
)
npsf
=
5
npix
=
180
psfMat
=
np
.
zeros
([
npsf
,
npix
,
npix
])
libPCApath
=
'./libPCA/libPCA.so'
for
ipsf
in
range
(
5
):
psfMat
[
ipsf
,
:,
:]
=
psfSet
[
ipsf
][
'psfMat'
]
PCAbasef
,
PCAcoeff
=
psfPCA_generator
(
psfMat
,
npsf
,
npix
,
libPCApath
)
#plot check
print
(
'plot...'
)
fig
=
plt
.
figure
(
figsize
=
(
20
,
10
))
cc
=
90
dcc
=
15
ax
=
plt
.
subplot
(
2
,
4
,
1
)
plt
.
imshow
(
PCAbasef
[
0
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
2
)
plt
.
imshow
(
PCAbasef
[
1
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
3
)
plt
.
imshow
(
PCAbasef
[
2
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
4
)
plt
.
imshow
(
PCAbasef
[
3
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
5
)
plt
.
imshow
(
PCAbasef
[
4
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
6
)
ipsf
=
1
im
=
PCAcoeff
[
ipsf
,
0
]
*
PCAbasef
[
0
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
1
]
*
PCAbasef
[
1
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
2
]
*
PCAbasef
[
2
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
3
]
*
PCAbasef
[
3
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
4
]
*
PCAbasef
[
4
,
:,
:]
plt
.
imshow
(
im
[
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
plt
.
colorbar
()
ax
=
plt
.
subplot
(
2
,
4
,
8
)
plt
.
imshow
(
psfMat
[
ipsf
,:,:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
plt
.
colorbar
()
ax
=
plt
.
subplot
(
2
,
4
,
7
)
plt
.
imshow
((
psfMat
[
ipsf
,:,:]
-
im
)[
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
plt
.
colorbar
()
plt
.
show
()
def
test_fitPoly
():
datax
=
np
.
random
.
random
(
10
)
datay
=
np
.
random
.
random
(
10
)
*
2
dataz
=
datay
**
2
+
datay
*
datax
+
10
*
datay
**
2
px
=
0.28
py
=
10.34
pz
=
fitPoly
(
px
,
py
,
datax
,
datay
,
dataz
,
order
=
2
)
print
(
'check: pz-out:'
,
pz
,
'pz-in'
,
py
**
2
+
px
*
py
+
10
*
py
**
2
)
##################################################
# __main__ #
##################################################
if
__name__
==
'__main__'
:
print
(
'PSF modules for csst-imgsim'
)
#test_loadPSF()
#test_psfPCA()
test_fitPoly
()
ObservationSim/PSF/PSFInterp_deprecated/psfConfigTest.py
deleted
100644 → 0
View file @
e82a5dcc
"""
CSST image simulation module (in python3): Point Spread Function (PSF)
author:: Wei Chengliang <chengliangwei@pmo.ac.cn>
"""
import
sys
from
itertools
import
islice
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
scipy.io
from
scipy.io
import
loadmat
#import xlrd
from
scipy
import
ndimage
from
scipy.interpolate
import
RectBivariateSpline
#from astropy.modeling.models import Ellipse2D
#from astropy.coordinates import Angle
#import matplotlib.patches as mpatches
import
ctypes
import
galsim
def
setupPSFimg
(
iccd
,
iwave
,
psfPath
=
"/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/CSSOS_psf_ciomp"
):
"""
psf model setup for csst-sim
Parameters:
iccd, iwave (int, int): psf model on iccd & iwave
psfPath (string, optional): path to psf matrix
Returns:
psf_model (psf_class): psf model
Methods:
psf_model.PSFinplace(self, px, py, interpScheme=1): psf interpolation
psf_model.PSFspin(self, psf, sigSpin, sigGauss, dx, dy): psf rotation (from Yudong)
"""
psf_model
=
PSFimg
(
iccd
,
iwave
,
psfPath
)
return
psf_model
##################################################
# A. psf matrix loading & checking #
##################################################
def
psfPixelLayout
(
nrows
,
ncols
,
cenPosRow
,
cenPosCol
,
pixSizeInMicrons
=
5.0
):
"""
convert psf pixels to physical position
Parameters:
nrows, ncols (int, int): psf sampling with [nrows, ncols].
cenPosRow, cenPosCol (float, float): A physical position of the chief ray for a given psf.
pixSizeInMicrons (float-optional): The pixel size in microns from the psf sampling.
Returns:
psfPixelPos (numpy.array-float): [posx, posy] in mm for [irow, icol]
Notes:
1. show positions on ccd, but not position on image only [+/- dy]
"""
psfPixelPos
=
np
.
zeros
([
2
,
nrows
,
ncols
])
if
nrows
%
2
!=
0
:
sys
.
exit
()
if
ncols
%
2
!=
0
:
sys
.
exit
()
cenPix_row
=
nrows
/
2
+
1
#中心主光线对应pixle [由长光定义]
cenPix_col
=
ncols
/
2
+
1
for
irow
in
range
(
nrows
):
for
icol
in
range
(
ncols
):
delta_row
=
((
irow
+
1
)
-
cenPix_row
)
*
pixSizeInMicrons
*
1e-3
delta_col
=
((
icol
+
1
)
-
cenPix_col
)
*
pixSizeInMicrons
*
1e-3
psfPixelPos
[
0
,
irow
,
icol
]
=
cenPosCol
+
delta_col
psfPixelPos
[
1
,
irow
,
icol
]
=
cenPosRow
-
delta_row
#note-1
return
psfPixelPos
def
imSigRange
(
img
,
fraction
=
0.80
):
"""
extract the image within x-percent (DISCARD)
Parameters:
img (numpy.array-float): image
fraction (float-optional): a percentage
Returns:
im1 (numpy.array-float): image
"""
im1
=
img
.
copy
()
im1size
=
im1
.
shape
im2
=
np
.
sort
(
im1
.
reshape
(
im1size
[
0
]
*
im1size
[
1
]))
im2
=
im2
[::
-
1
]
im3
=
np
.
cumsum
(
im2
)
/
np
.
sum
(
im2
)
loc
=
np
.
where
(
im3
>
fraction
)
#print(im3[loc[0][0]], im2[loc[0][0]])
im1
[
np
.
where
(
im1
<=
im2
[
loc
[
0
][
0
]])]
=
0
return
im1
def
imPlotInRange
(
img
):
"""
plot image within a selected range
Parameters:
img (numpy.array-float): image
Returns:
"""
im1
=
img
.
copy
()
im1size
=
im1
.
shape
X
,
Y
=
np
.
meshgrid
(
range
(
im1size
[
1
]),
range
(
im1size
[
0
]))
Z
=
im1
resolution
=
25
f
=
lambda
x
,
y
:
Z
[
int
(
y
),
int
(
x
)
]
g
=
np
.
vectorize
(
f
)
x
=
np
.
linspace
(
0
,
Z
.
shape
[
1
],
Z
.
shape
[
1
]
*
resolution
)
y
=
np
.
linspace
(
0
,
Z
.
shape
[
0
],
Z
.
shape
[
0
]
*
resolution
)
X2
,
Y2
=
np
.
meshgrid
(
x
[:
-
1
],
y
[:
-
1
])
Z2
=
g
(
X2
,
Y2
)
#plt.pcolormesh(X,Y, Z)
#plt.imshow(img, origin='lower')
plt
.
contour
(
X2
-
0.5
,
Y2
-
0.5
,
Z2
,
[
0.
],
colors
=
'w'
,
linestyles
=
'--'
,
linewidths
=
[
1
])
return
def
findMaxPix
(
img
):
"""
get the pixel position of the maximum-value
Parameters:
img (numpy.array-float): image
Returns:
imgMaxPix_x, imgMaxPix_y (int, int): pixel position in columns & rows
"""
maxIndx
=
np
.
argmax
(
img
)
maxIndx
=
np
.
unravel_index
(
maxIndx
,
np
.
array
(
img
).
shape
)
imgMaxPix_x
=
maxIndx
[
1
]
imgMaxPix_y
=
maxIndx
[
0
]
return
imgMaxPix_x
,
imgMaxPix_y
def
psfTailor
(
img
,
apSizeInArcsec
=
0.5
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
):
"""
psf tailor within a given aperture size
Parameters:
img (numpy.array-float): image
apSizeInArcsec (float-optional): aperture size in arcseconds.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
Returns:
imgT (numpy.array-float): image
"""
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
apSizeInMicrons
=
np
.
deg2rad
(
apSizeInArcsec
/
3600.
