Commit c45eec07 authored by BO ZHANG's avatar BO ZHANG 🏀
Browse files

corrected imports from stats

parent 59ec96bd
...@@ -31,7 +31,7 @@ from scipy.interpolate import UnivariateSpline ...@@ -31,7 +31,7 @@ from scipy.interpolate import UnivariateSpline
# import ..magfluxconvert as magf # import ..magfluxconvert as magf
from .magfluxconvert import asinhpogson, fluxerr2magerr, magerr2fluxerr from .magfluxconvert import asinhpogson, fluxerr2magerr, magerr2fluxerr
import stats from .stats import sigmaclip_limitsig, weighted_mean
# import system # import system
from shutil import which from shutil import which
...@@ -524,14 +524,14 @@ def magnitude_correction(fluxcalib, head, plot_name=None, magerr_lim=0.05, elp_l ...@@ -524,14 +524,14 @@ def magnitude_correction(fluxcalib, head, plot_name=None, magerr_lim=0.05, elp_l
else: else:
print('isolated stars: ', mask.sum()) print('isolated stars: ', mask.sum())
magdiff = -np.transpose(apermag[mask, :].transpose() - apmag8[mask]) magdiff = -np.transpose(apermag[mask, :].transpose() - apmag8[mask])
diff_masked = stats.sigmaclip_limitsig(magdiff, sigma=sigma, maxiters=iters, axis=0) diff_masked = sigmaclip_limitsig(magdiff, sigma=sigma, maxiters=iters, axis=0)
mask1 = mask mask1 = mask
mask = np.logical_not(np.any(diff_masked.mask, axis=1)) mask = np.logical_not(np.any(diff_masked.mask, axis=1))
nstar_aper = mask.sum() nstar_aper = mask.sum()
diff_masked = diff_masked[mask] diff_masked = diff_masked[mask]
for i in range(naper): for i in range(naper):
weighterr = np.sqrt(apmag8err[mask1][mask] ** 2 + apermagerr[:, i][mask1][mask] ** 2) weighterr = np.sqrt(apmag8err[mask1][mask] ** 2 + apermagerr[:, i][mask1][mask] ** 2)
cor, _, corerr = stats.weighted_mean(diff_masked[:, i], weighterr, weight_square=False) cor, _, corerr = weighted_mean(diff_masked[:, i], weighterr, weight_square=False)
corerr /= np.sqrt(nstar_aper) corerr /= np.sqrt(nstar_aper)
apercor[i] = cor apercor[i] = cor
apercor_std[i] = corerr apercor_std[i] = corerr
...@@ -657,12 +657,12 @@ def magnitude_correction(fluxcalib, head, plot_name=None, magerr_lim=0.05, elp_l ...@@ -657,12 +657,12 @@ def magnitude_correction(fluxcalib, head, plot_name=None, magerr_lim=0.05, elp_l
else: else:
print('isolated stars for ' + magkeys[i] + ':', mask.sum()) print('isolated stars for ' + magkeys[i] + ':', mask.sum())
magdiff = apmag8[mask] - kmag[mask] magdiff = apmag8[mask] - kmag[mask]
diff_masked = stats.sigmaclip_limitsig(magdiff, sigma=sigma, maxiters=iters, sig_limit=sig_limit) diff_masked = sigmaclip_limitsig(magdiff, sigma=sigma, maxiters=iters, sig_limit=sig_limit)
mask1 = np.logical_not(diff_masked.mask) mask1 = np.logical_not(diff_masked.mask)
nstar_cor = mask1.sum() nstar_cor = mask1.sum()
diff_masked = magdiff[mask1] diff_masked = magdiff[mask1]
weighterr = np.sqrt(kmagerr[mask][mask1] ** 2 + apmag8err[mask][mask1] ** 2) weighterr = np.sqrt(kmagerr[mask][mask1] ** 2 + apmag8err[mask][mask1] ** 2)
cor, _, corerr = stats.weighted_mean(diff_masked, weighterr, weight_square=False) cor, _, corerr = weighted_mean(diff_masked, weighterr, weight_square=False)
corerr /= np.sqrt(nstar_cor) corerr /= np.sqrt(nstar_cor)
print('correction using stars:', nstar_cor) print('correction using stars:', nstar_cor)
print([cor, corerr]) print([cor, corerr])
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment