getPointingList.py 6.63 KB
Newer Older
Xin Zhang's avatar
Xin Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import astropy.coordinates as coord
from astropy import units as u
from pylab import *
import numpy as np
# from numba import jit

def loadSatOrbitDat(datDir='',fileNum=50):
    oData = loadtxt(datDir+'1.txt')

    for i in arange(2, fileNum + 1, 1):
        tdat = loadtxt(datDir+str(i)+'.txt')
        oData = np.vstack((oData,tdat))
    
    return oData



def locateSat(time=2459766., OrbitData = None, startId = 0, orbDataLen = 10000):

    satPos = np.zeros(3)
    nextSid = startId
    for i in np.arange(startId, orbDataLen-1, 1):
        t1 = OrbitData[i,0]
        t2 =  OrbitData[i+1,0]
        if time>= t1 and time<t2:
            if((t2-t1)>130.0/86400.0): # should be 120s, for error, set 120+10s
                     break

            x1 = OrbitData[i,1];
            y1 = OrbitData[i,2];
            z1 = OrbitData[i,3];
            x2 = OrbitData[i+1,1];
            y2 = OrbitData[i+1,2];
            z2 = OrbitData[i+1,3];
			
            l1 = np.sqrt(x1*x1+y1*y1+z1*z1);
            l2 = np.sqrt(x2*x2+y2*y2+z2*z2);
            theta = np.arccos((x1*x2+y1*y2+z1*z2)/(l1*l2));
            theta1 = (time-t1)/(t2-t1)*theta;
            theta2 = theta-theta1;
            l = (t2-time)/(t2-t1)*l1+(time-t1)/(t2-t1)*l2;
			# // double ef = sin(theta2)/sin(theta1);
            
            x0 = np.sin(theta2)*x1/l1+np.sin(theta1)*x2/l2;
            y0 = np.sin(theta2)*y1/l1+np.sin(theta1)*y2/l2;
            z0 = np.sin(theta2)*z1/l1+np.sin(theta1)*z2/l2;
            l_ = np.sqrt(x0*x0+y0*y0+z0*z0);
            
            satPos[0] = x0*l/l_;
            satPos[1] = y0*l/l_;
            satPos[2] = z0*l/l_;
            nextSid = i
            break;	
    return satPos, nextSid




# @jit()
def producePointingList(out = '' , center = [60,-40], radius = 5):
    points = np.loadtxt('skyMapOrSurveyList/sky.dat')

    num = points.shape[0]
    center = center#ra dec
    radius = radius # degree
    c_eclip = coord.SkyCoord(points[:,2]*u.degree, points[:,1]*u.degree,frame='barycentrictrueecliptic')
    c_equtor = c_eclip.transform_to('icrs')

    ids1 = (c_equtor.ra*u.degree).value > center[0]-radius
    ids2 = (c_equtor[ids1].ra*u.degree).value < center[0]+radius
    ids3 = (c_equtor[ids1][ids2].dec*u.degree).value > center[1]-radius
    ids4 = (c_equtor[ids1][ids2][ids3].dec*u.degree).value < center[1]+radius

    elip_txt = '# ra    dec    lon    lat    angle \n'

    for p,p_ in zip(points[ids1][ids2][ids3][ids4],c_equtor[ids1][ids2][ids3][ids4]):
        ra = (p_.ra*u.degree).value
        dec = (p_.dec*u.degree).value
        # print(ra, dec)
        lon = p[2]
        lat = p[1]
        elip_txt = elip_txt + str(round(ra,6)) + '    ' + str(round(dec,6)) + '    ' + str(round(lon,6)) + '    ' + str(round(lat,6)) + '    -113.4333'
        elip_txt = elip_txt + '\n'

    # for i in np.arange(0,num,1):
    #     # lon,lat
    
    #     ra = (c_equtor[i].ra*u.degree).value
    #     dec = (c_equtor[i].dec*u.degree).value

    #     if center[0]-radius <ra < center[0]+radius and center[1]-radius<dec<center[1]+radius:
    #         elip_txt = elip_txt + str(round(ra,6)) + '    ' + str(round(dec,6)) + '    ' + str(round(points[i,2],6)) + '    ' + str(round(points[i,1],6)) + '    -113.4333\n' 

    pointfn = open(out,'w')
    pointfn.write(elip_txt)
    pointfn.flush()
    pointfn.close()