)
*
focalLengthInMeters
*
1e6
apSizeInPix
=
apSizeInMicrons
/
psfSampleSizeInMicrons
apSizeInPix
=
np
.
int
(
np
.
ceil
(
apSizeInPix
))
imgT
=
np
.
zeros_like
(
img
)
imgT
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
=
\
img
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
return
imgT
def
psfEncircle
(
img
,
fraction
=
0.8
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
):
"""
psf tailor within a given percentage.
Parameters:
img (numpy.array-float): image
fraction (float-optional): a percentage for psf tailor.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
Returns:
img*wgt (numpy.array-float): image
REE80 (float): radius of REE80 in arcseconds.
"""
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
im1
=
img
.
copy
()
im1size
=
im1
.
shape
dis
=
np
.
zeros_like
(
img
)
for
irow
in
range
(
im1size
[
0
]):
for
icol
in
range
(
im1size
[
1
]):
dx
=
icol
-
imgMaxPix_x
dy
=
irow
-
imgMaxPix_y
dis
[
irow
,
icol
]
=
np
.
hypot
(
dx
,
dy
)
nn
=
im1size
[
1
]
*
im1size
[
0
]
disX
=
dis
.
reshape
(
nn
)
disXsortId
=
np
.
argsort
(
disX
)
imgX
=
img
.
reshape
(
nn
)
imgY
=
imgX
[
disXsortId
]
psfFrac
=
np
.
cumsum
(
imgY
)
/
np
.
sum
(
imgY
)
ind
=
np
.
where
(
psfFrac
>
fraction
)[
0
][
0
]
wgt
=
np
.
ones_like
(
dis
)
wgt
[
np
.
where
(
dis
>
dis
[
np
.
where
(
img
==
imgY
[
ind
])])]
=
0
REE80
=
np
.
rad2deg
(
dis
[
np
.
where
(
img
==
imgY
[
ind
])]
*
psfSampleSizeInMicrons
*
1e-6
/
focalLengthInMeters
)
*
3600
return
img
*
wgt
,
REE80
def
psfSecondMoments
(
psfMat
,
cenX
,
cenY
,
pixSize
=
1
):
"""
estimate the psf ellipticity by the second moment of surface brightness
Parameters:
psfMat (numpy.array-float): image
cenX, cenY (float, float): pixel position of the psf center
pixSize (float-optional): pixel size
Returns:
sz (float): psf size
e1, e2 (float, float): psf ellipticity
"""
I
=
psfMat
ncol
=
I
.
shape
[
1
]
nrow
=
I
.
shape
[
0
]
w
=
0.0
w11
=
0.0
w12
=
0.0
w22
=
0.0
for
icol
in
range
(
ncol
):
for
jrow
in
range
(
nrow
):
x
=
icol
*
pixSize
-
cenX
y
=
jrow
*
pixSize
-
cenY
w
+=
I
[
jrow
,
icol
]
w11
+=
x
*
x
*
I
[
jrow
,
icol
]
w12
+=
x
*
y
*
I
[
jrow
,
icol
]
w22
+=
y
*
y
*
I
[
jrow
,
icol
]
w11
/=
w
w12
/=
w
w22
/=
w
sz
=
w11
+
w22
e1
=
(
w11
-
w22
)
/
sz
e2
=
2.0
*
w12
/
sz
return
sz
,
e1
,
e2
def
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
psfSampleSize
=
5
,
CalcPSFsize
=
True
,
CalcPSFcenter
=
True
,
SigRange
=
False
,
TailorScheme
=
1
,
InputMaxPixelPos
=
False
):
'''加载psf信息'''
"""
load psf informations from psf matrix.
Parameters:
iccd (int): ccd number [1,30].
iwave(int): wave-index [1,4].
ipsf (int): psf number [1, 100].
psfPath (int): path to psf matrix
psfSampleSize (float-optional): psf size in microns.
CalcPSFsize (bool-optional): whether calculate psf size & ellipticity. Default: True
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
SigRange (bool-optional): whether use psf tailor. Default: False
TailorScheme (int-optional): which method for psf tailor. Default: 1
Returns:
psfInfo (dirctionary)
"""
if
iccd
not
in
np
.
linspace
(
1
,
30
,
30
,
dtype
=
'int'
):
print
(
'Error - iccd should be in [1, 30].'
)
sys
.
exit
()
if
iwave
not
in
np
.
linspace
(
1
,
4
,
4
,
dtype
=
'int'
):
print
(
'Error - iwave should be in [1, 4].'
)
sys
.
exit
()
if
ipsf
not
in
np
.
linspace
(
1
,
900
,
900
,
dtype
=
'int'
):
print
(
'Error - ipsf should be in [1, 900].'
)
sys
.
exit
()
psfInfo
=
{}
fpath
=
psfPath
+
'/'
+
'ccd{:}'
.
format
(
iccd
)
+
'/'
+
'wave_{:}'
.
format
(
iwave
)
#获取ipsf矩阵
fpathMat
=
fpath
+
'/'
+
'5_psf_array'
+
'/'
+
'psf_{:}.mat'
.
format
(
ipsf
)
data
=
scipy
.
io
.
loadmat
(
fpathMat
)
psfInfo
[
'psfMat'
]
=
data
[
'psf'
]
#获取ipsf波长
fpathWave
=
fpath
+
'/'
+
'1_wavelength.txt'
f
=
open
(
fpathWave
,
'r'
)
wavelength
=
np
.
float
(
f
.
readline
())
f
.
close
()
psfInfo
[
'wavelength'
]
=
wavelength
#获取ipsf位置
fpathCoordinate
=
fpath
+
'/'
+
'4_PSF_coordinate.txt'
f
=
open
(
fpathCoordinate
,
'r'
)
header
=
f
.
readline
()
for
line
in
islice
(
f
,
ipsf
-
1
,
ipsf
):
line
=
line
.
strip
()
columns
=
line
.
split
()
f
.
close
()
icol
=
0
psfInfo
[
'field_x'
]
=
float
(
columns
[
icol
])
#deg, 视场采样位置
icol
+=
1
psfInfo
[
'field_y'
]
=
float
(
columns
[
icol
])
#deg
icol
+=
1
psfInfo
[
'centroid_x'
]
=
float
(
columns
[
icol
])
#mm, psf质心相对主光线的偏移量
icol
+=
1
psfInfo
[
'centroid_y'
]
=
float
(
columns
[
icol
])
#mm
icol
+=
1
if
InputMaxPixelPos
==
True
:
psfInfo
[
'max_x'
]
=
float
(
columns
[
icol
])
#mm, max pixel
icol
+=
1
psfInfo
[
'max_y'
]
=
float
(
columns
[
icol
])
#mm
icol
+=
1
psfInfo
[
'image_x'
]
=
float
(
columns
[
icol
])
#mm, 主光线位置
icol
+=
1
psfInfo
[
'image_y'
]
=
float
(
columns
[
icol
])
#mm
#nrows = 180 #psf采样大小, in pixels
#ncols = 180
nrows
,
ncols
=
psfInfo
[
'psfMat'
].
shape
psfPos
=
psfPixelLayout
(
nrows
,
ncols
,
psfInfo
[
'image_y'
],
psfInfo
[
'image_x'
],
pixSizeInMicrons
=
5.0
)
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
psfInfo
[
'psfMat'
])
psfInfo
[
'imgMaxPosx_ccd'
]
=
psfPos
[
0
,
imgMaxPix_y
,
imgMaxPix_x
]
#cx, psf最大值位置, in mm
psfInfo
[
'imgMaxPosy_ccd'
]
=
psfPos
[
1
,
imgMaxPix_y
,
imgMaxPix_x
]
#cy
#计算psf size & ellipticity
if
CalcPSFsize
is
True
:
psfMat
=
psfInfo
[
'psfMat'
].
copy
()
cenX
,
cenY
,
sz
,
e1
,
e2
,
REE80
=
psfSizeCalculator
(
psfMat
,
psfSampleSize
=
psfSampleSize
,
CalcPSFcenter
=
CalcPSFcenter
,
SigRange
=
SigRange
,
TailorScheme
=
TailorScheme
)
psfInfo
[
'psfCenX_img'
]
=
cenX
#in local pixels, psf质心位置, in pixels
psfInfo
[
'psfCenY_img'
]
=
cenY
#in local pixels
psfInfo
[
'psfSize'
]
=
sz
psfInfo
[
'psf_e1'
]
=
e1
psfInfo
[
'psf_e2'
]
=
e2
psfInfo
[
'REE80'
]
=
REE80
return
psfInfo
def
psfSizeCalculator
(
psfMat
,
psfSampleSize
=
5
,
CalcPSFcenter
=
True
,
SigRange
=
False
,
TailorScheme
=
1
):
"""
calculate psf size & ellipticity
Parameters:
psfMat (numpy.array): image
psfSampleSize (float-optional): psf size in microns.
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
SigRange (bool-optional): whether use psf tailor. Default: False
TailorScheme (int-optional): which method for psf tailor. Default: 1
Returns:
cenX, cenY (float, float): the pixel position of the mass center
sz (float): psf size
e1, e2 (float, float): psf ellipticity
REE80 (float): radius of REE80 in arcseconds
"""
psfSampleSize
=
psfSampleSize
*
1e-3
#mm
REE80
=
-
1.0
##encircling 80% energy
if
SigRange
is
True
:
if
TailorScheme
==
1
:
psfMat
=
imSigRange
(
psfMat
,
fraction
=
0.80
)
psfInfo
[
'psfMat'
]
=
psfMat
#set on/off
if
TailorScheme
==
2
:
img
=
psfTailor
(
psfMat
,
apSizeInArcsec
=
0.5
)
imgX
,
REE80
=
psfEncircle
(
psfMat
)
psfMat
=
img
REE80
=
REE80
[
0
]
if
CalcPSFcenter
is
True
:
img
=
psfMat
/
np
.
sum
(
psfMat
)
y
,
x
=
ndimage
.
center_of_mass
(
img
)
#y-rows, x-cols
cenX
=
x
cenY
=
y
if
CalcPSFcenter
is
False
:
cenPix_X
=
psfMat
.
shape
[
1
]
/
2
#90
cenPix_Y
=
psfMat
.
shape
[
0
]
/
2
#90
cenX
=
cenPix_X
+
psfInfo
[
'centroid_x'
]
/
psfSampleSize
cenY
=
cenPix_Y
-
psfInfo
[
'centroid_y'
]
/
psfSampleSize
pixSize
=
1
sz
,
e1
,
e2
=
psfSecondMoments
(
psfMat
,
cenX
,
cenY
,
pixSize
=
pixSize
)
return
cenX
,
cenY
,
sz
,
e1
,
e2
,
REE80
def
psfStack
(
*
psfMat
):
"""
stacked image from the different psfs
Parameters:
*psfMat (numpy.array): the different psfs for stacking
Returns:
img (numpy.array): image
"""
nn
=
len
(
psfMat
)
img
=
np
.
zeros_like
(
psfMat
[
0
])
for
ii
in
range
(
nn
):
img
+=
psfMat
[
ii
]
/
np
.
sum
(
psfMat
[
ii
])
img
/=
np
.
sum
(
img
)
return
img
##################################################
# B. psf interpolation #
##################################################
def
img2fits
(
img
,
fitsName
=
None
):
"""
saving image to fits file
Parameters:
img (numpy.array): image
fitsName (string): path+filename of fits
Returns:
"""
from
astropy.io
import
fits
grey
=
fits
.
PrimaryHDU
(
img
)
greyHDU
=
fits
.
HDUList
([
grey
])
if
fitsName
!=
None
:
greyHDU
.
writeto
(
fitsName
)
def
psfMatLoad
(
iccd
,
iwave
,
psfPath
,
psfSampleSize
=
5
,
CalcPSFsize
=
False
,
CalcPSFcenter
=
True
):
"""
load psf for interpolation
Parameters:
iccd, iwave, psfPath: # of ccd/wave and path for psfs
CalcPSFsize (bool-optional): whether calculate psf size & ellipticity. Default: False
CalcPSFcenter (bool-optional): whether calculate psf center. Default: True
Returns:
PSFMat (numpy.array): images
cen_col, cen_row (numpy.array, numpy.array): position of psf center in the view field
"""
psfSet
=
[]
for
ipsf
in
range
(
1
,
901
):
psfInfo
=
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
CalcPSFsize
=
CalcPSFsize
,
CalcPSFcenter
=
CalcPSFcenter
,
InputMaxPixelPos
=
True
)
psfSet
.
append
(
psfInfo
)
npsf
=
len
(
psfSet
)
ngy
,
ngx
=
psfSet
[
0
][
'psfMat'
].
shape
PSFMat
=
np
.
zeros
([
npsf
,
ngy
,
ngx
])
cen_col
=
np
.
zeros
(
npsf
)
cen_row
=
np
.
zeros
(
npsf
)
FieldPos
=
False
for
ipsf
in
range
(
npsf
):
PSFMat
[
ipsf
,
:,
:]
=
psfSet
[
ipsf
][
'psfMat'
]
if
FieldPos
==
True
:
cen_col
[
ipsf
]
=
psfSet
[
ipsf
][
'field_x'
]
#cx
cen_row
[
ipsf
]
=
psfSet
[
ipsf
][
'field_y'
]
#cy
if
FieldPos
==
False
:
cen_col
[
ipsf
]
=
psfSet
[
ipsf
][
'imgMaxPosx_ccd'
]
#cx
cen_row
[
ipsf
]
=
psfSet
[
ipsf
][
'imgMaxPosy_ccd'
]
#cy
return
PSFMat
,
cen_col
,
cen_row
def
findNeighbors
(
tx
,
ty
,
px
,
py
,
dr
=
0.1
,
dn
=
1
,
OnlyDistance
=
True
):
"""
find nearest meighbors by 2D-KDTree
Parameters:
tx, ty (float, float): a given position
px, py (numpy.array, numpy.array): position data for tree
dr (float-optional): distance
dn (int-optional): nearest-N
OnlyDistance (bool-optional): only use distance to find neighbors. Default: True
Returns:
dataq (numpy.array): index
"""
import
scipy.spatial
as
spatial
datax
=
px
datay
=
py
tree
=
spatial
.
KDTree
(
list
(
zip
(
datax
.
ravel
(),
datay
.
ravel
())))
dataq
=
[]
rr
=
dr
if
OnlyDistance
==
True
:
dataq
=
tree
.
query_ball_point
([
tx
,
ty
],
rr
)
if
OnlyDistance
==
False
:
while
len
(
dataq
)
<
dn
:
dataq
=
tree
.
query_ball_point
([
tx
,
ty
],
rr
)
rr
+=
dr
dd
=
np
.
hypot
(
datax
[
dataq
]
-
tx
,
datay
[
dataq
]
-
ty
)
ddSortindx
=
np
.
argsort
(
dd
)
dataq
=
np
.
array
(
dataq
)[
ddSortindx
[
0
:
dn
]]
return
dataq
def
psfCentering
(
img
,
apSizeInArcsec
=
0.5
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
,
CenteringMode
=
1
):
"""
centering psf within an aperture
Parameters:
img (numpy.array): image
apSizeInArcsec (float-optional): aperture size in arcseconds.
psfSampleSizeInMicrons (float-optional): psf pixel size in microns.
focalLengthInMeters (float-optional): csst focal length im meters.
