diff --git a/tools/TargetLocationCheck.py b/tools/TargetLocationCheck.py new file mode 100644 index 0000000000000000000000000000000000000000..69020761fbc5fe38b5615e2b5c0b6c65c92e8a96 --- /dev/null +++ b/tools/TargetLocationCheck.py @@ -0,0 +1,222 @@ +# NOTE: This is a stand-alone function, meaning that you do not need +# to install the entire CSST image simulation pipeline. + +# For a given object's coordinate (Ra, Dec), the function will predict +# the object's image position and corresponding filter in the focal plane +# under a specified CSST pointing centered at (rap, decp). + +import galsim +import numpy as np +import argparse +import matplotlib.pyplot as plt +import os, sys + +def focalPlaneInf(ra_target, dec_target, ra_point, dec_point, image_rot=-113.4333, figout="zTargetOnCCD.pdf"): + """ + Input parameters: + ra_target : right ascension of the target/input object; + float, in unit of degrees; + dec_target: declination of the target/input object; + float, in unit of degrees; + ra_point : right ascension of telescope pointing center; + float, in unit of degrees; + dec_point : declination of telescope pointing center; + float, in unit of degrees; + image_rot : orientation of the camera with respect the sky; + float, in unit of degrees; + NOTE: image_rot=-113.4333 is the default value + in current CSST image simulation; + figout : location of the target object in the focal plane; + str + -------------------------------------------------------------- + Usage: + 0) specify the coordinate (ra_target, dec_target) of your target and + the pointing center (ra_point dec_point) of the telescope + 1) open a terminal + 2) type >> python TargetLocationCheck.py ra_target dec_target ra_point dec_point + or type >> python TargetLocationCheck.py ra_target dec_target ra_point dec_point -image_rot=floatNum + or type >> python TargetLocationCheck.py ra_target dec_target ra_point dec_point -image_rot=floatNum -figout=FigureName + """ + print("^_^ Input target coordinate: [Ra, Dec] = [%10.6f, %10.6f]"%(ra_target,dec_target)) + print("^_^ Input telescope pointing center: [Ra, Dec] = [%10.6f, %10.6f]"%(ra_point,dec_point)) + print("^_^ Input camera orientation: %12.6f degree(s)"%image_rot) + print(" ") + # load ccd parameters + xsize, ysize, xchip, ychip, xgap, ygap, xnchip, ynchip = ccdParam() + print("^_^ Pixel range of focal plane: x = [%5d, %5d], y = [%5d, %5d]"%(-xsize/2,xsize/2,-ysize/2,ysize/2)) + # wcs + wcs = getTanWCS(ra_point, dec_point, image_rot, pix_scale=0.074) + skyObj = galsim.CelestialCoord(ra=ra_target*galsim.degrees,dec=dec_target*galsim.degrees) + pixObj = wcs.toImage(skyObj) + xpixObj = pixObj.x + ypixObj = pixObj.y + print("^_^ Image position of target: [xImage, yImage] = [%9.3f, %9.3f]"%(xpixObj,ypixObj)) + + # first determine if the target is in the focal plane + xin = (xpixObj+xsize/2)*(xpixObj-xsize/2) + yin = (ypixObj+ysize/2)*(ypixObj-ysize/2) + if xin>0 or yin>0: raise ValueError("!!! Input target is out of the focal plane") + + # second determine the location of the target + trigger = False + for i in range(30): + ichip = i+1 + ischip = str("0%d"%ichip)[-2:] + fId, fType = getChipFilter(ichip) + ix0, ix1, iy0, iy1 = getChipLim(ichip) + ixin = (xpixObj-ix0)*(xpixObj-ix1) + iyin = (ypixObj-iy0)*(ypixObj-iy1) + if ixin<=0 and iyin<=0: + trigger = True + idx = xpixObj - ix0 + idy = ypixObj - iy0 + print(" ---------------------------------------------") + print(" ** Target locates in CHIP#%s with filter %s **"%(ischip,fType)) + print(" ** Target position in the chip: [x, y] = [%7.2f, %7.2f]"%(idx, idy)) + print(" ---------------------------------------------") + break + if not trigger: print("^|^ Target locates in CCD gap") + + # show the figure + print(" Target on CCD layout is saved into %s"%figout) + ccdLayout(xpixObj, ypixObj, figout=figout) + + return + +def ccdParam(): + xt, yt = 59516, 49752 + x0, y0 = 9216, 9232 + xgap, ygap = (534,1309), 898 + xnchip, ynchip = 6, 5 + ccdSize = xt, yt, x0, y0, xgap, ygap, xnchip, ynchip + return ccdSize + +def getTanWCS(ra, dec, img_rot, pix_scale=0.074): + """ + Get the WCS of the image mosaic using Gnomonic/TAN projection + Parameter: + ra, dec: float + (RA, Dec) of pointing of optical axis + img_rot: galsim Angle object + Rotation of image + pix_scale: float + Pixel size in unit of as/pix + Returns: + WCS of the focal plane + """ + xcen, ycen = 0, 0 + img_rot = img_rot * galsim.degrees + dudx = -np.cos(img_rot.rad) * pix_scale + dudy = -np.sin(img_rot.rad) * pix_scale + dvdx = -np.sin(img_rot.rad) * pix_scale + dvdy = +np.cos(img_rot.rad) * pix_scale + + moscen = galsim.PositionD(x=xcen, y=ycen) + sky_center = galsim.CelestialCoord(ra=ra*galsim.degrees, dec=dec*galsim.degrees) + affine = galsim.AffineTransform(dudx, dudy, dvdx, dvdy, origin=moscen) + WCS = galsim.TanWCS(affine, sky_center, units=galsim.arcsec) + + return WCS + +def getChipFilter(chipID): + """ + Return the filter index and type for a given chip #(chipID) + """ + filter_type_list = ["nuv","u", "g", "r", "i","z","y","GU", "GV", "GI"] + # TODO: maybe a more elegent way other than hard coded? + # e.g. use something like a nested dict: + if chipID in [6, 15, 16, 25]: filter_type = "y" + if chipID in [11, 20]: filter_type = "z" + if chipID in [7, 24]: filter_type = "i" + if chipID in [14, 17]: filter_type = "u" + if chipID in [9, 22]: filter_type = "r" + if chipID in [12, 13, 18, 19]: filter_type = "nuv" + if chipID in [8, 23]: filter_type = "g" + if chipID in [1, 10, 21, 30]: filter_type = "GI" + if chipID in [2, 5, 26, 29]: filter_type = "GV" + if chipID in [3, 4, 27, 28]: filter_type = "GU" + filter_id = filter_type_list.index(filter_type) + + return filter_id, filter_type + +def getChipLim(chipID): + """ + Calculate the edges in pixel for a given CCD chip on the focal plane + NOTE: There are 5*4 CCD chips in the focus plane for photometric observation. + Parameters: + chipID: int + the index of the chip + Returns: + A galsim BoundsD object + """ + xt, yt, x0, y0, gx, gy, xnchip, ynchip = ccdParam() + gx1, gx2 = gx + + rowID = ((chipID - 1) % 5) + 1 + colID = 6 - ((chipID - 1) // 5) + + # xlim of a given CCD chip + xrem = 2*(colID - 1) - (xnchip - 1) + xcen = (x0//2 + gx1//2) * xrem + if chipID >= 26 or chipID == 21: + xcen = (x0//2 + gx1//2) * xrem - (gx2-gx1) + if chipID <= 5 or chipID == 10: + xcen = (x0//2 + gx1//2) * xrem + (gx2-gx1) + nx0 = xcen - x0//2 + 1 + nx1 = xcen + x0//2 + + # ylim of a given CCD chip + yrem = (rowID - 1) - ynchip // 2 + ycen = (y0 + gy) * yrem + ny0 = ycen - y0//2 + 1 + ny1 = ycen + y0//2 + + return nx0-1, nx1-1, ny0-1, ny1-1 + +def ccdLayout(xpixTar, ypixTar, figout="ccdLayout.pdf"): + fig = plt.figure(figsize=(10.0,8.0)) + ax = fig.add_axes([0.1,0.1,0.80,0.80]) + # plot the layout of the ccd distribution + for i in range(30): + ichip = i+1 + fId, fType = getChipFilter(ichip) + ischip = str("0%d"%ichip)[-2:] + ix0, ix1, iy0, iy1 = getChipLim(ichip) + ax.plot([ix0,ix1],[iy0,iy0],"k-", linewidth=2.5) + ax.plot([ix0,ix1],[iy1,iy1],"k-", linewidth=2.5) + ax.plot([ix0,ix0],[iy0,iy1],"k-", linewidth=2.5) + ax.plot([ix1,ix1],[iy0,iy1],"k-", linewidth=2.5) + ax.text(ix0+500,iy0+1500,"%s#%s"%(fType, ischip), fontsize=12, color="grey") + ax.plot(xpixTar, ypixTar, "r*", ms=12) + ax.set_xlabel("$X\,[\mathrm{pixels}]$", fontsize=20) + ax.set_ylabel("$Y\,[\mathrm{pixels}]$", fontsize=20) + ax.invert_yaxis() + ax.axis('off') + plt.savefig(figout) + +def parseArguments(): + # Create argument parser + parser = argparse.ArgumentParser() + + # Positional arguments + parser.add_argument("ra_target", type=float) + parser.add_argument("dec_target", type=float) + parser.add_argument("ra_point", type=float) + parser.add_argument("dec_point", type=float) + + # Optional arguments + parser.add_argument("-image_rot", type=float, default=-113.4333) + parser.add_argument("-figout", type=str, default="zTargetOnCCD.pdf") + + # Parse arguments + args = parser.parse_args() + + return args + +if __name__ == "__main__": + # Parse the arguments + args = parseArguments() + + # Run function + focalPlaneInf(args.ra_target, args.dec_target, args.ra_point, args.dec_point, args.image_rot, args.figout) +