def producePointingList2(out = '' , center = [60,-40], radius = 5, survey_file = 'skyMapOrSurveyList/E17.5_b17.5_beta_11.6_opt_transtime_1_CMG_1_dp_2_0.25_da_10_Texp_1.5_DEC60_500_0.1_800_1000_+5deg.dat'):
    points = np.loadtxt(survey_file)

    num = points.shape[0]
    center = center#ra dec
    radius = radius # degree
    c_eclip = coord.SkyCoord(points[:,2]*u.degree, points[:,1]*u.degree,frame='barycentrictrueecliptic')
    c_equtor = c_eclip.transform_to('icrs')
    ids1 = (c_equtor.ra*u.degree).value > center[0]-radius
    ids2 = (c_equtor[ids1].ra*u.degree).value < center[0]+radius
    ids3 = (c_equtor[ids1][ids2].dec*u.degree).value > center[1]-radius
    ids4 = (c_equtor[ids1][ids2][ids3].dec*u.degree).value < center[1]+radius

    obDataDir = 'orbit20160925/'
    orbitDat = loadSatOrbitDat(obDataDir,50)
    sOrbitId = 0

    elip_txt = '# ra    dec    lon(ecliptic)    lat(ecliptic)    pos_angle    time(julian)    sat_x    sat_y    sat_z    sun_x    sun_y    sun_z    moon_x    moon_y    moon_z    sat_vx    sat_vy    sat_vz    exp_time    isDeep\n'

    for p,p_ in zip(points[ids1][ids2][ids3][ids4],c_equtor[ids1][ids2][ids3][ids4]):
        ra = (p_.ra*u.degree).value
        dec = (p_.dec*u.degree).value
        # print(ra, dec)
        lon = p[2]
        lat = p[1]
        elip_txt = elip_txt + str(round(ra,6)) + '    ' + str(round(dec,6)) + '    ' + str(round(lon,6)) + '    ' + str(round(lat,6)) + '    -113.4333'

        oTime = p[0]
        satPos, sOrbitId =locateSat(time=oTime, OrbitData = orbitDat, startId = sOrbitId, orbDataLen = orbitDat.shape[0])
        tempOrbitId = sOrbitId
        deltT = 0.1 # unit s
        nTime = p[0]+deltT/86400.
        satPosN, _ =locateSat(time=nTime, OrbitData = orbitDat, startId = sOrbitId, orbDataLen = orbitDat.shape[0])
        sat_v = (satPosN - satPos)/deltT
        mm1 = np.sqrt(np.sum(sat_v*sat_v))
        mm2 = np.sqrt(np.sum(satPos*satPos))
        # print(np.sum(sat_v*satPos)/(mm1*mm2))
        # print(sat_v,p[6:9])
        if(np.abs(np.sum(sat_v*satPos)/(mm1*mm2))>0.01):
            print(oTime)
            break


        
        # checkMod = np.sqrt((satPos[0]-p[3])*(satPos[0]-p[3]) + (satPos[1]-p[4])*(satPos[1]-p[4]) + (satPos[2]-p[5])* (satPos[2]-p[5]))

        # if (checkMod > 0.01):
        #     print(oTime, checkMod)
        #     break

        # print(satPos[0]-p[3], satPos[1]-p[4], satPos[2]-p[5])

        # if oTime > 2459768:
        #     break
        
        dat_col = [0,3,4,5,6,7,8,9,10,11,16,14]
        for col in dat_col[:-2]:
            elip_txt = elip_txt + '    ' + str(p[col])
        elip_txt = elip_txt + '    ' + str(sat_v[0]) + '    ' + str(sat_v[1]) + '    ' + str(sat_v[2])

        for col in dat_col[-2:]:
            elip_txt = elip_txt + '    ' + str(p[col])


        elip_txt = elip_txt + '\n'
        

    pointfn = open(out,'w')
    pointfn.write(elip_txt)
    pointfn.flush()
    pointfn.close()


if __name__ == "__main__":
    isRealSurvey = False
    survey_file = 'skyMapOrSurveyList/E17.5_b17.5_beta_11.6_opt_transtime_1_CMG_1_dp_2_0.25_da_10_Texp_1.5_DEC60_500_0.1_800_1000_+5deg.dat'
    outFileName = 'pointing_test_false.dat'
    radi = 1

    center_pos = [60, -40]
    if isRealSurvey:
        producePointingList2(out = outFileName,center = center_pos, radius = radi, survey_file = survey_file)
    else:
        producePointingList(out = outFileName,center = center_pos, radius = radi)