CenteringMode (int-optional): how to center psf images
Returns:
imgT (numpy.array)
"""
if
CenteringMode
==
1
:
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
if
CenteringMode
==
2
:
y
,
x
=
ndimage
.
center_of_mass
(
img
)
#y-rows, x-cols
imgMaxPix_x
=
int
(
x
)
imgMaxPix_y
=
int
(
y
)
apSizeInMicrons
=
np
.
deg2rad
(
apSizeInArcsec
/
3600.
)
*
focalLengthInMeters
*
1e6
apSizeInPix
=
apSizeInMicrons
/
psfSampleSizeInMicrons
apSizeInPix
=
np
.
int
(
np
.
ceil
(
apSizeInPix
))
imgT
=
np
.
zeros_like
(
img
)
ngy
,
ngx
=
img
.
shape
cy
=
int
(
ngy
/
2
)
cx
=
int
(
ngx
/
2
)
imgT
[
cy
-
apSizeInPix
:
cy
+
apSizeInPix
+
1
,
cx
-
apSizeInPix
:
cx
+
apSizeInPix
+
1
]
=
\
img
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
return
imgT
def
psfMaker_IDW
(
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
IDWindex
=
2
,
OnlyNeighbors
=
False
):
"""
psf interpolation by IDW
Parameters:
px, py (float, float): position of the target
PSFMat (numpy.array): image
cen_col, cen_row (numpy.array, numpy.array): potions of the psf centers
IDWindex (int-optional): the power index of IDW
OnlyNeighbors (bool-optional): only neighbors are used for psf interpolation
Returns:
psfMaker (numpy.array)
"""
minimum_psf_weight
=
1e-8
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
psfWeight
=
np
.
zeros
([
npsf
])
if
OnlyNeighbors
==
True
:
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
5.
,
dn
=
9
,
OnlyDistance
=
False
)
neighFlag
=
np
.
zeros
(
npsf
)
neighFlag
[
neigh
]
=
1
print
(
"neigh:"
,
neigh
)
for
ipsf
in
range
(
npsf
):
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
dist
=
np
.
sqrt
((
ref_col
-
cen_col
[
ipsf
])
**
2
+
(
ref_row
-
cen_row
[
ipsf
])
**
2
)
if
IDWindex
==
1
:
psfWeight
[
ipsf
]
=
dist
if
IDWindex
==
2
:
psfWeight
[
ipsf
]
=
dist
**
2
if
IDWindex
==
3
:
psfWeight
[
ipsf
]
=
dist
**
3
if
IDWindex
==
4
:
psfWeight
[
ipsf
]
=
dist
**
4
psfWeight
[
ipsf
]
=
max
(
psfWeight
[
ipsf
],
minimum_psf_weight
)
psfWeight
[
ipsf
]
=
1.
/
psfWeight
[
ipsf
]
psfWeight
/=
np
.
sum
(
psfWeight
)
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
for
ipsf
in
range
(
npsf
):
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
iPSFMat
=
PSFMat
[
ipsf
,
:,
:].
copy
()
iPSFMat
=
psfCentering
(
iPSFMat
,
CenteringMode
=
1
)
ipsfWeight
=
psfWeight
[
ipsf
]
psfMaker
+=
iPSFMat
*
ipsfWeight
psfMaker
/=
np
.
nansum
(
psfMaker
)
return
psfMaker
def
psfMaker_PCA
(
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
OnlyNeighbors
=
False
,
libPCApath
=
'libPCA/libPCA.so'
):
"""
psf interpolation by PCA
Parameters:
Returns:
"""
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
0.3
,
dn
=
5
,
OnlyDistance
=
False
)
npsfX
=
len
(
neigh
)
psfMatX
=
np
.
zeros
([
npsfX
,
ngy
,
ngx
])
cen_colX
=
np
.
zeros
(
npsfX
)
cen_rowX
=
np
.
zeros
(
npsfX
)
for
ipsf
in
range
(
npsfX
):
psfMatX
[
ipsf
,
:,
:]
=
PSFMat
[
neigh
[
ipsf
],
:,
:]
cen_colX
[
ipsf
]
=
cen_col
[
neigh
[
ipsf
]]
cen_rowX
[
ipsf
]
=
cen_row
[
neigh
[
ipsf
]]
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
if
OnlyNeighbors
==
True
:
PCAbasef
,
PCAcoeff
=
psfPCA_generator
(
psfMatX
,
npsfX
,
ngx
,
libPCApath
)
nPCA
=
npsfX
for
iPCA
in
range
(
nPCA
):
coeffX
=
fitPoly
(
ref_col
,
ref_row
,
cen_colX
,
cen_rowX
,
PCAcoeff
[:,
iPCA
],
order
=
2
)
psfMaker
+=
coeffX
*
PCAbasef
[
iPCA
,
:,
:]
return
psfMaker
def
psfPCA_generator
(
psfMat
,
npsf
,
npix
,
libPCApath
):
"""
generate PCs from psfMat
Parameters:
Returns:
"""
libPCA
=
ctypes
.
CDLL
(
libPCApath
)
# CDLL加载库
libPCA
.
psfPCA
.
argtypes
=
[
ctypes
.
POINTER
(
ctypes
.
c_float
),
ctypes
.
c_int
,
ctypes
.
c_int
,
ctypes
.
POINTER
(
ctypes
.
c_double
),
ctypes
.
POINTER
(
ctypes
.
c_double
)]
Nstar
=
npsf
Mp
=
npix
*
npix
NM
=
Nstar
*
Mp
NN
=
Nstar
*
Nstar
arr
=
(
ctypes
.
c_float
*
NM
)()
basef
=
(
ctypes
.
c_double
*
NM
)()
coeff
=
(
ctypes
.
c_double
*
NN
)()
psfT
=
np
.
zeros
(
NM
)
for
ipsf
in
range
(
npsf
):
lp
=
0
+
ipsf
*
Mp
up
=
Mp
+
ipsf
*
Mp
ipsfMat
=
psfMat
[
ipsf
,
:,
:]
psfT
[
lp
:
up
]
=
ipsfMat
.
reshape
(
Mp
)
arr
[:]
=
psfT
libPCA
.
psfPCA
(
arr
,
Nstar
,
Mp
,
basef
,
coeff
)
PCAbasef
=
np
.
zeros
([
npsf
,
npix
,
npix
])
PCAcoeff
=
np
.
zeros
([
npsf
,
npsf
])
for
ipsf
in
range
(
npsf
):
lp
=
0
+
ipsf
*
Mp
up
=
Mp
+
ipsf
*
Mp
PCAbasef
[
ipsf
,
:,
:]
=
np
.
array
(
basef
[
lp
:
up
]).
reshape
(
npix
,
npix
)
lp
=
0
+
ipsf
*
npsf
up
=
npsf
+
ipsf
*
npsf
PCAcoeff
[
ipsf
,
:]
=
np
.
array
(
coeff
[
lp
:
up
])
return
PCAbasef
,
PCAcoeff
def
fitPoly
(
px
,
py
,
datax
,
datay
,
dataz
,
order
=
2
):
if
order
==
1
:
# best-fit linear plane
A
=
np
.
c_
[
datax
,
datay
,
np
.
ones
(
datax
.
shape
[
0
])]
C
,
_
,
_
,
_
=
scipy
.
linalg
.
lstsq
(
A
,
dataz
)
# coefficients
pz
=
C
[
0
]
*
px
+
C
[
1
]
*
py
+
C
[
2
]
elif
order
==
2
:
# best-fit quadratic curve
A
=
np
.
c_
[
np
.
ones
(
datax
.
shape
[
0
]),
np
.
c_
[
datax
,
datay
],
np
.
prod
(
np
.
c_
[
datax
,
datay
],
axis
=
1
),
np
.
c_
[
datax
,
datay
]
**
2
]
C
,
_
,
_
,
_
=
scipy
.
linalg
.
lstsq
(
A
,
dataz
)
pz
=
np
.
dot
(
np
.
c_
[
1
,
px
,
py
,
px
*
py
,
px
**
2
,
py
**
2
],
C
)
"""
elif order == 3:
# best-fit cubic curve
A = np.c_[np.ones(datax.shape[0]), np.c_[datax, datay], np.prod(np.c_[datax, datay], axis=1), np.c_[datax, datay]**2, np.c_[datax, datay]**3]
C,_,_,_ = scipy.linalg.lstsq(A, dataz)
pz = np.dot(np.c_[1, px, py, px*py, px**2, py**2, px**3, py**3], C)
"""
return
pz
"""
############################
### not used temporarily ###
############################
def psfSplineMake(px, py, PSFMat, cen_col, cen_row, OnlyNeighbors=False):
minimum_psf_weight = 1e-8
ref_col = px
ref_row = py
cdelt1p = 1
cdelt2p = 1
ngy, ngx = PSFMat[0, :, :].shape
psfx = np.linspace(0, ngx-1, ngx)
psfy = np.linspace(0, ngy-1, ngy)
npsf = PSFMat[:, :, :].shape[0]
psfWeight = np.zeros([npsf])
for ipsf in range(npsf):
psfWeight[ipsf] = np.sqrt((ref_col - cen_col[ipsf])**2 + (ref_row - cen_row[ipsf])**2)
psfWeight[ipsf] = max(psfWeight[ipsf], minimum_psf_weight)
psfWeight[ipsf] = 1./psfWeight[ipsf]
psfWeight /= np.sum(psfWeight)
psf = np.zeros((ngy, ngx), dtype='float64')
for ipsf in range(npsf):
iPSFMat = PSFMat[ipsf, :, :]
ipsfWeight = psfWeight[ipsf]
psf += iPSFMat * ipsfWeight
psf /= (np.nansum(psf) * cdelt1p * cdelt2p)
psfSpline = RectBivariateSpline(psfy, psfx, psf)
return psf, psfSpline
def psfToImage(psfSpline, cutoff_radius=180):
ng = 180
img = np.zeros([ng, ng], dtype='float64')
for i in range(ng):
for j in range(ng):
star_row = 5
star_column = 5
if np.sqrt((j-star_column)**2 + (i-star_row)**2) <= cutoff_radius:
star_flux = 8
column_cen = j #j - star_column
row_cen = i #i - star_row
img[i,j] += star_flux * psfSpline.integral(row_cen-0.5, row_cen+0.5, column_cen-0.5, column_cen+0.5)
return img
"""
##################################################
# C. csstPSF class #
##################################################
class
PSFimg
(
object
):
def
__init__
(
self
,
iccd
,
iwave
,
psfPath
):
self
.
iccd
=
iccd
self
.
iwave
=
iwave
self
.
psfPath
=
psfPath
#loading psfSet >>>
"""
psfSet = []
for ipsf in range(1, 901):
psfInfo = LoadPSF(iccd, iwave, ipsf, psfPath, CalcPSFsize=True, CalcPSFcenter=True, SigRange=False)
psfSet.append(psfInfo)
self.psfSet = psfSet
"""
a
,
b
,
c
=
psfMatLoad
(
iccd
,
iwave
,
psfPath
)
self
.
psfMat
=
a
self
.
cenPosx
=
b
self
.
cenPosy
=
c
def
PSFinplace
(
self
,
px
,
py
,
interpScheme
=
1
):
if
interpScheme
==
1
:
idwIndx
=
2
psf
=
psfMaker_IDW
(
px
,
py
,
self
.
psfMat
,
self
.
cenPosx
,
self
.
cenPosy
,
IDWindex
=
idwIndx
,
OnlyNeighbors
=
True
)
if
interpScheme
==
2
:
libPCA
=
"/Users/chengliangwei/Desktop/csstPSF/libPCA/libPCA.so"
psf
=
psfMaker_PCA
(
px
,
py
,
self
.
psfMat
,
self
.
cenPosx
,
self
.
cenPosy
,
OnlyNeighbors
=
True
,
libPCApath
=
libPCA
)
img
=
galsim
.
ImageF
(
psf
,
scale
=
0.074
/
2
)
xpsf
=
galsim
.
InterpolatedImage
(
img
)
return
xpsf
"""
def gcPlot(self, psf,pscale=0.074,figout="GC.png"):
size = np.size(psf,axis=0)
cxy = 0.5*(size-1)
width = 0.5*size
# log scale
radius = np.arange(np.log10(0.2),np.log10(width),0.01)
radius = 10.0**radius
nr = len(radius)
gc = []
for i in range(nr):
iflux, iferr, xflag = sep.sum_circle(psf,cxy,cxy,radius[i],subpix=0)
gc += [iflux.tolist()]
# Estimate the radius for a given flux ratio
fratio = 0.8
mid = [i for i in range(nr) if gc[i]<=fratio and gc[i+1]>fratio][0]
r0, r1 = radius[mid], radius[mid+1]
gc0, gc1 = gc[mid], gc[mid+1]
r5 = (fratio-gc0)/(gc1-gc0)*(r1-r0) + r0
hlf = r5*pscale
# plot
pfit = interp1d(radius, gc, kind='cubic')
fig = pl.figure(figsize=(5.5,4.0))
ax = fig.add_axes([0.16,0.15,0.80,0.81])
ax.plot(radius*pscale, pfit(radius), "k", linewidth=2.0)
ax.plot(radius*pscale, gc, "*r", markersize=5.0,mec="r",alpha=0.3)
ax.plot([hlf,hlf],[0,fratio],"k",linewidth=2.5)
ax.plot([0,hlf],[fratio,fratio],"k",linewidth=2.5)
ax.text(radius[10]*pscale,0.6,"$r_{%.1f}$=%.2f
\"
"%(fratio,hlf))
ax.set_xlabel("Radius (arcsec)",fontsize=15)
ax.set_ylabel("Growth of Curve",fontsize=15)
ax.set_xscale("log")
ax.set_xlim(radius[0]*pscale,radius[-1]*pscale)
ax.set_ylim(0.0,1.0)
for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(15)
for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(15)
pl.savefig(figout)
pl.clf()
pl.close()
return
"""
def
PSFspin
(
self
,
psf
,
sigSpin
,
sigGauss
,
dx
,
dy
):
"""
The PSF profile at a given image position relative to the axis center
Parameters:
theta : spin angles in a given exposure in unit of [arcsecond]
dx, dy: relative position to the axis center in unit of [pixels]
Return:
Spinned PSF: g1, g2 and axis ratio 'a/b'
"""
a2Rad
=
np
.
pi
/
(
60.0
*
60.0
*
180.0
)
ff
=
sigGauss
*
0.107
*
(
1000.0
/
10.0
)
# in unit of [pixels]
rc
=
np
.
sqrt
(
dx
*
dx
+
dy
*
dy
)
cpix
=
rc
*
(
sigSpin
*
a2Rad
)
beta
=
(
np
.
arctan2
(
dy
,
dx
)
+
np
.
pi
/
2
)
ell
=
cpix
**
2
/
(
2.0
*
ff
**
2
+
cpix
**
2
)
#ell *= 10.0
qr
=
np
.
sqrt
((
1.0
+
ell
)
/
(
1.0
-
ell
))
#psfShape = galsim.Shear(e=ell, beta=beta)
#g1, g2 = psfShape.g1, psfShape.g2
#qr = np.sqrt((1.0+ell)/(1.0-ell))
#return ell, beta, qr
PSFshear
=
galsim
.
Shear
(
e
=
ell
,
beta
=
beta
*
galsim
.
radians
)
return
psf
.
shear
(
PSFshear
),
PSFshear
(
base
)
##################################################
# D. TEST #
##################################################
def
psfMaker_IDW_test
(
tpsf
,
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
IDWindex
=
2
,
OnlyNeighbors
=
False
):
minimum_psf_weight
=
1e-8
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
psfWeight
=
np
.
zeros
([
npsf
])
if
OnlyNeighbors
==
True
:
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
0.1
,
dn
=
9
,
OnlyDistance
=
False
)
neighFlag
=
np
.
zeros
(
npsf
)
neighFlag
[
neigh
]
=
1
for
ipsf
in
range
(
npsf
):
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
dist
=
np
.
sqrt
((
ref_col
-
cen_col
[
ipsf
])
**
2
+
(
ref_row
-
cen_row
[
ipsf
])
**
2
)
if
IDWindex
==
1
:
psfWeight
[
ipsf
]
=
dist
if
IDWindex
==
2
:
psfWeight
[
ipsf
]
=
dist
**
2
if
IDWindex
==
3
:
psfWeight
[
ipsf
]
=
dist
**
3
if
IDWindex
==
4
:
psfWeight
[
ipsf
]
=
dist
**
4
psfWeight
[
ipsf
]
=
max
(
psfWeight
[
ipsf
],
minimum_psf_weight
)
psfWeight
[
ipsf
]
=
1.
/
psfWeight
[
ipsf
]
psfWeight
/=
np
.
sum
(
psfWeight
)
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
for
ipsf
in
range
(
npsf
):
"""
if OnlyNeighbors == True:
iy, ix = np.unravel_index(ipsf, (10,10))
ty, tx = np.unravel_index(tpsf, (10,10))
if np.abs(iy - ty) > 1 or np.abs(ix - tx) > 1:
continue
"""
if
OnlyNeighbors
==
True
:
if
neighFlag
[
ipsf
]
!=
1
:
continue
if
ipsf
==
tpsf
:
continue
iPSFMat
=
PSFMat
[
ipsf
,
:,
:].
copy
()
iPSFMat
=
psfCentering
(
iPSFMat
,
CenteringMode
=
1
)
ipsfWeight
=
psfWeight
[
ipsf
]
psfMaker
+=
iPSFMat
*
ipsfWeight
psfMaker
/=
np
.
nansum
(
psfMaker
)
return
psfMaker
def
psfMaker_PCA_test
(
tpsf
,
px
,
py
,
PSFMat
,
cen_col
,
cen_row
,
OnlyNeighbors
=
False
,
libPCApath
=
'libPCA/libPCA.so'
):
"""
psf interpolation by PCA
Parameters:
Returns:
"""
ref_col
=
px
ref_row
=
py
ngy
,
ngx
=
PSFMat
[
0
,
:,
:].
shape
npsf
=
PSFMat
[:,
:,
:].
shape
[
0
]
neigh
=
findNeighbors
(
px
,
py
,
cen_col
,
cen_row
,
dr
=
0.3
,
dn
=
9
,
OnlyDistance
=
False
)
npsfX
=
len
(
neigh
)
#去掉tpsf,neigh中排在第一个是最近的psf
print
(
"CHECK:::"
,
cen_col
[
neigh
[
0
]],
cen_row
[
neigh
[
0
]],
cen_col
[
tpsf
],
cen_row
[
tpsf
],
cen_col
[
neigh
[
0
]]
-
cen_col
[
tpsf
],
cen_row
[
neigh
[
0
]]
-
cen_row
[
tpsf
])
psfMatX
=
np
.
zeros
([
npsfX
-
1
,
ngy
,
ngx
])
cen_colX
=
np
.
zeros
(
npsfX
-
1
)
cen_rowX
=
np
.
zeros
(
npsfX
-
1
)
for
ipsf
in
range
(
npsfX
):
if
ipsf
==
0
:
continue
psfMatX
[
ipsf
-
1
,
:,
:]
=
PSFMat
[
neigh
[
ipsf
],
:,
:]
cen_colX
[
ipsf
-
1
]
=
cen_col
[
neigh
[
ipsf
]]
cen_rowX
[
ipsf
-
1
]
=
cen_row
[
neigh
[
ipsf
]]
psfMaker
=
np
.
zeros
((
ngy
,
ngx
),
dtype
=
'float64'
)
if
OnlyNeighbors
==
True
:
PCAbasef
,
PCAcoeff
=
psfPCA_generator
(
psfMatX
,
npsfX
-
1
,
ngx
,
libPCApath
)
nPCA
=
npsfX
-
1
for
iPCA
in
range
(
nPCA
):
coeffX
=
fitPoly
(
ref_col
,
ref_row
,
cen_colX
,
cen_rowX
,
PCAcoeff
[:,
iPCA
],
order
=
2
)
psfMaker
+=
coeffX
*
PCAbasef
[
iPCA
,
:,
:]
return
psfMaker
def
test_loadPSF
():
iccd
=
1
#[1, 30]
iwave
=
1
#[1, 4]
ipsf
=
1
#[1, 100]
psfPath
=
'/Users/chengliangwei/csstPSFdata/CSSOS_psf_ciomp'
psfSet
=
[]
for
ipsf
in
range
(
1
,
901
):
psfInfo
=
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
CalcPSFsize
=
True
,
CalcPSFcenter
=
True
,
SigRange
=
False
)
psfSet
.
append
(
psfInfo
)
print
(
'psfSet has been loaded.'
)
print
(
'Usage: psfSet[i][keys]'
)
print
(
'psfSet.keys:'
,
psfSet
[
0
].
keys
())
return
psfSet
def
test_psfPCA
():
#load psf
print
(
'load psf...'
)
psfSet
=
test_loadPSF
()
#set input for psfPCA calc.
print
(
'PCA calc...'
)
npsf
=
5
npix
=
180
psfMat
=
np
.
zeros
([
npsf
,
npix
,
npix
])
libPCApath
=
'./libPCA/libPCA.so'
for
ipsf
in
range
(
5
):
psfMat
[
ipsf
,
:,
:]
=
psfSet
[
ipsf
][
'psfMat'
]
PCAbasef
,
PCAcoeff
=
psfPCA_generator
(
psfMat
,
npsf
,
npix
,
libPCApath
)
#plot check
print
(
'plot...'
)
fig
=
plt
.
figure
(
figsize
=
(
20
,
10
))
cc
=
90
dcc
=
15
ax
=
plt
.
subplot
(
2
,
4
,
1
)
plt
.
imshow
(
PCAbasef
[
0
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
2
)
plt
.
imshow
(
PCAbasef
[
1
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
3
)
plt
.
imshow
(
PCAbasef
[
2
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
4
)
plt
.
imshow
(
PCAbasef
[
3
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
5
)
plt
.
imshow
(
PCAbasef
[
4
,
:,
:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
ax
=
plt
.
subplot
(
2
,
4
,
6
)
ipsf
=
1
im
=
PCAcoeff
[
ipsf
,
0
]
*
PCAbasef
[
0
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
1
]
*
PCAbasef
[
1
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
2
]
*
PCAbasef
[
2
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
3
]
*
PCAbasef
[
3
,
:,
:]
im
+=
PCAcoeff
[
ipsf
,
4
]
*
PCAbasef
[
4
,
:,
:]
plt
.
imshow
(
im
[
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
plt
.
colorbar
()
ax
=
plt
.
subplot
(
2
,
4
,
8
)
plt
.
imshow
(
psfMat
[
ipsf
,:,:][
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
plt
.
colorbar
()
ax
=
plt
.
subplot
(
2
,
4
,
7
)
plt
.
imshow
((
psfMat
[
ipsf
,:,:]
-
im
)[
cc
-
dcc
:
cc
+
dcc
,
cc
-
dcc
:
cc
+
dcc
],
origin
=
'lower'
)
plt
.
colorbar
()
plt
.
show
()
def
test_fitPoly
():
datax
=
np
.
random
.
random
(
10
)
datay
=
np
.
random
.
random
(
10
)
*
2
dataz
=
datay
**
2
+
datay
*
datax
+
10
*
datay
**
2
px
=
0.28
py
=
10.34
pz
=
fitPoly
(
px
,
py
,
datax
,
datay
,
dataz
,
order
=
2
)
print
(
'check: pz-out:'
,
pz
,
'pz-in'
,
py
**
2
+
px
*
py
+
10
*
py
**
2
)
##################################################
# __main__ #
##################################################
if
__name__
==
'__main__'
:
print
(
'PSF modules for csst-imgsim'
)
#test_loadPSF()
#test_psfPCA()
test_fitPoly
()
ObservationSim/PSF/PSFInterp_deprecated/testPlot.pdf
deleted
100644 → 0
View file @
e82a5dcc
File deleted
ObservationSim/PSF/PSFInterp_deprecated/test_PSFConvolve.py
deleted
100644 → 0
View file @
e82a5dcc
import
numpy
as
np
import
matplotlib.pyplot
as
plt
import
scipy.io
import
galsim
vc_A
=
2.99792458e+18
# speed of light: A/s
vc_m
=
2.99792458e+8
# speed of light: m/s
h_Plank
=
6.626196e-27
# Plank constant: erg s
def
photonEnergy
(
lambd
):
nu
=
vc_A
/
lambd
eph
=
h_Plank
*
nu
return
eph
pixSize
=
0.037
mag_star
=
15.
Nx
=
256
Ny
=
256
###加载PSF信息###
def
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
psfSampleSize
=
5
,
PSFCentroidWgt
=
False
):
psfInfo
=
{}
fpath
=
psfPath
+
'/'
+
'ccd{:}'
.
format
(
iccd
)
+
'/'
+
'wave_{:}'
.
format
(
iwave
)
#获取ipsf矩阵
if
not
PSFCentroidWgt
:
##读取PSF原数据
fpathMat
=
fpath
+
'/'
+
'5_psf_array'
+
'/'
+
'psf_{:}.mat'
.
format
(
ipsf
)
data
=
scipy
.
io
.
loadmat
(
fpathMat
)
psfInfo
[
'psfMat'
]
=
data
[
'psf'
]
if
PSFCentroidWgt
:
##读取PSFCentroidWgt
ffpath
=
psfPath
+
'_proc/'
+
'ccd{:}'
.
format
(
iccd
)
+
'/'
+
'wave_{:}'
.
format
(
iwave
)
ffpathMat
=
ffpath
+
'/'
+
'5_psf_array'
+
'/'
+
'psf_{:}_centroidWgt.mat'
.
format
(
ipsf
)
data
=
scipy
.
io
.
loadmat
(
ffpathMat
)
psfInfo
[
'psfMat'
]
=
data
[
'psf'
]
return
psfInfo
def
psfCentering
(
img
,
apSizeInArcsec
=
0.5
,
psfSampleSizeInMicrons
=
5
,
focalLengthInMeters
=
28
,
CenteringMode
=
1
):
imgMaxPix_x
,
imgMaxPix_y
=
findMaxPix
(
img
)
apSizeInMicrons
=
np
.
deg2rad
(
apSizeInArcsec
/
3600.
)
*
focalLengthInMeters
*
1e6
apSizeInPix
=
apSizeInMicrons
/
psfSampleSizeInMicrons
apSizeInPix
=
np
.
int
(
np
.
ceil
(
apSizeInPix
))
imgT
=
np
.
zeros_like
(
img
)
ngy
,
ngx
=
img
.
shape
cy
=
int
(
ngy
/
2
)
cx
=
int
(
ngx
/
2
)
imgT
[
cy
-
apSizeInPix
:
cy
+
apSizeInPix
+
1
,
cx
-
apSizeInPix
:
cx
+
apSizeInPix
+
1
]
=
\
img
[
imgMaxPix_y
-
apSizeInPix
:
imgMaxPix_y
+
apSizeInPix
+
1
,
imgMaxPix_x
-
apSizeInPix
:
imgMaxPix_x
+
apSizeInPix
+
1
]
return
imgT
def
findMaxPix
(
img
):
maxIndx
=
np
.
argmax
(
img
)
maxIndx
=
np
.
unravel_index
(
maxIndx
,
np
.
array
(
img
).
shape
)
imgMaxPix_x
=
maxIndx
[
1
]
imgMaxPix_y
=
maxIndx
[
0
]
return
imgMaxPix_x
,
imgMaxPix_y
def
magToFlux
(
mag
):
flux
=
10
**
(
-
0.4
*
(
mag
+
48.6
))
return
flux
def
getElectronFluxFilt
(
mag
,
exptime
=
150.
):
pE
=
photonEnergy
(
lambd
=
6199.8
)
flux
=
magToFlux
(
mag
)
factor
=
1.0e4
*
flux
/
pE
*
vc_A
*
(
1.0
/
5370.0
-
1.0
/
7030.0
)
return
factor
*
0.5040
*
np
.
pi
*
(
0.5
*
2.0
)
**
2
*
exptime
def
radial_profile
(
img
,
cx
,
cy
,
nbins
=
100
,
Rmin
=
16
,
Rmax
=
128
):
nx
=
img
.
shape
[
0
]
ny
=
img
.
shape
[
1
]
x
=
np
.
arange
(
0
,
img
.
shape
[
0
],
1
)
y
=
np
.
arange
(
0
,
img
.
shape
[
1
],
1
)
xx
,
yy
=
np
.
meshgrid
(
x
,
y
)
dist
=
np
.
sqrt
((
xx
-
cx
)
**
2
+
(
yy
-
cy
)
**
2
)
img_flat
=
img
.
flatten
()
dist_flat
=
dist
.
flatten
()
a
,
bins
=
np
.
histogram
(
dist_flat
,
range
=
(
Rmin
,
Rmax
),
bins
=
nbins
,
weights
=
img_flat
)
b
,
bins
=
np
.
histogram
(
dist_flat
,
range
=
(
Rmin
,
Rmax
),
bins
=
nbins
)
b
[
b
==
0
]
=
1.
mid
=
(
bins
[
0
:
-
1
]
+
bins
[
1
:])
/
2.
return
a
/
b
,
mid
if
__name__
==
'__main__'
:
iccd
=
1
iwave
=
1
ipsf
=
1
psfPath
=
'/data/simudata/CSSOSDataProductsSims/data/csstPSFdata/CSSOS_psf_ciomp_30X30'
psfInfo
=
LoadPSF
(
iccd
,
iwave
,
ipsf
,
psfPath
,
psfSampleSize
=
5
,
PSFCentroidWgt
=
False
)
ipsfMat
=
psfInfo
[
'psfMat'
]
print
(
ipsfMat
[
0
:
100
,
0
:
100
])
cgrid
=
128
dgrid
=
15
cx
=
int
(
Nx
/
2
)
cy
=
int
(
Ny
/
2
)
with
np
.
printoptions
(
precision
=
5
,
suppress
=
True
):
fig
=
plt
.
figure
(
figsize
=
(
18
,
12
))
ax
=
plt
.
subplot
(
2
,
2
,
1
)
plt
.
imshow
(
ipsfMat
[
cgrid
-
dgrid
:
cgrid
+
dgrid
,
cgrid
-
dgrid
:
cgrid
+
dgrid
],
origin
=
'lower'
)
plt
.
annotate
(
'originalPSF'
,
[
0.1
,
0.85
],
xycoords
=
'axes fraction'
,
color
=
'w'
)
ax
=
plt
.
subplot
(
2
,
2
,
2
)
img
=
galsim
.
ImageF
(
ncol
=
Nx
,
nrow
=
Ny
,
scale
=
pixSize
)
psf_img
=
galsim
.
ImageF
(
ipsfMat
,
scale
=
pixSize
)
psf
=
galsim
.
InterpolatedImage
(
psf_img
)
psf_list
=
[
psf
]
*
4
mag_star
=
15
nphotons_tot
=
getElectronFluxFilt
(
mag
=
mag_star
)
print
(
nphotons_tot
)
for
i
in
range
(
4
):
nphotons
=
nphotons_tot
/
4.
# star = galsim.Gaussian(sigma=1.e-8, flux=1.)
star
=
galsim
.
DeltaFunction
()
star
=
star
.
withFlux
(
nphotons
)
star
=
galsim
.
Convolve
(
psf_list
[
i
],
star
)
img
=
star
.
drawImage
(
image
=
img
,
method
=
'phot'
,
center
=
galsim
.
PositionD
(
cx
,
cy
),
add_to_image
=
True
)
print
(
img
.
array
.
shape
)
plt
.
imshow
(
img
.
array
[
cx
-
dgrid
:
cx
+
dgrid
,
cy
-
dgrid
:
cy
+
dgrid
],
origin
=
'lower'
)
plt
.
annotate
(
'photon shooting 4 times'
,
[
0.1
,
0.85
],
xycoords
=
'axes fraction'
,
color
=
'w'
)
plt
.
colorbar
()
ax
=
plt
.
subplot
(
2
,
2
,
3
)
val
,
bins
=
radial_profile
(
img
=
img
.
array
,
cx
=
cx
,
cy
=
cy
,
nbins
=
100
,
Rmax
=
cx
)
# plt.hist(val, bins=bins)
plt
.
plot
(
bins
,
val
,
label
=
'mag=%d'
%
(
mag_star
))
img
=
galsim
.
ImageF
(
ncol
=
Nx
,
nrow
=
Ny
,
scale
=
pixSize
)
psf_img
=
galsim
.
ImageF
(
ipsfMat
,
scale
=
pixSize
)
psf
=
galsim
.
InterpolatedImage
(
psf_img
)
psf_list
=
[
psf
]
*
4
mag_star
=
13
nphotons_tot
=
getElectronFluxFilt
(
mag
=
mag_star
)
print
(
nphotons_tot
)
for
i
in
range
(
4
):
nphotons
=
nphotons_tot
/
4.
# star = galsim.Gaussian(sigma=1.e-8, flux=1.)
star
=
galsim
.
DeltaFunction
()
star
=
star
.
withFlux
(
nphotons
)
star
=
galsim
.
Convolve
(
psf_list
[
i
],
star
)
img
=
star
.
drawImage
(
image
=
img
,
method
=
'phot'
,
center
=
galsim
.
PositionD
(
cx
,
cy
),
add_to_image
=
True
)
print
(
img
.
array
.
shape
)
val
,
bins
=
radial_profile
(
img
=
img
.
array
,
cx
=
cx
,
cy
=
cy
,
nbins
=
100
,
Rmax
=
cx
)
# plt.hist(val, bins=bins)
plt
.
plot
(
bins
,
val
,
label
=
'mag=%d'
%
(
mag_star
))
plt
.
legend
(
loc
=
'upper right'
,
fancybox
=
True
)
plt
.
xlabel
(
"R [pix]"
,
size
=
'x-large'
)
plt
.
ylabel
(
"photon count"
,
size
=
'x-large'
)
plt
.
ylim
([
0
,
500
])
# print(img.array[0:100,0:100])
#psf Convolve galsim.DeltaFunction
#photon shooting ?
#plot image?
# ax = plt.subplot(2,2,2)
# plt.imshow(ipsfMat[cgrid-dgrid:cgrid+dgrid, cgrid-dgrid:cgrid+dgrid], origin='lower')
# plt.annotate('originalPSF', [0.1, 0.85], xycoords='axes fraction', color='w')
# ax = plt.subplot(2,2,4)
# img = galsim.ImageF(ncol=Nx, nrow=Ny, scale=pixSize)
# psf_img = galsim.ImageF(ipsfMat, scale=pixSize)
# psf = galsim.InterpolatedImage(psf_img)
# psf_list = [psf] * 4
# nphotons_tot = getElectronFluxFilt(mag=mag_star)
# print(nphotons_tot)
# obj_list = []
# for i in range(4):
# nphotons = nphotons_tot / 4.
# # star = galsim.Gaussian(sigma=1.e-8, flux=1.)
# star = galsim.DeltaFunction()
# star = star.withFlux(nphotons)
# star = galsim.Convolve(psf_list[i], star)
# obj_list.append(star)
# star = galsim.Sum(obj_list)
# img = star.drawImage(image=img, method='phot', center=galsim.PositionD(cx, cy), add_to_image=True)
# plt.annotate('photon shooting once', [0.1, 0.85], xycoords='axes fraction', color='w')
# print(img.array.shape)
# plt.imshow(img.array[cx-dgrid:cx+dgrid, cy-dgrid:cy+dgrid], origin='lower')
# plt.colorbar()
# print(img.array[0:100,0:100])
# ax = plt.subplot(2,3,2)
# imy = psfCentering(ipsfMat, apSizeInArcsec=2.0)
# plt.imshow(imy[cgrid-dgrid:cgrid+dgrid, cgrid-dgrid:cgrid+dgrid], origin='lower')
# plt.annotate('PSFCentroidOld', [0.1, 0.85], xycoords='axes fraction', color='w')
# ax = plt.subplot(2,3,5)
# #psf Convolve galsim.DeltaFunction
# #photon shooting ?
# #plot image?
# ax = plt.subplot(2,3,3)
# psfInfo= LoadPSF(iccd, iwave, ipsf, psfPath, psfSampleSize=5, PSFCentroidWgt=True)
# ipsfMat = psfInfo['psfMat']
# # print(ipsfMat[0:100,0:100])
# plt.imshow(ipsfMat[cgrid-dgrid:cgrid+dgrid, cgrid-dgrid:cgrid+dgrid], origin='lower')
# plt.annotate('PSFCentroidNew', [0.1, 0.85], xycoords='axes fraction', color='w')
# ax = plt.subplot(2,3,6)
# #psf Convolve galsim.DeltaFunction
# #photon shooting ?
# #plot image?
plt
.
savefig
(
'testPlot.pdf'
)
ObservationSim/run.pbs
View file @
883b7a77
...
...
@@ -16,8 +16,4 @@ NP=40
date
echo
$NP
# mpirun -np $NP --oversubscribe -H comput101 python /public/home/fangyuedong/CSST/ObservationSim/runExposure.py
# python /public/home/fangyuedong/sim_code_release/CSSTSim/ObservationSim/preprocess.py
# mpirun -np $NP python /public/home/fangyuedong/sim_code_release/CSSTSim/ObservationSim/runExposure.py
mpirun
-np
$NP
python /public/home/fangyuedong/sim_code_release/CSSTSim/ObservationSim/runExposure.py config_sim.yaml
-c
/public/home/fangyuedong/sim_code_release/CSSTSim/config
mpirun
-np
$NP
python /public/home/fangyuedong/test_release/CSST/ObservationSim/runExposure.py config_sim.yaml
-c
/public/home/fangyuedong/test_release/CSST/config
config/config_sim.yaml
View file @
883b7a77
...
...
@@ -10,7 +10,7 @@
# Can add some of the command-line arguments here as well;
# OK to pass either way or both, as long as they are consistent
# work_dir: "/public/home/fangyuedong/sim_code_release/CSST/test/"
work_dir
:
"
/public/home/fangyuedong/
sim_code
_release/CSST
Sim
/workplace/"
work_dir
:
"
/public/home/fangyuedong/
test
_release/CSST/workplace/"
data_dir
:
"
/data/simudata/CSSOSDataProductsSims/data/"
run_name
:
"
TEST"
...
...
@@ -39,9 +39,9 @@ obs_setting:
# Options for survey types:
# "Photometric": simulate photometric chips only
# "Spectroscop
l
ic": simulate slitless spectroscopic chips only
# "Spectroscopic": simulate slitless spectroscopic chips only
# "All": simulate full focal plane
survey_type
:
"
Photometric
"
survey_type
:
"
All
"
# Exposure time [seconds]
exp_time
:
150.
...
...
@@ -61,15 +61,15 @@ obs_setting:
# Number of calibration pointings
# Note: only valid when a pointing list is specified
np_cal
:
1
np_cal
:
0
# (Optional) only run specific pointing(s).
# Note: only valid when a pointing list is specified
run_pointings
:
[
0
,
1
,
2
,
3
,
4
]
run_pointings
:
[
5
,
6
]
# (Optional) only run specific chip(s)
# Note: for all pointings
run_chips
:
[
6
,
25
]
#
run_chips: [6, 25]
###############################################
# Input path setting
...
...
@@ -116,7 +116,11 @@ psf_setting:
# path to PSF data
# NOTE: only valid for "Interp" PSF
psf_dir
:
"
csstPSFdata/CSSOS_psf_20210108/CSST_psf_ciomp_2p5um_cycle3_ccr90_proc"
psf_dir
:
"
csstPSFdata/CSSOS_psf_20210108/CSST_psf_ciomp_2p5um_cycle3_ccr90"
# path to field-distortion model
# Note: only valid when ins_effects: field_dist is "ON"
fd_path
:
"
FieldDistModelv2.0.pickle"
# sigma_spin: 0.0 # psf spin?
...
...
Prev
1
…
16
17
18
19
20
Next
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment